
Final version in Post-Workshop Proceedings UML98, Springer Verlag

,

omple-
vari-
traints

, 8]
ct-ori-
py [1]
rams
 Catal-
x and

lling
uspices
re and
 [14],
refore
r, the

s and
 to be
urther

ented
. Sec-
Reflections on the Object Constraint Language

Ali Hamie, Franco Civello, John Howse, Stuart Kent, Richard Mitchell 

Distributed Information Systems Research Group,
IT Faculty, University of Brighton, Brighton BN2 4GJ, UK.

http://www.biro.brighton.ac.uk/,
a.a.hamie@brighton.ac.uk

Abstract. The Object Constraint Language (OCL), which forms part of the UML set
of modelling notations, is a precise, textual language for expressing constraints that
cannot be shown diagrammatically in UML. This paper reflects on a number of
aspects of the syntax and semantics of the OCL, and makes proposals for clarification
or extension. Specifically, the paper suggests that: the concept of flattening collections
of collections is unnecessary, state models should be connectable to class models
defining object creation should be made more convenient, OCL should be based on a
2-valued logic, set subtraction should be covered more fully, and a "let" feature should
be introduced.

1 Introduction

The Object Constraint Language [12] is a precise, textual language designed to c
ment the largely graphical UML [11]. Specifically, OCL supports the expression of in
ants, preconditions and postconditions, allowing the modeller to define precise cons
on the behaviour of a model, without getting embroiled in implementation details.

OCL is the culmination of recent work in object-oriented modelling [1, 2, 3
which has selected ideas from formal methods to combine with diagrammatic, obje
ented modelling resulting in a more precise, robust and expressive notation. Syntro
extended OMT [13] with a Z-like textual language for adding invariants to class diag
and annotating transitions on state diagrams with preconditions and postconditions.
ysis [2, 3] has done something very similar. OCL adopts a simple non-symbolic synta
restricts itself to a small set of core concepts.

One of the most important aspects of OCL is that it is part of the Unified Mode
Language, which has recently become a standard modelling language, under the a
of the Object Management Group. As a result, it is likely to get much greater exposu
use than previously proposed formal specification languages such as VDM [9] and Z
and work invested in ensuring that it is correct and appropriate for its purpose is the
more likely to reap a dividend than work on the aforementioned languages. Howeve
OCL is an optional part of UML specifications.

The purpose of this paper is to contribute to discussions on the correctnes
appropriateness of OCL. We identify a number of issues which, in our opinion, need
resolved; where possible we suggest a solution, or at least an outline direction for f
investigation.

The paper is organised as follows. Section 2 deals with navigation in object-ori
modelling, in particular navigating from collections. Section 3 considers object states
1
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tion 4 considers object creation and the feature allInstances . Section 5 looks at the
issue of undefined values. Section 6 proposes adding more collection operations. Se
suggests allowing local definitions. And Section 8 briefly summarises the issues exa
and proposes that future semantics work on OCL be driven by the needs of CAS
builders and users.

2 Navigation in OO Modelling

Navigation in OO modelling means following links from one object to locate ano
object or a collection of objects. It is possible to navigate across many links, and he
navigate from a collection to a collection. Navigation is at the core of OCL. OCL exp
sions allow us to write constraints on the behaviour of objects identified by navig
from the object or objects which are the focus of the constraint. At the specification 
the expressions appear in invariants, preconditions and postconditions.

In this section we review some of the issues concerning the meaning of navig
expressions, and outline a semantics for them which takes account of these issues. 
clude by examining what the OCL specification says about navigation expression
suggest that the notion of flattening collections of collections is not needed.

2.1 Example Model

Figure 1 presents a small, contrived example of a class model in UML for a simple s
that supports scheduling of offerings of seminars to a collection of attendees by pres
who must be qualified for the seminars they present. A full description of the notatio
be found in [11] and a distilled description can be found in [4].

2.2 Navigating from single objects

Navigation expressions start with an object, which can be explicitly declared or given
context. For example, a declaration such as s:Seminar  means that s  is a variable that can

Figure 1: A class diagram for a seminar scheduling system
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refer to an object taken from the set of objects conforming to type Seminar . Here, the type
name is used to represent the set of objects in the model that conform to the type.

