To appear in Proceedings of OOPSLA97, ACM Press.

Constraint Diagrams:
Visualizing Invariants in Object-Oriented Models

Stuart Kent

Division of Computing,

University of Brighton, Lewes Rd., Brighton, UK.
http://www.it.brighton.ac.uk/staff/Stuart.Kent
Stuart.Kent@brighton.ac.uk
fax: ++44 1273 642405, tel: ++44 1273 642494

Abstract. A new visual notation is proposed for precisely express- properties of functions and relations (e.g., Gerstein 1987) and bor-
ing constraints on object-oriented models, as an alternative torows much from Venn diagrams. It may be viewed as a way of

mathematical logic notation used in methods such as Syntropy andlescribing sets of instance diagrams, and is a natural development
Catalysis. The notation is potentially intuitive, expressive, inte- of instance (object) diagrams in UML (UML 1997).

grates well with existing visual notations, and has a clear and
unambiguous semantics. It is reminiscent of informal diagrams
used by mathematicians for illustrating relations, and borrows
much from Venn diagrams. It may be viewed as a generalization of
instance diagrams.

Whilst we have some clear ideas of how the notation might be used
to improve the lot of the software modeler/designer, it is inevitable
that the focus of this first paper on the subject is on describing the
notation. This is best done by relating it to something that is more
familiar. Therefore a careful characterization of an object-oriented
Key words: Analysis and design methods, language design, for- model is given in Section 2, using diagrammatic notation from

mal methods, software engineering practices. UML, supplemented with invariants expressed mathematically
where UML diagrams are unable to express the desired constraints.
1 Introduction This section also serves to demonstrate the claim made above that

there are some constraints that can not be expressed using dia-
This paper proposes a new diagrammatic notation for precise|ygrammatic notations currently proposed for object-oriented model-
expressing invariant constraints on object-oriented (OO) models. ling.

In essence, all OO modelling notations may be viewed as docu-Section 3 introduces the notation by using it to express the invari-
menting constraints either on the set of allowable system statesants identified in section 2. This demonstrates that it is indeed
i.e., the instance diagrams which one is allowed to draw, or on themore expressive than current diagrammatic notations.

allowable execution paths through those states. Section 4 is a discussion focussing on:

Current graphical notations are inadequate in the constraints they,
are able to impose, so need to be supplemented by mathematical
assertions describing the more intricate constraints, as is done in]) .) .)
methods such as Syntropy (Cook and Daniels, 1994), Catalysis relationships with other diagrammatic notations,

(D’Souza and Wills, 1995, 1997) and BON (Walden and Nerson, » limitations, possible extensions, semantic issues and usability
1995). So far this has been the only way of achieving a level of of the notation,

detail necessary for a comprehensive behavioral description, at & jmpact on automated tool support for modelling.

level of abstraction that avoids irrelevant implementation or design
detail. Unfortunately it is also unintuitive and off-putting to many The latter gives a sketch of how the notation could be used as a
working software engineers. Parnas (1996) characterizes the probbasis for automated tool support to the construction of precise
lem as follows: specifications of constraints from instance diagrams, and vice-
versa. It is proposed that similar techniques could be used for
semantic checking of models.

use of the notation to visualize action contracts (pre/post
specifications),

“Mathematical methods offered to the working software engi-
neer are not very practical [...]. Most, but not all, are theoreti-
cally sound but much more difficult to use than the mathematics A summary of the notation is given in an appendix.
that has been developed for use in other areas of engineering.

[...] We need a lot more work on notation. The notation that is

purveyed by most formal methods researchers is cumbersome 2 L|brary SyStem in UML and CataIyS|s
and hard to read. Even the best notation | know (mine of course)
is inadequate.” This section sets the context for the constraint diagram notation
)))]) introduced in this paper, by specifying a small case study - a
The diagrammatic notation proposed here, catignsstraint dia- library system - using the diagrammatic notation of UML supple-

grams replaces the need to write many assertions mathematicallymented with mathematical notation from Catalysis to express those
and is potentially more intuitive to, hence more likely to be used constraints that can not be expressed using diagrams from UML
by, the practising software engineer. The notation has similarities (or, indeed, other OO modelling notations). UML has been chosen
with informal diagrams used by mathematicians for illustrating as it incorporates and unifies many of the notations of its predeces-

sors, so may be viewed as representative of them, and is fast
Permission to make digital or hard copies of part or all of this work for personal or becomlng the de facto standard in OO mOde”mg'

classroom use is granted without fee provided that copies are not made or distributed The approach taken is to express as much as possible diagrammat-
for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than ically, resqrting to mathematical asse.rtions only Whe.re strictly nec-
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to €Ssary. This serves three purposes: it proves the point that there are

republish, to post on servers or to redistribute to lists, requires prior specific permis- some constraints that can not be expressed diagrammatically using
sion and/or a fee.

1of15

To appear in Proceedings of OOPSLA97, ACM Press.

