
A Virtual Laboratory Notebook for Simulation Models

A.J. Win�eld

Computing Laboratory, The University of Kent at Canterbury,

Canterbury, Kent CT2 7NF, UK. ajw2@ukc.ac.uk

In this paper we describe how we have adopted the laboratory notebook as a

metaphor for interacting with computer simulation models. This `virtual' notebook

stores the simulation output and meta-data (which is used to record the scientist's

interactions with the simulation). The meta-data stored consists of annotations

(equivalent to marginal notes in a laboratory notebook), a history tree and a log

of user interactions. The history tree structure records when in `simulation' time,

and from what starting point in the tree changes are made to the parameters

by the user. Typically these changes de�ne a new run of the simulation model

(which is represented as a new branch of the history tree). The tree shows the

structure of the changes made to the simulation and the log is required to keep

the order in which the changes occurred. Together they form a record which

you would normally �nd in a laboratory notebook. The history tree is plotted

in simulation parameter space. This shows the scientist's interactions with the

simulation visually and allows direct manipulation of the parameter information

presented, which in turn is used to control directly the state of the simulation. The

interactions with the system are graphical and usually involve directly selecting or

dragging data markers and other graphical control devices around in parameter

space. If the graphical manipulators do not provide precise enough control then

textual manipulation is still available which allows numerical values to be entered

by hand. The Virtual Laboratory Notebook, by providing interesting interactions

with the visual view of the history tree, provides a mechanism for giving the user

complex and novel ways of interacting with biological computer simulation models.

1 Introduction

Simulations of the natural world are often used to conduct virtual experiments.

In a real world experiment a scientist will make detailed records of an experi-

ment as it is performed. These observations, notes and theories will be recorded

in a laboratory notebook so that later it is possible to reconstruct what was

done, when and why. In the virtual world of the computer simulation it is

often the case that much of this detailed record keeping is ignored, potentially

leading to important information being overlooked or lost.

Many simulations are not run on their own but are run inside an interactive

steering environment. Interactive steering allows the output of a simulation to

be viewed as it happens and then based on what is seen changes can be made

to the state of the running simulation. Use of steering environments such as

SCIrun 1 and CSE 2 tend to increase the amount of interesting data which is

generated and thus makes the lack of detailed records an even more important

problem to be solved.

1



We consider that running a simulation in an interactive steering environ-

ment is an experiment and, therefore, should be treated in similar ways to

experiments in the real world. This suggests that we must store at least as

much information as is kept for a real experiment and probably even more.

If we continue with the notion of a simulation in a steering system being an

experiment then other features of the real world should be taken into account.

An example of such a feature is the fact that in reality all measurements are

made to a �nite accuracy. Although it is sometimes the case that we use a

simulation to avoid this problem, it is still sensible to see if measuring accuracy

would cause a major e�ect. This can be achieved by running user selected pa-

rameter values at each end of the possible range of values that any measuring

error would allow.

The development of the virtual notebook has been motivated by the in-

creasing use of simulations and steering systems in the biological sciences.

These simulations are often complex with large numbers of variables, many

of which may be inter-related. With large numbers of variables and unknown

relationships between them the only sensible way of exploring the behaviour

of biological simulations is to use some form of steering system. We chose

to write our own steering environment, instead of using one of those already

in existence, because it is our belief that the structure of the steering envi-

ronment should promote good experimental practices and should support the

production of usable results.

The basic aim of the virtual laboratory is to provide an interactive steering

system that stores the data in a form which has all the structure and detail

expected in a real laboratory notebook. It should also give an interactive user

interface which allows direct graphical manipulation of views of the parameters

of the simulation along with methods for simulating features of the real world

such as the e�ects of limited measuring accuracy.

2 Motivation

We take as an example application of the virtual laboratory notebook (and the

original motivation for developing it) the exploration of a spatially-explicit,

individual-based ecological simulation model which has recently been devel-

oped in the Computing Laboratory at the University of Kent at Canterbury3.

The model simulates the spread of the pathogen Barley Yellow Dwarf Virus

through a cereal �eld.