A navigation expression is written using an attribute or role name, and an op
parameter list. Given the earlier declaration, the OCL expression s.title  represents the
value of the attribute title  for the object represented by s . An OCL expression can also
use the name self  to refer to a contextual instance. In the following example, self

refers to an instance of Seminar .

Seminar

self.title

Navigating from an object via an association role can result in a single objec
collection, depending on the cardinality annotations of the association role. A collect
by default, a set. For example, given the declaration p:Presenter , the expression
p.qualifiedFor  results in the set of seminars p is qualified to present.

The association between Seminar  and Offering  has the annotation {ordered}

on the offering  role. As a result, the expression s.offering , where s  is a seminar,
results in a sequence. Notice that this means that the operator ". " is overloaded, because i
can map from an object to a set, to a bag, or to a sequence.

2.3 Navigating from collections

Assume we have the declaration p:Presenter . The OCL navigation expression
p.qualifiedFor.title  (which is an abbreviation of the following expressio
p.qualifiedFor->collect(title) ) involves navigating first from a single objec
and then from a collection, namely the set of seminars for which presenter p is qualified.
This is because the expression parses as ( p.qualifiedFor).title . The result of this
expression is obtained by applying title  to each member of the set p.qualifiedFor .

Similarly, navigating from a bag yields a bag and navigating from a sequence y
a sequence (but see Section 2.4). This means that every property (attribute or ass
role) must, in general, be applicable to a set, a bag or a sequence, and this can be
terms of overloading of the navigation operators. For example, within the mod
Figure 1, we have the following overloaded versions of the "_.name " and  "_.date "
operators (the symbol “_” indicates the position of the argument):

Hence, the following OCL expressions p.name ,(p.qualifiedFor).name ,
(p.qualifiedFor->asBag).name , and (s.Offering).date  are well-typed. The
operator asBag  converts a set or a sequence into a bag.

The overloaded versions of the operator _.property  (property  is an attribute or
association role) must satisfy the axioms:

Set{}.property = Bag{}

(s->including(e)).property =

          (s->excluding(e).property)->including(e.property)

_.name : Presenter String
_.name : Set Presenter( ) Bag String( )
_.name : Bag Presenter( ) Bag String( )→

→
→

_.date : Offering Date
_.date : Sequence Offering( ) Sequence Date( )→

→

3
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Bag{}.property = Bag{}
(b->including(e)).property = 
               (b.property)->including(e.property)

Sequence{}.property = Sequence{}

(q->including(e)).property = 

                  (q.property)->including(e.property)

Intuitively, these axioms define that applying property  to a collection yields a secon
collection, obtained by applying property  to each element of the original collection. Th
property can be an attribute or an association role. In the axioms, s  is a set, b is a bag and
q is a sequence, e is some element. Here e.property  returns a single element; we ca
give similar axioms for the case where e.property  returns a collection.

OCL specifies navigation from collections by using the feature collect , which
takes a collection and an expression as arguments and yields a collection obtai
applying the expression to each element in the collection. When the type of the expr
is also a collection then the result can be seen as a collection of collections. Accord
the OCL documentation, a collection of collections is automatically flattened. Such a
is easy to teach to modellers, but hard to define without falling into traps. For insta
well-defined function will satisfy

x = y implies f(x) = f(y)

where x  and y are values and f  is a function. Consider the following OCL navigatio
expression.

sss.presenter->collect(qualifiedFor)

where sss  is an object of type SeminarSchedulingSystem . The first part of the
expression

sss.presenter

yields a set of presenters. The full expression, without flattening, yields a bag of s
seminars, such as 

Bag{ Set{s1, s2}, Set{s2, s3} }

With flattening, the full expression yields a bag of seminars, such as

Bag{ s1, s2, s2, s3 }

In the flattening step, no elements are lost or gained (we just lose structure). Th
expressions above are of types Bag(Set(Seminar))  and Bag(Seminar) , respectively.
Thus, any well-defined function we wish to specify on elements of type Bag(Seminar)

will not apply to elements of type Bag(Set(Seminar)) , unless we specify it in various
overloaded forms. There would be as many overloaded forms as there are possible
of structure in the model.