Library
registered
User * Loan
* 1
1 availableTo |* *
*
Reservation 0.1
" onHoldFor collection
= | available 1
1 heldCopy
catalog 0.1
* Publication 1 Copy B
*

Figure 1: Type diagram for library

existing notations; it provides the examples (those constraints) forthe library are in theatalog, all the copies form the library&ol-
the section following which introduces the constraint diagram lection, and all the users known to the library mustriegis-
notation; it illustrates the pattern of specification required (mixing tered.

of type and state diagrams) to express as much as possible usi

. e . "%oan andReservation characterize objects used to record loans
diagrams from existing notations.

and reservations, respectively. A loan records which copy is on

. loan to which user, and a reservation records which publication has
2.1 Informal Requirements been reserved by which user. A copy may beopktoldFor a res-

The genera| requirements are to produce a Computerized System tgrvation, which means that it is Waltlng to be collected by the user
support the management of loans in a university library. A library Who made the reservation. After the copy has been collected the
maintains a catalog of publications which are available for lending reservation will have been fulfilled.

to users. There may be many copies of the same publication. Publigome associations in the diagram have been given rolenames at
cations and copies may be added to and removed from the librarygne or both ends. Following Catalysis (D'Souza and Wills, 1997)

Copies available for lending may be borrowed by active users reg-ye adopt a convention for constructing default rolenames where
istered with the library. When a publication (or more specifically a they have been omitted.

particular copy) has been borrowed it is on loan, and is not avail- o)
able for lending to other users. However, it still belongs to the * If the association is unlabeled the name of the type at either
library and so is still part of its collection. Users are able to reserve ~ €nd is used, with the first letter in lowercase and pluralized if
publications, when none of the copies are available for loan. Auser this makes sense: for example we can refer téotires of a

may not place more than one reservation for the same publication. ~ User or theiser associated with a loan.

When a copy is returned after it has been out on loan, it may be put |f the association is labelled at one end only, then the name
back on the shelf or, alternatively, held for a user who has reserved used at the reverse end will be that label prefixed wifior

the publication of which it is a copy. This may be done immedi- example~collection, ~catalog, ~registered will always

ately on return, or delayed, and done as part of a batch of returned take us back to the library object(s) from an object of the cor-
copies. responding types.

2.2 Type Diagram 2.3 States

The main type diagram for the library is given in Figure 1. This is The type diagram on its own can not express all the constraints that
UML notation. Publication, User and Copy are types of object we would wish to express for the library system. In particular, mul-
we expect to find in a library. A publication is a record of all the tiplicity restrictions do not allow relationships between associa-
details of a book: title, authors, ISBN, etc. A publication may have tions to be expressed. For example, it should be a constraint that
many copies (or none), which correspond to the physical books. Athe publication of a copgnHoldFor a reservation is the one that
copy only has one set of publication details. A copy mayhd- has been reserved. Figure 2 shows an instance diagram which sat-
ableTo loan to many users, and a user may have many copiesisfies the type model, but which does not satisfy this constraint. It
which areavailable for loan to her. All the publications known to satisfies the type model because it satisfies all the multiplicity

20f15

To appear in Proceedings of OOPSLA97, ACM Press.

restrictions. It does not satisfy the constraint because the held copyve show that for this system (and by extrapolation probably for
is not associated with the same publication as the reservation it ismost systems) this is still not enough. In particular the constraint

held for.

:Library

:User

| __registered

N

Reservation

ohHoldFor

> heldCopy
\

:Publication

:Copy

/
catalog

collection

:Publication| ™
catalog

\

Figure 2: Instance diagram not satisfying constraint, but satisfying

type diagram

above can not be expressed in this way.

Figure 3 shows four diagrams defining the states of particular
types. The notation used is similar to that used in OMT (Rum-
baugh et al. 1991), Syntropy and Catalysis, transformed to UML,
which strangely says nothing about defining states outside state
diagrams. The filled in subtype arrow indicates partitioning: the
type Copy is partitioned between those objects in the sAatsl-

able and those in the statdnavailable. Subtyping is used to
bring states into type diagrams, based on the semantic intuition
that everyAvailable object is aCopy object, but not vice-versa.

In an attempt to unify notation, we have chosen to use a box with
rounded corners to represent a state, i.e. the same shape of box that
is used in state diagrams. The aforementioned methods generally

)
In the true spirit of subtyping states can be further constrained:
they can have associations that objects not in that state do not have

and may further constraint multiplicities on associations obtained
from the supertype/superstate.