Barley Yellow Dwarf Virus (BYDV) is an economically important pest of

cereal crops and wild grasses worldwide3. It causes yellowing of the leaves

and often results in signi�cant yield loss in cereals. A simulation model was

2



developed to allow investigation of the epidemiology of virus spread through

a cereal �eld and the population dynamics of the aphid vector of the virus.

The simulation model kept track of the position and state of the individual

aphids and considered their e�ect on individual barley plants. Even a simple

model produced prodigious amounts of data which necessitated the use of a

scienti�c visualisation system such as NAG Explorer in order to display and

interpret the results generated by the simulation model. Systematic investiga-

tion of the simulation model's parameters, such as sensitivity analysis required

greater support than could be obtained from script �les, log �les and a conven-

tional laboratory notebook. A convenient means of storing simulation results

and relating these to the parameter values which had been used to generate

them was also required. Finally, a simple mechanism for coupling existing

computer simulations into a framework which provided for their exploration

and visualisation was desirable.

Hence the speci�cation for a `virtual laboratory notebook' was conceived,

a version of which is described in the remainder of this paper. It should be

noted that while the original motivation for the work was the exploration of an

ecological simulation model, there is no reason at all why the virtual laboratory

notebook should not be applied to other simulation models in the biological

sciences such as physiological or biochemical models. Or indeed it could be

applied to simulation models developed in disciplines other than the biological

sciences.

3 Previous Work

In previous work on implementing steering systems, much of the emphasis has

been on the methods by which the system may be built. Examples of such

work are SciRun4;1 and CSE2;5. Although some work has been done to add

logging of the state of variables in the CSE system6 it is not intended to be

used to log the complete state of a simulation. In our system we require that

the complete state of a simulation is logged so that none of the information

generated by the interactive steering environment is lost.

At present the systems which implement the most complete storage of data

from the simulation and provide the most interesting interactions with it are

GRASPARC7 and HyperScribe8. These systems introduce the idea of logging

everything about the state of the simulation at each point in time to allow

restarting the simulation with altered parameters. They also introduce the

data structure upon which our system relies heavily to structure the storage.

The data structure is a history tree which is described in detail in section 3.1.

It is the ideas that these systems present that we have extended in our work.

3



SafeTcl
Link
Handler

SafeTcl
Link
Handler

SafeTcl
Link
Handler

Simulation
SafeTcl
Link
Handler.

Data Handler
SafeTcl
Link
Handler.

SafeTcl
Link
Handler.Visualization

Controller &

Command Router / Filter System

Figure 1: Block view of the system

3.1 History Trees

A history tree7 is a historical record of the structure of changes made to the

parameters of a simulation. During the exploration of behaviour of a simulation

many runs may be required from di�erent starting points to �nd phenomena

of interest. In other words, the history tree documents and models the search

process involved in exploring the simulation. Each branch in the tree is formed

when a change is made to any parameter or set of parameters in the simulation.

Therefore, each branch of the tree corresponds to a decision by the scientist.7

Within each branch a sequence of snapshots of data is stored; these capture

the entire state of a simulation. The `entire state' is the information required

by the simulation to be able to return to the current point in the run, with

any other information which may be of interest to the scientist examining the

output.

By using the tree structure the simulation may be returned to any point

in the parameter space which has been visited by the simulation and then

restarted with an altered state. This ability facilitates the search for inter-

esting features in the output of the simulation without having to restart the

simulation from the beginning.

4 System Overview

The overall system consists of a simple distributed system written using

Tcl/Tk9;10 to handle the low level networking. All information is transmitted

using Tcl procedure calls sent between the processes which are then executed

by the receiving end of the communications link inside a safe slave interpreter.

4



The use of a Safe-Tcl slave interpreter means that the connecting clients of the

routing process can install extensions directly into the control process without

too much risk to the process owners' account. As stated by Ousterhout et al11,

`Safe-Tcl is a mechanism for controlling the execution of programs written in

the Tcl scripting language. It allows untrusted scripts to be executed while

preventing damage to the environment or leakage of private information.'