If, instead, OCL defined the result of navigating via collections simply in term
left-to-right parsing, there would be no need for any concept of flattening. For instan

sss.presenter.qualifiedFor.offering
4
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(sss.presenter).qualifiedFor) ).offering

whose meaning can be found by repeated application of navigation from one collec
another. Each application of navigation yields a collection, which is the source of the
navigation. This does not entail building a collection of collections of collections and
flattening it.

2.4 Navigating from sequences

According to the OCL document, navigating from a sequence yields another sequen
example, given the declaration s:Seminar , the expression s.offering  results in the
sequence of offerings for seminar s . The expression s.offering.attendee  results in
the sequence of attendees for all offerings of seminar s. The value of this expres
obtained by applying the association role attendee  to each element of the sequen
s.offering . This results in a sequence of sets which is then flattened to give the d
sequence. However, there are many ways to flatten sequence of sets, which would r
different sequences. OCL does not indicate how such collections of collections ar
tened. In addition, there are situations where it is not appropriate to get a sequenc
navigating from a sequence. For example, given a seminar s  we would be more interested
in the bag of all attendees for all offerings of s  rather than in the (underspecified
sequence.

3 States

In object-oriented modelling, class diagrams can be supplemented by state diagra
state diagram for a given object type shows the possible states an object of this type
in, together with the transitions that move an object from one state to another. A sta
gram contributes to the behavioural specification of a type in a model. An object state
abstraction of its detailed property values. Figure 2 shows a state diagram of Offering

with two states, Scheduled  and Cancelled , meaning that an offering of a seminar c
be scheduled or cancelled but not both. There are several ways of connecting cla
grams and state diagrams. One approach is taken by Syntropy [1], which amounts t
ing states as dynamic subtypes, so that an object can move from one type to ano
second approach is to treat states as if they were boolean attributes in class diagr
UML it is not clear how to connect class diagrams and state diagrams, and OCL do
clarify the issue.

If UML allows states to be represented as dynamic subtypes on a class diagra
the OCL feature oclIsKindOf  can be used to assert that an object is in a given state
example, we could use o.oclIsKindOf(Scheduled)  to assert that offering o is in the
state Scheduled .

If states are represented as boolean attributes then the corresponding attribute
be used to represent states in OCL. For example the expression p.Scheduled  would be
true if p is in state Scheduled , and false otherwise. These state-model attributes ca
related to other properties by means of invariants. For example, the state Cancelled  in
Figure 2 can be related to the attribute goingAhead  in Figure 1 by an obvious invariant. 

Yet another way would be to introduce a function  with the signature:in
5
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where (p in Scheduled)  is true if p is in state Scheduled , and false otherwise, and
where State  would be an enumerated type of object states.

From the point of view of using OCL, the mapping to boolean attributes is, per
the easiest to explain to modellers. However, from the point of view of providing an
grated semantics for UML, treating states as dynamic types might be the most e
approach: substating then has the same semantics as inheritance, dynamic classes
diagrams are just states in state diagrams, there can be associations targeted and so

states (dynamic classes), and so on.1 Whichever approach is chosen, it should be clea
modellers how the names of states can be defined in terms of class model properti
how they can be used in OCL expressions.

4 Object creation

OCL provides a type operation allInstances , which delivers a set of all instances of
given type. For example, Presentation.allInstances  would be a set of all instance
of type Presentation  in the model at a given point in time. Although the italicised con-
dition is not explicitly covered in the OCL documentation, it has been inferred from a
vate communication on object creation with Jos Warmer, one of the authors of the O
general, for a given type T, the meaning of T.allInstances  is the set of all elements o
type T at some moment in the life of a model containing type T.

The set T.allInstances  can change as a result of creation operations assoc
with the type T. One use of allInstances is in the postcondition of an operation spec
fication to assert that an object has been created. In the example system, one resul
cuting an operation schedule  is the creation of a new offering. In order to assert tha
new offering o is created, we need to assert that it did not exist prior to executing the 
ation but does exist after executing the operation. We can use the allInstances  opera-
tion, as follows:

(Offering.allInstances - Offering.allInstances@pre) 

Figure 2: A state diagram for a seminar offering

1.  Note that this semantics is not necessarily in accordance with the semantics of state diagrams as currently d
in the UML 1.1. documentation. Discussion of the relationship between these two approaches appears in [10].