The diagrams in Figure 4 place additional constraints on states for
this example. The left hand diagram indicates that when the copy is
in theOnHold state it isonHoldFor exactly one reservation in the
ToBeCollected state, but is natnHoldFor any reservation when

in a different state. Similarly, a reservation in FeBeCollected

state has exactly orleeldCopy, but no held copies when in a dif-
ferent state. Clearly this diagram does place some constraint on the

However, we have not yet made any use of states. Often furthemature of the copy held, that it is in the st@weHold, but this is
constraints can be imposed by introducing states for particularnot enough; in particular it does not state that the publication asso-
types of object, and then adding further multiplicity conditions on ciated with the held copy is the same as that reserved.
associations, which will depend on the state chosen. In this section

Copy

A

Available

User

Unavailable A

(Active) (Inactive)

(onsheif) (onHold) (Returned) (" out)

Reservation

A

Loan

A

(Pending) (Toaea)necfe@ (Fulfilled) (" ongoing) (Completed)

Figure 3: Type diagrams showing states

30f15

To appear in Proceedings of OOPSLA97, ACM Press.

Copy Copy

Available (Unavailable) (Available) (Unavailable)

(" onshelf) @D <0n5he|f> <OnHoId>

heldCopy available available

onHoldFor availableTo| 1

(Pending) GoBeCollec‘recD (Fulﬁlled) : " (Active) (Inactive)
availableTo

User

Reservation

Figure 4: Multi plicities on associations between states

Similarly the right hand diagram places constraints on the number

and state of users to which a copy is available, depending on the

state of the copy. However, again it is not sufficient; specifically it

does not state that the single user to whom a @apyold is avail-

able for loan is the one who made the reservation, or that a copy

OnShelf is available to all active users. 1

Co
Figure 5 is attempting to capture the idea that a copy may have PY

only oneonGoing loan at any point in time (it can only be out on
loan to one user). This it does by introducingdberent associa-

tion. This nearly achieves the desired effect, but again is not quite

enough. It is necessary to say how the loan identified through this - -

link is related to the association indicated betw@epy andLoan,
which is taken from the type model. Is it included in this associa-

tion, in which case it must always be explicitly excluded when the

loan history of a copy (i.e. all completed loans for that copy) is

retrieved, or is it always excludeld?

2.4 Invariants <On5helf> COnHoId)
1

The previous section identified the following constraints that can
not be expressed using existing diagrammatic notations: current

1. The publication associated with the held copy is the same as Ongomg comp|efed
that reserved.
2. i i i

The user to whom a coynHold is available for loan is the
one who made the reservation.

Loan |*
1. To maintain a consistency in design decisions we would probably
wish to say it is included: no distinction has been made between) o
ongoing and completed loans for a user, so why should we be forced Figure 5: Associations between states €lopy and Loan
by a lack of expressiveness in the notation to make a similar distinc-
tion here.

4 of 15

To appear in Proceedings of OOPSLA97, ACM Press.

3. A copyOnShelf is available to all active users.
4. A copy may be associated with only one ongoing loan.

In addition there are some additional constraints which have not
been touched upon:

5. The collection is equivalent to all the copies of all publica-
tions in the catalog.

6. The reservations known to the library are exactly all the reser-
vations made by users or all the reservations there are for the
publications in the catalog.

7. The loans known to the library are exactly those associated

with copies in the collection and these are exactly those asso-
ciated with registered users.

These seven constraints can not be expressed even if one is pr
pared to fully exploit the inclusion of states on type diagrams.
More naive designs which e.g. use associations to model states wil
come up with many more constraints relating associations which

7.

The meaning of navigation in this instance originated in Syn-
tropy (Cook and Daniels 1994, p57) and is used in Catalysis.
catalog is a setcatalog.copies is then the union of the sets

arrived at by navigating the copies link from each publication

in catalog. That iscatalog.copies is equivalent to writing

{x:Copy | Oy:Publication, y O catalog Oy.copy
= X}

The Syntropy/Catalysis interpretation of navigation is fully
exploited in the constraint diagram notation introduced here.

The reservations made by users are exactly all the reserva-
tions there are for the publications in the catalog.
registered.reservations

= catalog.reservations

The loans associated with copies in the collection and these

| are exactly those associated with registered users.

collection.loans = registered.loans

can not be expressed using current diagrammatic notations. It

seems that naive designs are likely to be par for the course, consid

ering, for example, that the latest UML documentation (UML
1997) makes no mention of including states on type diagrams.

3 Constraint diagrams: visualizing

invariants

Methods such as Catalysis and Syntropy solve this problem by theThis section introduces the constraint diagram notation, by giving

use of mathematical assertions to wiiteariants. The invariants
stated are written in mathematical notation using Catalysis syntax,
as follows:

1. The publication associated with a cdpyHold is the same
as that which has been reserved.

Oc:Copy, (c.OnHold Oc O collection)

O c.onHoldFor.publication = c.publication
c O collection has been included as really this constraint
only applies to copies in the collection; it can not be guaran-
teed e.g. for copies passed into the library via a parameter
which have yet to be placed in the collection. Of course multi-
plicity constraints in type diagrams don’t make this distinc-
tion.