The system contains four major parts: simulations, the visualisation and

control interface, the data storage handler and �nally a central command router

(see Figure 1). Each part contains a Tcl script to handle high level interac-

tions in the system and an extension to the Tcl language to provide the extra

functionality required of each system component. The parts of the system are

separate processes which can be running on di�erent machines.

5 Implementation

5.1 Interface to simulations

Simulations are interfaced to the system by altering them to present the re-

quired application program interface and then linking them with a library

which implements the connection controls with the command router. The com-

mand router is the central element of the system which controls the transfer of

data and commands between all the other parts of the system. By making the

interface very simple it is hoped that alterations to existing simulations will be

trivial. The library is actually a SWIG12 generated wrapper which turns the

simulation interface into Tcl commands. SWIG is a program which automates

the construction of extensions to various scripting languages. These commands

are then used by a simple Tcl script to create the desired behaviour.

5.2 Data storage

The data is stored using HDF13 in a structure that allows (as far as possible)

arbitrary types of parameters, although data structures such as trees must be


attened into an array form to be stored. The 
attening of structured data is

only required for the parameters to the simulation; other structural elements

such as the history tree representation are stored without being converted to

an array. `The Hierarchical Data Format, or HDF, is a multi-object �le format

for sharing scienti�c data in a distributed environment.'13

HDF was chosen to store the data produced by the simulation was made

because it is both portable and has the ability to store complex structures.

The structures which HDF has can easily be utilised to store the history

tree and other structural information, which comprises the content of the

5



RootGroup

TieGroup

VersionGroup

DataGroup DataGroup

TieGroup

VersionGroup

TieGroup

X Y Z

0.04 0.03 0.4

10 20 30

RawXYZ

Annotations may be added to any object in the file.

Figure 2: The Structure of the HDF data�le

virtual notebook. HDF is also designed to be very good at handling scien-

ti�c data (multi-dimensional arrays) which is the form in which a very large

amount of simulation data is created.

The structure of the �le follows on from the structure of the history tree.

The Root Groupa is a link to individual runs of the simulation. That is a

complete restart of the simulation with everything reset to the initial value

except for the random number generator seeds. The history tree for each run

is represented by the Tie Groups and the branches of the tree are held in

the Version Groups. The data itself is held in Data Groups, each containing

the full state of the simulation at a given timestamp. For a view of the �le

format used to store the history tree, see Figure 2 which shows the structure

graphically.

In order to provide access to the data stored in the HDF �le in a simple

way we have written a C++ library to control the structure. A Tcl wrapper

which uses SWIG was written to make the �le accessible from the Tcl scripts

which are used to create the simple distributed system in Figure 1.

aA group is a stored as an HDF Vgroup which is an array of references to other items in

the �le.

6



5.3 Data and Command Router

The central router (Figure 1) exists to simplify connection with the other parts

of the system by giving a single point of access with a well known interface. It

reduces the number of commands required by the clients to transmit data to

groups of other clients. Most importantly, clients can add their own code to

the routing process to make custom data �lters to reduce unnecessary network

tra�c between the parts. Due to external processes installing their own code

into the command router the basic functionality of the process is very simple:

the command router has to register a client, route a command, register a

command �lter and execute a commandb. Everything else is added by the

clients as they initialize their connection to the command router.

5.4 The User Interface

The user interface is a visual front end onto the rest of the system. It provides

a variety of methods by which the stored data may be viewed and manipulated.

All of the views are constructed using Tcl/Tk and a Tcl extension VTK14 which

provides a large graphical visualisation library. The views may be grouped

together to allow the user to interact with as many parameters as they require.

Changes within a group are added together and then sent to the simulation

as a single request message when the user decides that they have made all

the required changes. The changes are performed by a message being sent to

the simulation. This message contains all the required information to set the

state of the parameters of the simulation to the correct new state and a single

integer to say how many time steps for which the simulation should generate

data.

