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Abstract. In component-based development, object-oriented modelling notations such
as UML are being proposed as a way of providing richer specifications of components.
Much more so than in bespoke software development, this requires a high level of
precision coupled with sufficient expressive power. Expressive power is delivered by
adding textual annotations, such as invariants, pre & post conditions, to diagrams.
Navigation expressions, which identify collections of objects by navigating
associations, are central to making such annotations precise. We give a semantics to
navigation expressions as they are used in recently proposed extensions to
object-oriented modelling notations in widespread use by practitioners. The semantics
is given using Larch (essentially FOPL), which makes it as accessible as possible while
enabling some support for reasoning. The semantics helps to clarify some subtle issues
to do with navigation expressions, including the meaning of navigating across
collections (sets, bags and sequences) as opposed to just single objects, and the use of
filters on collections within expressions.

1 Introduction

Modern object-oriented modelling notations, such as UML [19], [7], are based on graphi-
cal notations for expressing a wide variety of concepts which are relevant to a problem
domain. While these notations are intuitive and easy to understand by users, they lack
expressive power. Kent [15] shows that in order to write some constraints on the behaviour
of a system it is necessary to step outside the diagrams and write them textually. Naviga-
tion expressions are critical to making these textual languages precise, which we argue is
essential to enable the current advance of software engineering towards component-based
development. Semantics of such languages, hence navigation expressions, will be required
to (a) check the integrity of the language and (b) support the development of CASE tools.

For bespoke software development, it is possible in many cases to get by with infor-
mal, imprecise annotations. This is because models are often discarded at the end of a
development, because short-term economic pressure mitigates against them being main-
tained and kept up to date as the code is developed and tested: Why spend a lot of time
making these models precise if they are only going to be thrown away? Of course, putting
the effort into making them more precise and then maintaining them would likely pay off
in the long term, as precision early in the development cycle is likely to lead to cleaner
designs and code and less need for testing. As documentation such models can be invalua-
ble, as they avoid implementation detail, allowing maintainers to uncover the essence of
the software design more quickly.

1. This research is partially funded by the UK EPSRC under grant number GR/K67304
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In component-based development (CBD), however, the requirement for precision
cannot be so lightly discarded. Object-oriented modelling notations are being proposed
(e.g. [18], [1]) as an approach to documenting component interfaces in a more accessible
and more detailed form than is the case in CBD technologies such as Microsoft’s COM,
the Object Management Group’s (OMG) CORBA and SunSoft’s Java Beans, which rely
upon a list of operations with their signatures, accompanied with some informal, though
not necessarily informative, descriptions. The need for precision and formality when using
these notations, both diagrams and text, for CBD is elaborated in [18] and [16]. Precise,
expressive specifications are required to facilitate searching and matching of components
and component assembly. Precision is essential for the automation of these processes. A
user of a component will require a certificate giving her confidence that the component
does what is claimed. This is especially important when components are “black box”,
where the design and implementation is not supplied. Confidence in certificates will only
be achieved if appropriate techniques are used. This means, for example, the use of precise
models at all levels of the construction process, enabling the implementation to be traced
back to the specification and conformance of the implementation against the specification
to be checked. In other words a rigorous approach to refinement should be supported.

CBD also increases the importance of specification models. Components must be
described in business (requirements) oriented terms rather than implementation oriented
terms, as the focus is always on using the component rather than on how it works. Indeed,
often there may be a considerable mismatch between the specification and implementa-
tion. Combined with a need for precision and expressiveness, this has led to the extension
of diagrammatic notations such as UML with a precise textual language for expressing
pre/post conditions and invariants, where the latter allow modellers to abstract away from
implementation detail. Syntropy [4] extends OMT [17] with a Z-like textual language for
adding invariants to class diagrams and annotating transitions on state diagrams with pre/
post conditions. Catalysis [5], [6] does something very similar for UML, adopting an argu-
ably simpler and more usable approach. The Catalysis and Syntropy notations have now
been superseded with the Object Constraint Language (OCL) which has recently become
part of the UML standard.

Semantics work [2], [3], [8] for OO modelling notations in widespread use, such as
OMT or UML, is generally restricted to capturing the meaning of those notations, so navi-
gation expressions are not considered, as they are not officially part of those notations at
least as far as their use in pre/post conditions and invariants are concerned. The semantics
of the extensions is at best rigorous. For example in [4] the semantics comprises six pages

of informal text interleaved with examples.1 The semantics given for Catalysis in [5] and
[6] is similarly informal. A key result of this paper is to check this intuitive semantics. One
specific result is to show that the introduction of so-called “flat sets” in the semantics, as
suggested in [6], is not necessary.