2. The user to whom a cofynHold is available for loan is the
one who made the reservation.

Oc:Copy, (c.OnHold O ¢ O collection)

O c.availableTo = c.onHoldFor.user

3. A copyOnShelf is available to all active users.

Oc:Copy, (c.OnShelf Oc O collection)

O c.availableTo = registered[Active]
whereregistered[Active] is the set of registered users in
the active state.

4. A copy may be associated with only one ongoing loan.

Oc:Copy, ((¢.Out Oc O collection)

O |c.loans[Ongoing]| = 1)

O((=c.Out Oc O collection)

O |c.loans[Ongoing]| = 0)

This will work whether theurrent association suggested in
Figure 5 on page 4 is included or not. If this association is
included, then the above constraint is not necessary; instead
the constraint

Oc:Copy, ¢ O collection O c.current O c.loans is
required.

5. The collection is equivalent to all the copies of all publica-

tions in the catalog.

collection = catalog.copies

a constraint diagram for the invariants written mathematically in
§2.4, p.4. Thus it demonstrates how constraint diagrams can
express invariants that can not be expressed diagrammatically in
current notations. A summary of the notation can be found in the
Appendix.

Perhaps the easiest invariants to show diagrammatically are 5, 6
and 7. The corresponding constraint diagram is given in Figure 6.
The basic notation can be summarized as follows:

Associations are depicted as relations betveetsof objects.

Venn diagrams can be used to express relationships between
associations. In this case the relationships are simply equiva-
lences, i.e. a number of arrows target on the same set. In gen-
eral, relationships such as intersection and containment can
be depicted. Examples of such relationships appear through-
out this section.

There are four ways of depicting a set depending on the num-
ber of elements in the set:

e has 1 element,

© has 0..1 elements,

D has 0 or more elements,

@ hasn elements.

Types are depicted as (universal) sets.

Navigation always begins at an object or set with no incoming
arrows. In this diagram the only such item isgbéf object.
Enclosing the types within the object has no semantic rele-
vance. It is an aid to drawing the diagram, and gives a sense of
where navigation begins.

Links are directed for the following reason. Consider the top dia-
gram in Figure 7. The associatiavailable indicates, for any
user, which set of copies is available for loan to that user. If the
arrow was omitted then we would not know in which direction to
read the diagram. Reading the link in the other direction would
mean that any set of copies are always available only to a single
user which is the same for all copies in that set. This is clearly not

50f 15

To appear in Proceedings of OOPSLA97, ACM Press.

A box like this indicates
the set of objects of the

- named type —
:Library P
User
registered Loan
ﬁ ’\
\Q : Represents the
f object which
iis Self
Reservation ‘
' Indicatesa set \ — \ Copy
' of objects of Publication
the named |1
type.
cu/‘rqlog collection__—

Indicates the set of objects (at the target) obtained by navigating
the named association from the set at the source. The rolename
used is the same as that at the target of the association, :
navigated in the direction of the arrow, in the type diagram.

Figure 6: Constraint diagram for invariants 5-7

the case. Instead we could draw the bottom diagram, which says
that for any user there is a set of copies available to that user (pos-
sibly empty), and for any copy in that set, that usemis ofthe

users to which the copy is available for loan.

A set (in this case a singleton)
with no links targeted on it. This
means any (i.e. universal
quantification) arbitrary set like
this within the smallest
containing set depicted.

The constraint diagram, Figure 8, for invariant

1. The publication associated with a cdpyHold is the same
as that which has been reserved.

Oc:Copy, (c.OnHold Oc O collection)
O c.onHoldFor.publication = c.publication

available COPY

User /
introduces a new piece of notation: a shorthand for representing
those objects in a particular set (in this casiéection), which are
in a particular state (in this ca€nHold). It is probably worth
highlighting how a constraint can be placed on an arbitrary object
chosen from a particular set: by showing a set (if a singleton then
this corresponds to an object) with no arrows targeted on it. In this
casec represents any object in the st@&aHold and in thecol-
lection. The labele is not strictly necessary; it has been included
so to clarify the mapping from the diagram to the mathematical
form of the invariant.

User Copy

available

ol o

available To

Figure 7: TheavailableTo link

Equivalently one could draw Figure 9, where, as in §2.3, p.2, a box
with rounded corners is used to represent the set of objects in the

named state.

The short hand notation is especially useful when objects in two or
more different states need to be referred to.

6 of 15

To appear in Proceedings of OOPSLA97, ACM Press.

Indicates the set of objects in the named

:Libr‘ar‘y_ state which are also contained in the smallest
containing set depicted (in this case
collection).

Reservation

Copy /
//.<\\onHo|dFor'
| Publication (OnHold\ N
‘ collection

Figure 8: Constraint diagram for invariant 1

:Library
User
Copy
ava@:leTo m
| N

\ (Ontold
Reservation / ‘, L

collection
onhHoldFor I

f\

Figure 10: Constraint diagram for invariants 2, 3

3. AcopyOnShelf is available to all active users.

C Oc:Copy, (c.OnShelf Oc O collection)
For opy O c.availableTo = registered[Active]
(o]

@ into the same diagram, Figure 10, as they both concern the same

IS association. There is little that requires comment here.