It is possible to present many views of the history tree to the user for

interaction purposes. The basic views are a notebook view, a history tree

view and a parameter view. The notebook view (Figure 3) summarises the

annotations which the investigator might make when experimenting with the

simulation, interactions with the simulation and possibly some data. The

interactions found in the graphical views can be performed in the notebook

view; it is just harder to visualise what the changes to the simulation would

look like. The only advantages to the notebook view are that it gives access

to the Tcl interpreter, which allows scripts to be written to perform complex

alterations to a simulation's state, and it gives a summary of all the annotations

which are invisible in the purely graphical views.

bThis executes the command in the scope of this connection's own safe interpreter

7



Figure 3: The Notebook View

V0.2

KEYROOT

V0.1

Time step

Branch of Tree

Figure 4: The History Tree View

8



The rest of the views are graphical and all show the history tree in some

way. The most basic graphical view is the pure history tree view (see

Figure 4). This view is similar to the view presented in GRASPARC7, and

has similar manipulation abilities. These include: adding new versions, view-

ing data at a point (a snapshot of the simulation's state), requesting that more

data be added to a currently available branch of the tree and annotating items

in the data�le. The tree view is also used to allow di�erentiation between

coincident points where these occur in the parameter view. A �nal use for the

history tree view is to work like a directory viewer, hiding and revealing whole

sub-branches from all views of the data.

The �nal, and most interesting view, is the parameter view. This is a three

dimensional plot of the history tree (see Figure 5) using three user selected

simulation parameters to position the points. The operations on this view are

much the same as on the others but due to the fact that we have the values

in a visible graph the operations are performed by directly manipulating the

points and lines shown on the graph. The idea of drawing the history tree

in positions that suggest changes in the value of parameters that the nodes

represent is something in the HyperScribe system. The di�erence between

HyperScribe and our system is that in HyperScribe the positioning of points

is up to the user, whereas in our system points are located according to the

parameter values they represent.

There are many di�erent interactions available within the parameter view.

The interactions can be placed into two groups: single point and multi-point

operations. With single point operations information may be requested about

the selected point or that point maybe moved to create a new branch in the his-

tory tree. Multi-point operations also allow information to be retrieved about

the selected points. In this case viewing the data may require that a sequence

of information be output for visualisation, the rate at which this happens is

user controlled (up to a limit which is governed by the speed of the visuali-

sation). With fast enough visualisation output from such a sequence of data

points, what is displayed will appear to be an animation. Modi�cations with

multi-point operations repeat the existing user changes within the parameters

of the selected points, adding on the new change made by the user. When

adding the new change it may be applied relative to the new values of the

parameters, relative to the old values of the parameters or �xed to the value

the user selected. Added to the operations is another ability to automate a set

of changes by selecting the top, bottom and step-size of a range of individual

alterations.

9



View Data

Extend Branch

New Branch
(user interaction)

Recolor Branch

Show Annotation/s.

Pause incoming 
data.

Annotate

Home ViewPoint

Close Window.

Save View

Figure 5: The Parameter Interactor

6 Using the virtual laboratory notebook

In order to use the virtual laboratory notebook, some changes to a simulation

are required before it can be used by the steering system. The �rst change is

to add a few information functions, these include: simname, which gives the

symbolic name by which this simulation will be known when it is part of the

system; initialState, which sets all external variables to their initial values,

and miscinfo which is just used for information purposes (it appears in the

user interface instead of the symbolic name). Along with the informational

functions, other required functions include: Initialise, which initialises any-

thing that might be required by the system as opposed to the simulation, and

Shutdown, which should set the simulation to such a state that the process

can exit. The �nal set of changes are a little more involved, but basically re-

quire turning the normally loop driven core of the simulation into one which

is demand driven.

Converting the main loop of the simulation is actually a simple process.

It involves creating three functions which embody the normal items found in

the main loop of most simulations. SetState is executed before a time step is

generated; its purpose is to get the parameter states from the Tcl interface so

that it can set the current state of the simulation. RunOne takes the current

10



state and does one complete time step's worth of calculations of the simulation.

Finally, the GetState function exports the current simulation state to the Tcl

interface. Once all the above functions have been written the normal program

entry point (main in C and C++) has to be removed. This is because the

library provides an entry point of its own.