The focus of this paper, then, is on the use of navigation expressions in writing invar-
iants, pre and post conditions in UML extended with a precise textual language. As the
work in this paper was completed before the publication of OCL in the UML 1.1. standard,
we use the textual language of Catalysis, one of its immediate predecessors. However, the

1. Recently, a semantics has been given for a part of Syntropy ([2]) but only cursory coverage of navigation expres-
sions is given.
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work is applicable to any precise textual language which uses navigation expressions.
Indeed, since the original submission of this paper we have been using the work presented
here as a basis for the semantics of OCL [14].

The semantics is characterised in terms of the Larch Shared language (LSL) [11]
which is essentially a syntax for writing and composing theories in many-sorted first order
predicate logic with equality. This follows a well-rehearsed approach to semantics, dating
back at least to Burstall and Goguen [9], whereby specifications are given a semantics in
terms of (compositions of) theories of some logic.

Larch is a mature language which comes with a toolset including a sophisticated
proof assistant. The choice of Larch was motivated by the desire not to be engaged in the
design of logics and reasoning systems, but instead to focus on elaborating the meaning of
the modelling notations themselves in a way that is widely accessible. It was also chosen
because it supports a compositional approach to semantics [13].

Section 2 is an informal introduction to navigation in object-oriented modelling.
Section 3 establishes the semantic framework by giving a semantics to class diagrams and
associations. Section 4 defines the semantics of navigation expressions, considering in turn
the use of navigation expressions in invariants, the semantics of filters, the use of naviga-
tion expressions in pre and post conditions, and the semantics of navigation expressions
considering navigation over collections other than sets, in particular sequences and bags.
Section 5 defines the general mapping of class diagrams in UML and terms in the Cataly-
sis textual language to expressions in Larch.

2 Navigation in Object Oriented Modelling

In order to understand what is meant by navigation in object oriented modelling, it is nec-
essary first to understand what is an object oriented model, which essentially comprises
two parts:

• a generic model, which is made up of a collection of diagrams and textual annotations 
modelling the general behaviour of a system, usually a software system;

• one or more specific models, each a collection of diagrams illustrating specific exam-
ples of system behaviour.

In UML, the language of choice for this paper, the class diagram is central to any generic
model. An example of this for a simple course scheduling system is given in Figure 1. This
is a system for scheduling presentations of courses to a collection of students, with
instructors who must be qualified for the course in question. As this is a specification
model, the boxes are interpreted as types or interfaces, rather than classes, as they carry no
implementation information. A full description of the notation can be found in [19] or [7].
The diagram is best explained by giving an example of (part of) a specific model. Figure 2
is an object diagram depicting an example state of the system at a particular point in time.
It includes objects, depicted by boxes, and links. For this to be a specific model of the
generic model described in part by Figure 1, the types of objects, indicated by  :Type, must
be of a type mentioned in the class diagram, and the links must correspond to (appropri-
ately labelled) associations. Furthermore, the number of links between objects must obey
the cardinality constraints imposed by the class diagram. For example, the latter states that
a course may have zero, one or many qualified instructors (shown by a * appearing at the
end labelled qualified of the association between Course and Instructor). This is clearly
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the case in the object diagram. It also states that a presentation may have at most one
instructor: there are two presentations each linked to exactly one instructor and one with
no link to an instructor. And so on. Objects on an object diagram may be given an explicit
identity, to make it easy to refer to them in any explanation. Here, I1, I2, etc. are object
identities. The only object without an identity is the one of type CSS (short for Course-
SchedulingSystem). Values of attributes may also be shown on an object diagram and
these should, of course, correspond to the attribute declarations in the class diagram. Thus
the class diagram may be thought of as defining a set of object diagrams, namely the ones
which are consistent in the way described. It identifies the types of object allowed in the
system, and, via associations, the kind and number of links. It also identifies attributes that
objects can have with their return types.

Navigation in OO modelling means following links from one object to locate
another object. It is possible to navigate across many links, or navigate from a collection to
a collection. Navigation expressions allow us to write in generic models constraints on the

Figure 1: Class diagram for a course scheduling system

Figure 2: Object diagram
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behaviour of objects identified by navigating from the object or objects which are the
focus of the constraint. At the specification level, the expressions appear in invariants, pre
and post conditions. Examples of these will be given later; for this section we’ll just con-
sider basic navigation expressions in isolation.

In order to write a navigation expression we must start with an object of known type
and we must have a way of referring to that object. Given the object type Course, a decla-
ration as c:Course means that c is a variable that can refer to an object taken from the set
of objects conforming to type Course. Here, the type name is used to represent the set of
objects in the model that conforms to the type. A navigation expression is written using

, an attribute or role name, and an optional parameter list. Given this declaration, the
expression c.title represents the value of the attribute title for the object represented by c,
namely, the title of course c. In this case the navigation expression yields a value of type
String, which means that it is not possible to navigate any further. For example, if the var-
iable c is assigned to the object C1 in the object diagram then the meaning of the expres-
sion c.title is the string ‘‘OOA’’.