‘ Finally, Figure 11 is the diagram for the invariant

—X | collec 4. A copy may be associated with only one ongoing loan.
] Oc:Copy, ((¢.Out Oc O collection)
O |c.loans[Ongoing]| = 1)

0((=¢c.Out Oc O collection)

Figure 9: States on constraint digrams O |c.loans[Ongoing]| = 0)

This diagram introduces one new piece of notation, which is
Itis natural to combine invariants explained on the diagram in one place that it is used. In the second
place it is used, it indicates that, apart from the single object
depicted, there are no oth@ngoing loans in the set of loans for a
copy that isQOut, i.e. a copy which iQut is associated with

exactly oneOngoing loan.

2. The user to whom a cognHold is available for loan is the
one who made the reservation.

Oc:Copy, (c.OnHold O ¢ O collection)
O c.availableTo = c.onHoldFor.user

7 of 15

To appear in Proceedings of OOPSLA97, ACM Press.

:Library

Loan Grey fill indicates that there are no elements

in this area of the set. l.e. there are no

objectsOngoing in the enclosing set.

collection

Figure 11: Constraint diagram for invariant 4

For drawing by hand or in a tool where shading the desired regionintroduced, and these are explained on the diagram. It may be con-
may be difficult, a cross may be placed in the affected area as arsidered that the notation foull is redundant: couldn't the associa-

alternative. tion just be omitted from the diagram? Omission doesn’t work as
constraint diagrams are, by their very nature, partial: if an associa-

4 Discussion tion is omitted, it just means that the diagram imposes no con-
straints on it. The symbol chosen faril is used in many standard

This section discusses: books on data structures (e.g., Thomas et al., 1988) to represent a

null pointer. It also has the appearance of an arrow, suggesting the

» use of the notation to visualize action contracts (pre/post direction in which the association should be read

specifications),
» relationships with other diagrammatic notations,
» limitations, possible extensions, semantic issues and usability

For further clarification of the diagrams, the post-condition written
in mathematical notation is given next.

of the notation, borrow(u:User, c:Copy)
* impact on automated tool support for modelling. pre
41 Visualizing action contracts post

Some preliminary work (Kent 1997) has been done on using con-c Is outand no longer available for lending.

straint diagrams to visualize behavioral specifications for actions, c.availableTo = null Dc.Out

expressed in terms of pre and post conditions. A pre/post specificaThe loan ofc tou is recorded and marked as ongoing.
tion is sometimes called a contract. In UML and its precursors, 4
state diagrams (based on Harel's statecharts — Harel, 1987) are
used to specify dynamic behavior, and as is the case with invari-Although presented as two separate diagrams here, a case tool
ants, they are limited in the constraints they are able to expresscould show the change dynamically e.g. by “running” the filmstrip
Methods such as Catalysis and Syntropy therefore supplementith changes shown in different colors.

state diagrams with pre and post conditions which must be
expressed using mathematical notation if precision is required.

- loan, 1 O new 01.0ngoing Ol.user = u Ol.copy = ¢

Further work is required to reduce the complexity of these film-
strips for post-conditions more sophisticated than this.

Constraint diagrams can be used unchanged to express pre-condi-

tions. However, a post-condition is predicated over two states, andg_ 2 Relationships with other diagrammatic notations

this causes further complications. The idea proposed to solve this]])]

is to borrow from the Catalysis idea ofilmstrip (a sequence of ~ States in state and type diagrams. In constraint diagrams a
instance diagrams), replacing instance with constraint diagrams.State is viewed as the set of objects in that state. We have already
An example is given in Figure 12. This is the filmstrip characteriz- argued for the use of the same shape of box (one with rounded cor-
ing the post_condition of the actiobor-r-ow(u;User,C;Copy)_ ners) to represent a state wherever it appears. HOWeVer, constraint
Items appear on the first constraint diagram if they are subject to

change by the action. Three new pieces of notation have been

8 of 15

To appear in Proceedings of OOPSLA97, ACM Press.

iLibrary Copy

User Loan
/" Available "\ /" Unavailable \
. "

availableTo OnShelf
Copy \)

Figure 13: A grouping of states for Copy

ole

Dotted line indicates
a temporary
association e.g., an
action parameter

collection A second constraint diagram (Figure 14), which is consistent with
Figure 13, may be drawn. It defines a different grouping of nested

Indicates a newly Copy
created object. —

iLibrary

User Loan/ [NotOnHold \
G
e

) Out

A \ ==
| /

available To

Indicates that
association
has value
null. bl states foiCopy. This can be expressed using states on one or more
type diagrams, though this seems more cumbersome (Figure 15). It
can not be expressed using a state diagram, as there may only be
one state diagram per type, and a state diagram enforces a single