7 Future Work

At present the system is mostly programmed using Tcl scripts. The use of

a scripting language allowed us to get the system to work quickly and can

be useful for writing extensions, but the speed of some parts of the system

is unfortunately a�ected by the use of scripts. To improve the speed, by far

the easiest option is to move as much of the code into C libraries which are

then used to extend the Tcl language. The most pressing need is for VTK to

have a data-
ow editor to avoid coding visualisation pipelines. Without this

it may be better in the long term to change the visualisation system to use a

commercial product such as NAG Explorer which does have a data-
ow editor.

We would also like to demonstrate the virtual laboratory notebook with a

range of simulation models, not just ecological simulation models. In particu-

lar, we would like to con�rm our contention that converting existing simulation

models to run under the virtual laboratory notebook is a straightforward pro-

cess, providing simulation model builders with a versatile tool for exploring

the virtual worlds they have created.

Acknowledgements

Thanks must go to the Computing Laboratory at the University of Kent at

Canterbury for giving me an EBS bursary without which I could not a�ord to

do this research. Also thanks to D.R.Morse whose many many comments on

this paper have made it readable.

References

1. Steven G. Parker, David Beazley, and Christopher R. John-

son. Computational steering software systems and strategies.

Technical report, Department of Computer Science, University of

Utah, University of Utah, Salt Lake City, UT 84112, July 1996.

URL=http://www.cs.utah.edu/~ sci/.

2. Robert van Liere and Jurriaan D. Mulder. CSE : A modular architech-

ture for computational steering. Technical Report CS-R9615, CWI, 1996.

11



URL = http://www.cwi.nl/ftp/CWIreports/IS/CS-R9612.ps.gz.

3. Tim Hopkins and David R. Morse. The implementation and visualisa-

tion of a large spatial individual-based model using Fortran 90. Technical

Report 18-96, University of Kent at Canterbury, Computing Laboratory,

University of Kent at Canterbury, Canterbury, Kent CT2 7NF, UK, Oc-

tober 1996. URL=http://www.cs.ukc.ac.uk/pubs/1996/42/index.html.

4. S.G. Parker, D.M. Weinstein, and C.R.Johnson. The SCIRun compu-

tational steering software system. In E. Arge, Brauset A.M, and H.P.

Langtangen, editors, Modern Software Tools in Scienti�c Computing,

pages 5{44. Birkhauser Press., Sep 1997.

5. Jurriaan D. Mulder and Jarke J. van Wijk. 3D computational steering

with parametrized geometric objects. In Proceedings of IEEE visualiza-

tion 1995, pages 304{311, 1995.

6. Jurriaan D. Mulder and Jarke J. van Wijk. Logging in a computational

steering environment. Technical Report CS-R9613.ps.gz, CWI, 1995.

URL=http://www.cwi.nl/ftp/CWIreports/IS/CS-R9613.ps.gz.

7. Ken Brodlie, Andrew Poon, Helen Wright, Lesley Brankin, Greg Banecki,

and Alan Gay. GRASPARC - a problem solving environment integrating

computation and visualization. In Proc. IEEE Visualization1993, pages

102{109. IEEE Press., 1993.

8. H. Wright and J.P.R.B Walton. Hyperscribe : A data management

facility for the

data
ow visualization pipeline. Technical report, NAG Ltd., February

1996. URL=http://www.nag.co.uk/0h/doc/TechRep/ietr.html.

9. John K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley profes-

sional computing series. Addison-Wesley, Reading, Mass., Wokingham,

Addison-Wesley, 1994, 1994.

10. Brent Welch. Practical Programming in Tcl and Tk. Prentice Hall,

1995.

11. John K. Ousterhout, Levey Y. Jacob, and Brent B. Welch. The Safe-Tcl

security model. Technical report, Sun Microsystems Laboratories, 1997.

URL=http://www.sunlabs.com/~ ouster/safeTcl.html.

12. David M. Beazley. SWIG (Simpli�ed Wrapper and Interface Generator).

University of Utah, Salt Lake City, Utah 84112, version 1.0 edition, Au-

gust 1996.

13. NCSA HDF Development Group. HDF Users Guide v4.1r1.

14. W. Schroeder, K. Martin, and B. Lorenson. The Visualization Toolkit,

an Object-Oriented Approach to 3D Graphics. Prentice Hall, 1996.

12