Offer ing

Scheduled Cancelled
cancel()

_in_ : Presentation State, Boolean→
6
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where Offering.allInstances@pre  is the set of offerings that existed in the mod
prior to executing schedule . Asserting that a new object has been created is such a 
mon thing to do that we propose the introduction of a limited number of convenient a
viations. Here are two candidates.

The first recognises that asserting creation in a postcondition often involves s
"there is a new object o of type T and it has the following properties". For example, in t
model of Figure 1, the postcondition of an operation to schedule a new presentatio
seminar is given in Figure 3.

Loosely, this begins by saying that after the schedule operation there exists an
ing which was not in the set of offerings before the operation, and continues by de
four properties of the new offering (seminar , date , attendee  and presenter ). This is
such a common idiom that a combined operator to assert existence and newness w
useful, as in Figure 4.

Now the newness is captured in the operator and the body of the quantified expr
concentrates on defining what properties the new object should have.

Our second candidate for a convenient operator associated with creation is in
by the allInstances operator. An operator newInstances , as in, for example,

Offering.newInstances

SeminarSchedulingSystem::schedule( s:Seminar, d : Date)

post:
self.seminar.offering->exists(o : Offering |
      Offering.allInstances-Offering.allInstances@pre
                 ->includes(o)
and   o.seminar = s
and   o.date = d
and   o.attendee->isEmpty
and   o.presenter->isEmpty
and   o.goingAhead)

Figure 3: Specification of operation schedule

SeminarSchedulingSystem::schedule( s:Seminar, d : Date)
post:

self.seminar.offering->existsNew( o : Offering |
o.seminar = s

and o.date = d
and o.attendee->isEmpty
and o.presenter->isEmpty
and o.goingAhead)

Figure 4: Alternative specification of operation schedule
7
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could be used in postconditions to mean exactly those instances of type Offering  that
did not exist in the pre-state. The Catalysis method [3] has something similar. We s
harm in having several overlapping ways to talk about new objects.

5 Undefined Values

The OCL document [12] (p7) admits the possibility that some expressions may be 
fined when evaluated. Having an undefined value could be important for a number o
poses. It could serve as the result of an illegal operation such as dividing by zero
indicated in the OCL definition (p15) when asking for the property of an object tha
been destroyed in the post-condition of an operation; or for the @pre property of one that
has just been created; or when type casting (p6). In addition, an undefined value co
used to stand for a non-terminating computation such as an infinite loop.

Several approaches have been used in other languages to deal with und
expressions. One approach is to regard undefined expressions as being unknown o
specified. In this case the result of, for instance, dividing 1 by 0 is an integer but its va
unknown. This is similar to declaring a variable of a given type: the variable has a va
the declared type, but the precise value is unknown. In this approach, boolean expr
are either true or false, resulting in a two-valued logical system. It is the approach 
ally adopted in classical mathematics, which admits only total functions, and in som
mal specification languages, such as the Larch Shared Language [5].

Another approach is to include a special value  to denote that something is 
fined. If the logical connectives are treated as boolean functions then the undefined
propagates into logical expressions. For example, . This results in a 3
ued logic, as in, for instance, VDM.

Yet another approach, adopted by Z, is to maintain the distinction between lo
operators and expressions. Undefined expressions are interpreted as meaningless
they do not denote anything in the interpretation domain. Since logical expressions a
treated as expressions within the language, their truth values are unknown if they in
undefined expressions.

In OCL expressions can be undefined. However, it is not clear from the docum
tion what is meant by being undefined. One possibility is that undefined is not interpreted
as unknown. Let  stand for the undefined value. According to OCL, if a subexpress
an expression evaluates to undefined then the whole expression is undefined. Th
exceptions to this are:

that is, true OR-ed with anything is true , and false AND-ed with anything is false .
With other boolean operations we deduce the following:

⊥

b and ⊥ ⊥=

⊥

true and ⊥ true
⊥ and  true true=
false and ⊥ false
⊥ and  false false=

=

=

false  implies  ⊥ true
⊥ implies true true
not ⊥( ) ⊥

=
=

=

8
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The boolean operations agree with the classical logical connectives on the ordinar
values, i.e., true  and false . However, when  is involved they reflect a model of co
putation which is mainly strict. For example, with the operation not , if the argument is
undefined then whole expression is undefined, that is to say not  is strict in its argument.
The operation or , however, is not strict in either the first or the second argument. 