Figure 12: Visual specification of borrow grouping of nested states. The closest approximation is given by
' Figure 16, where transitions have been omitted as they are irrele-

vant to this discussion. Unfortunately, the usual interpretation of
diagrams also provide a natural way of expressing constraints orstate diagrams treats, e.g., the tShelf states as different.
state partitioning and substating t.hat are expressed in diﬁeremSubtyping in type diagrams. A similar notation could be used
ways on type diagrams and state diagrams. for showing relationships (partitions, disjointedness, etc.) between
Consider the states for the tyfepy, as defined by Figure 3 on static subtypes. This accords with explanations of subtyping based
page 3. Figure 13 gives the same definition as a constraint dia-on Venn diagrams, in e.g. Wirfs-Brock et al. (1990).
gram, remembering that a state on these diagrams represents the,
set of objects in that state. This is like a state diagram with the tranr-]SbJﬁCtl('nséance? c(ijlagramts 'tf‘ UI;/”" h OpJeCt ¢ dl?grgmst Inl
siti_on; omitted. The area_arounql_the states has also been grayed O}L'rﬂwt'g;/la 3irne2nyoll?jggt ?—lgvcgvirlct)r?e)?rdg r?grlgﬁ,os\?sse ?s tc:) g)?/ceﬁépp Zﬁ&
EFJh_lnd_lcate thatdtt;)e type Is partmonéa d bé the twi tlop-level St ateds_. they have no repl.resentation for navigation expressions (iﬁ our
is is required because, as stated in Section 4.1, constraint dia- 7 . A
o P . notation, arrows from sets targeted on other sets), which is funda-
grams are partlal, W|th_01_J_t explicitly indicating that the states parti- ental to the expressiveneséq of constraint diag)rams Thus con-
ton, :jhf(?re Is the possibility that there may be other states deﬂned;:raint diagrams could be regarded as the natural dev'elopment of
on a different diagram. what has already been started in UML.

Figure 14: Another grouping of states for Copy

collection

90of 15

To appear in Proceedings of OOPSLA97, ACM Press.

Copy

/" Available \ / Unavailable

NI

Copy

Unavailable

OnShelf

Available

i
Be

NotOnHold -
NotOnHold

OnHold
(owes)
OnHold
Out

(OuT) CReTur'ned) (OnSheIf)

Figure 16: A possible state diagram for Copy (transitions omitted)

Figure 15: Grouping states on a type diagram new avenues of investigation into the expression of frame condi-
tions (see e.g. Borgida et al., 1995). As hinted above, the notation
looks as if it could be used to give the semantics of existing dia-
grammatic notations. With its own formal semantics, we would
Limitations and extensions. The assertions expressed using then be in a position to provide formal, yet intuitive, semantic
the notation in this paper have not involved all kinds of logical Underpinnings to other OO modeling notations, such as those in
operators and connectives. Notable omissions are existential quanYML. A more detailed proposal to this effect is given in (Kent et
tification and disjunction. Notation is given in the appendix for al., 1997).

existential quantification over sets. With regard to disjunction, the yse of the notation. Further investigation is required into (a)
two disjuncts could be represented as different constraint diagramsyhether the notation would be useful in practice and whether it is
and composed disjunctively (see below). any more intuitive and easier to use than mathematical assertions;
Another limitation is the difficulty of showing constraints on @and (b) what are the most appropriate ways to use it, e.g. in con-
attributes which hold values, e.g. of tyjieteger, rather than ~ Jjunction with other notations such as state and type diagrams. It
identify objects. It is expected that this could be cured by showing Would also be interesting to compare its use with other approaches
values like objects on instance diagrams, sets of values like sets ofo Making assertions easier to write and understand such as ADL
objects on constraint diagrams, and relationships between them abADL, 1997).

associations.

4.3 Limitations, Extensions, Semantics, Usability

. N . 44 Impact on automated tools
The notation also suffers from the same limitations as Venn dia-

grams - it is hard to show the intersection of more than three setsThe paper has limited the use of constraint diagrams to expressing
We have a (rather cumbersome) notation that will get round this diagrammatically what otherwise has to be expressed mathemati-
problem, but do not believe it will occur very often. There is inevi- cally in existing notations. It is hoped that practising engineers will
tably other published research on this problem, but we have yet tofind constraint diagrams more palatable than writing the math
find it. though we have no evidence to support this claim. However, this is
not, we believe, the only or even main contribution of the notation.
More importantly, it could open the way to providing automated
support for the construction of sophisticated constraints in CASE

1?93)' Tth'ts. bu'ldé upgn recenctj ve/:?lrk In 'Tgeég_re::ng _exnstlggHmod- tools, as well as semantic cross checking between different views

eing notations (ourdeau an eng, , Hamie and HOWS€,,¢ o mogel (e.g. between instance diagrams and type diagrams,

1997). The aim of this work is to check the consistency and expres- ; ;
: ; . pe diagrams and state diagrams, etc.).

siveness of the notation - basically to ensure that no stone has beer

left unturned. A particular area of interest is to look at diagram

composition, both disjunction and conjunction. This may open up

Semantics. Work has begun on describing the semantics of the
notation in terms of logical theories in Larch (Guttag and Horning,

10 of 15

To appear in Proceedings of OOPSLA97, ACM Press.

First notice the correspondence between constraint diagrams andfocussing on thePublication

instance diagrams; constraint diagrams are essentially charactertype, Figure 19 (a) admits two
izations of sets of instance diagrams. We can imagine a tool thatpossibilities, (b) and (c). Pattern
could assist with constructing constraint diagrams from instance matching with the instance dia-

diagrams and vice versa.

Suppose, for example, that a tool was presented with the instanc
diagrams in Figure 17, where the first should be accepted by th

model but the second nothe goal is to construct the constraint

:Library
\ onHoldFor
:Reservation
> heldCopy
\
N :Copy
:Publication /r
catalog collection
:Library
onHoldFor
/ :Reservation \
heldCopy
\
N :Copy
:Publication
ca'rallog collection
:Publication| ™
catalog

Figure 17: Instance diagrams: input to tool

i
collection —

:Library
Reservation Copy |
I—heldCopy
/ [———onHoldFor
|
Publica'rion/
catalog

Figure 18: Constraint diagram: derived by tool from existing diagrams

grams indicates that (b) should
be accepted but (c) rejected.
(j’his gives rise to the final con-
straint diagram in Figure 20.
This is a very simple example
and some details of the various
steps have been omitted. How-
ever, it is hoped that the example
is convincing enough to warrant
that the approach is worthy of
further investigation.

As this paper has illustrated, the
mapping from constraint dia-
grams to mathematical notation
is quite systematic. Once a con-
straint diagram had been con-
structed a tool could

automatically generate an equiv-
alent mathematical form, if
desired.

Constraint diagrams could also
assist with cross-checking
between different views of a
model. Constraints imposed by

\Publicafion

o

9

b.

Pﬁblica’rioy/
og
C.
\
Publication
og

Figure 19: Fixing the key
constraint

existing diagrammatic notations may be expressed using constraint
diagrams instead (for example, an indication of how multiplicity
constraints may be characterized has just been given). This sug-
gests that a systematic hence automated conversion could be per-
formed. Cross-checking is then a matter of “overlaying” constraint
diagrams and looking for conflicts. It may be possible to automate
this process, in which case any conflict could be shown visually
using an appropriate constraint diagram.

By a similar process instance diagrams could be checked against
diagram which ensures that this is the case. Assuming that a typ&onstraints by converting an instance diagram into a constraint dia-
diagram has been drawn, a constraint diagram can be deriveg@ram” and overlaying as above.
which represents the multiplicity constraints for associations men- ginajly, as constraint diagrams characterize sets of instance dia-
tioned in the instance diagrams, composed with the part of grams they could be used for animating models where actions
Figure 6 relevant to these associations. This is given in Figure 18. have under-determined specifications: that is, given a starting

instance, there may be a set a of

possible instances which could be

reached and that satisfy the specification. This goal will be more
achievable once the extensions of the notation for visualizing

action specifications have been fully worked out.

Acknowledgments

| am grateful to the BIRO research team at Brighton, in particular
Franco Civello, John Howse and Richard Mitchell for many useful
comments and feedback. Thanks are also due to Alan Wills and
Desmond D’Souza whose work on Catalysis has had considerable
influence on my recent thinking. Finally | would like to thank the
anonymous reviewers and the OOPSLA program committee, in
particular Yossi Gil, for their positive and detailed comments and
feedback. This research was partially funded by the UK EPSRC

under grant GR/K67304.

1. A constraint diagram characterizes a set of instance diagrams, includ-

ing singletons!

11 of 15

To appear in Proceedings of OOPSLA97, ACM Press.

:Library

Reservation Copy |

|—heldCopy| collection—|

[———onHoldFor

Pﬁ\blica’rioy/

catalog

Figure 20: Constraint diagram: output from tool

References

ADL (1997)Assertion Definition Languagd@he Open Group (for-
merly X/Open), http://adl.xopen.org.

Borgida A., Mylopoulos J. and Reiter E. (1995) “On the Frame
Problem in Procedure Specification2EE Transactions in Soft-
ware EngineeringVol. 21, No. 10.

Bourdeau H. and Cheng B. (1995)ormal Semantics for Object
Model Diagramsin IEEE Transactions on Software Engineering
21, 799-821.

Cook S. and Daniels J. (199¢signing Object Systenfrentice
Hall Object-Oriented Series.

D’Souza D. and Wills A. (1995 atalysis: Practical Rigor and
Refinementtechnical report available at http://www.icon-
comp.com.

D’Souza D. and Wills A. (199 omponent-Based Development
Using Catalysisbook submitted for publication, manuscript avail-
able at http://www.iconcomp.com.

Gerstein L. J. (198Miscrete Mathematics and Algebraic Struc-
tures Freeman New-York.