In addition we have the following axiom:

which implies that the law of excluded middle does not always hold, that is, a bo
expression can be true, false or undefined. (From the definition of ,

, given on p24 of the OCL document, we could deduce t

, which is not consistent with either 2-valued or 3-valued log

However, this definition is probably erroneous and should have been 
There is one place in OCL where undefinedness definitely is not required: when

igating over an optional association (cardinality 0..1 ). By forcing the result of navigation
to be a set, the equivalent of a 'null' or 'nil' reference is the empty set (and similar
optional attributes). Thus 'null' does not correspond to an undefined value.

Both 2-valued and 3-valued logics have advantages. However, we would su
that OCL be based on a 2-valued logic, for the following reasons. If the logic is to be
for specifying properties without reasoning about partial functions, 2-valued logic s
appropriate and simpler. In addition, reasoning with 3-valued logic is harder because
absence of some logical laws, e.g., the law of excluded middle. We would suggest 
understanding of 3-valued logic is not required by users, so perhaps references to 3
logic are an unnecessary complication if practitioners are the audience.

6 Completing the set of collection operators

In its current form, the Object Constraint Language contains an includes operation, as in
p.qualifiedFor->includes(s) , which says that seminar s  is an element of the se
p.qualifiedFor  (the set of seminars presenter p is qualified to present), but there is n
p.qualifiedFor->excludes(s) . Perhaps more importantly, there 

, saying that the set

 of seminars is a subset of , but no

. Instead the latter has to b
expressed using the rather cumbersome expression:

 

There is, however, an operation , and the 
subtraction operator "-" found in traditional mathematical notation. We suggest that t
of operations on collections could be extended so that the inclusive operators all hav
exclusive counterparts. 

7 Local definitions

In VDM [9], "let" expressions have the following syntax:

⊥

⊥  or  ⊥ ⊥=

b implies b2

not b( ) or(b and b2)

⊥  implies true ⊥=

not b( ) or b2

p.qualifiedFor->includesAll(p1.qualifiedFor)

p1.qualifiedFor p.qualifiedFor

p.qualifiedFor->excludesAll(p1.qualifiedFor)

(p.qualifiedFor->intersection(p1.qualifiedFor))->isEmpty

p.qualifiedFor->excluding(s)
9
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let(x = expr : oclExpression) in (expr1 : oclExpression) end

                      : expr1.evaluationType

The value of a let expression is evaluated by evaluating expression expr  and then using
the result in the evaluation of expr1 . This is equivalent to expr1[expr/x]  (the expres-
sion expr1  with x  substituted for expr ).

Let expressions are useful when the same expression needs to be used a nu
times in the same assertion. This is particularly true when long navigation expressio
combined with operators on collections to identify particular sets of objects. Then h
to repeat such expressions several times is cumbersome, and can obscure the me
the overall assertion. We therefore recommend that some form of local definition m
nism be included.

8 Further work

In this paper we have considered some issues related to the OCL language. We beli
the ideas we have presented about navigation should be tested by including the
proper formal semantics for OCL. 

With regard to object states, we have commented on the fact that there is a pr
in UML with the integration of state and class diagrams, and no attempt has been m
resolve this in OCL. We have sketched some approaches to providing an integrated 
tics. However, there is semantic work to be done here, too. For instance, the ap
based on dynamic subtypes is at odds with the (informally described) semantics pr
as part of the UML 1.1. In particular, it takes no account of events and requires the r
tion that all transitions must be atomic and at the same level of granularity to be lifte
believe that work in this area is crucial if UML is to proceed any further, especially w
one considers that UML-RT (Real Time) is likely to provide us with yet another pos
semantics for state diagrams and, at least initially, seems to be taking a "bolt on" 
than "integrative" approach. In general, the integration of the UML notation set, inclu
OCL, needs attention.

We have highlighted a range of approaches in the formal methods literature for
ing with undefinedness. We do not believe this issue can be resolved without provi
formal semantics for OCL, and the way it is resolved will depend on the sema
approach taken. We believe that a semantics should be built for a purpose, which
view should be to support CASE tools for reasoning about and checking the integ
models specified using UML and OCL.
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