Guttag J. and Horning J. (19933rch: Languages and Tools for
Formal SpecificationsSpringer-Verlag.

Hamie A. and Howse J. (199fterpreting Syntropy in Larch
Technical Report ITCM97/C1, University of Brighton.

Harel D. (1987) “Statecharts: a visual formalism for complex sys-
tems”, Science of Computer Programmi8231-274.

Kent S., Hamie A., Howse J., Civello F. and Mitchell R. (1997)
“Semantics Through Pictures: towards a diagrammatic semantics
for object-oriented modelling notations”, to appeaPincs. of
ECOOP'97 Workshop on Precise Semantics for Object-Oriented
Modeling Techniqueslyvéaskyla, Finland, June 10, 1997.

Kent S. (1997 onstraint Diagrams: Visualizing Assertions in
Object-Oriented Mode]sTechnical Report ITCM97/C2, Univer-
sity of Brighton.

Parnas D. (1996) “Mathematical methods: What we need and don’t
need”, inAn Invitation to Formal Method4EEE Computer.

Rumbaugh J., Blaha M., Premerali W., Eddy F. and Lorensen W.
(1991)Object-Oriented Modelling and DesigRrentice Hall.

Thomas P., Robinson H. and Emms J. (198&tract Data Types:
Their specification, representation, and u€xford Applied
Mathematics and Computing Series, Oxford University Press.

UML (1997) Unified Modeling Language v1.Rational Software
Corporation, available at http://www.rational.com.

Walden K. and Nerson J-M. (1995¢amless Object-Oriented
Architecture Prentice Hall, Object-Oriented Series.

Wirfs-Brock R., Wilkerson B. and Wiener L. (199Dgsigning
Object-Oriented Softwardrentice Hall.

12 of 15

To appear in Proceedings of OOPSLA97, ACM Press.

Appendix — Summary of Notation

Normal Sets

s

=
-
O

Venn Diagrams

Types and States

Type

or

Type

State

or

) (1

|(A '

Navigation

State

: role

Type

T,

Areas with no elements

A set with one element.

A set with 0..1 elements.

A set with 0, 1 or more elements.

A set with n elements; n may be any numerical expression.

Optionally sets can be explicitly labeled. This can be useful for
referring to them in accompanying explanations, or when map-
ping a constraint diagram to a math expression.

Standard Venn diagram notation may be used to show relation-
ships between sets.

The set of objects of the hamed typgpe.

The set of objects in stafetate.

The region labeleR is the set of objects in staf¢ate, which
are also in the set labeled

The set at the target of the arrow is the union of the sets reached
by navigating the association labetede from each element
in the set at the source.

The value of the associationType and labeledtole, when
navigated from the source set, is the empty satibbr

Grey fill indicates that there are no elements in that area of the
set. In this case this means that the two subsets partition the
containing set.

In those cases where grey fill is difficult to achieve (e.g., by

hand or with some drawing tools), a simple cross in the area
may be used as an alternative. In this case, the cross means that
the set contained in the intersectistthe intersection — partic-
ularly useful for sourcing/targeting arrows from/to an intersec-
tion.

13 of 15

To appear in Proceedings of OOPSLA97, ACM Press.

Typical (quantified) sets

A normal set with no arrows targeted on it is assumed to be a typical subset of the set in which it is contained. Whdn converte
to a math expression this translates to universal quantification: “for any subset of the containing set, ...".

This notation is often used with singleton sets, with effect “for any object in the containing set, ...".
Existential quantification is achieved by introducing a temporary, unlabeled association.
As usual specific labels for sets are optional.

T

" ¥

@ Os:Set(T),sOr0O ...
T

r

@ Ox:T,xOr0O ...

T
. ‘ Os: Set(T),sOr0O ...
(LN

v v
T
. |
@“ Os:Set(T),sd(r—q) 0 ...
v v
T

. [k:Set(T),sOr0...

14 of 15

To appear in Proceedings of OOPSLA97, ACM Press.

New objects (filmstrips only)

The following symbols only appear in the second or subsequent frame of a filmstrip. Each represents a set of objects that did
not exist in the previous frame. The symbol differs, depending on the cardinality of the set.

* A set containing exactly one new object (i.e., a new object).

A set containing 0..1 new objects.
A set containing 0, 1 or more new objects.

Ye
A set containing n new objects; n may be any numerical
expression.

15 of 15

	Constraint Diagrams:
	Visualizing Invariants in Object-Oriented Models
	1 Introduction
	2 Library System in UML and Catalysis
	2.1 Informal Requirements
	2.2 Type Diagram
	2.3 States
	2.4 Invariants

	3 Constraint diagrams: visualizing invariants
	4 Discussion
	4.1 Visualizing action contracts
	4.2 Relationships with other diagrammatic notation...
	4.3 Limitations, Extensions, Semantics, Usability
	4.4 Impact on automated tools

	Acknowledgments
	References
	Appendix – Summary of Notation