Given the declaration i:Instructor, the expression i.qualifiedFor denotes the set of
courses associated with instructor i. If the variable i is assigned to the object I2 then the
meaning of the expression i.qualifiedFor is the set {C1, C2} consisting of C1 and C2. If the
value of a navigation expression is another object or set of objects then we could navigate
on to their attributes. In this case, the value of the expression i.qualifiedFor is a set of
objects; any subsequent navigation must be applied to each member of the set and the
result is a set constructed from the set of objects located. For example, the expression
i.qualifiedFor.title yields a set of strings, namely {‘‘OOA’’, ‘‘OOD’’}. In this case the
attribute title is applied to the set i.qualifiedFor (using the  operator) and the result is a
set whose members are the results of applying title to the members of i.qualifiedFor.

In Syntropy, Catalysis and now OCL is the idea of navigating across collections. For
example, the expression i.qualifiedFor.presentations represents the set whose members
are all the Presentation objects which can be got by traversing qualifiedFor and presen-
tations. This is obtained by evaluating the expression i.qualifiedFor yielding a set of
Course objects, then by navigating from each member of this set using presentations, to
obtain a set of sets of Presentation objects. The resulting set is the union of these sets.
Thus if i is I2 then i.qualifiedFor.presentations is the set {P1,P2,P3}, whereas if i is I1,
the set is {P1,P2}, i.e. the presentations associated with course C1 only.

Another navigation expression which may occur is s[pred], where s is a set and pred
is a boolean predicate. This expression denotes the set of members in the set s for which
the predicate pred is true. That is, the set s is filtered using the predicate pred. In Figure 1,
the expression c.presentations is the set of presentations for a course c. The expression
c.presentations[is_cancelled] is the set of all presentations of course c, for which
is_cancelled is true, i.e. the set of cancelled presentations. For example, if c is assigned to
the object C2 then the meaning of the expression c.presentations[is_cancelled] is the sin-
gleton set {P3}.

The above describes navigation solely in terms of sets. More generally, navigation
may occur over collections, including bags and sequences. This is discussed more fully in
Section 4.4. Another extension of navigation expressions, as described, is to use them to
constrain operation invocations, for example on state diagrams or sequence diagrams. This

″ .″

″ .″
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is similar to the way in which navigation expressions are used in OO programming, and is
not the focus of this paper.

3 Interpreting Class Diagrams

As explained in the introduction, we use the Larch Shared Language (LSL) [11] to illus-
trate how object types, associations, and navigation expressions are incorporated into
structured specification. LSL uses specification modules, called traits, to describe abstract
data types and theories. Traits are presented in the following form:

SpecName is the name of the specification module or trait (not the name of a sort). Follow-
ing the name, is the list of sorts and operators that form the parameters of the trait. The
includes section lists other traits on which the specification is built. The introduces section
lists a set of operators (function identifiers) together with their signatures (the sorts of
their domain and ranges). Overloading of operators is allowed in LSL. All operators used
in a trait must be declared so that terms can be sort-checked in the same way as function
calls are type-checked in programming languages. The asserts section lists the axioms that
constrain the operators expressed in first-order predicate logic with equality. An equation
consists of two terms of the same sort, separated by . If one term of an equation is

 then the equation can be abbreviated to just the other term. When using LSL, it is
assumed that a basic axiomatisation of Boolean algebra is part of every trait. This axioma-
tisation includes the sort Bool, the truth values true and false, the logical connectives

, ,  and .

3.1 Object Types

An object type is a description of a set of objects in terms of properties and behaviour they
all share. In our formalisation, an object type is associated with an LSL basic sort consist-
ing of elements that uniquely represent objects (instances) of the type, which can be
thought of as object identifiers. The attributes of an object type are formalised as functions
with the appropriate signatures. 

The object type Course in Figure 1 is interpreted as a basic sort denoted by Course,

namely a sort of object identifiers. The attribute title1 is interpreted as a function title
with signature , which is added to the specification for object
type Course. The type String is interpreted as the sort of strings String. The definition of
attribute functions varies with the system states, so no additional constraints are required.

According to the above description, the specification of the object type Course has
only two sorts: Course and String. The only function is the attribute function title on
Course. Hence, the simple specification given in Figure 3 is derived.

SpecName(parameters) : trait
         includes
                                  existing specification modules to be used
         introduces
                                  function signatures are listed here
         asserts
                                  axioms are listed here

1. Alternatively, we can represent an attribute as a value of the sort of finite maps, e.g. 

″==″

″true″

″ ″∧ ″ ″∨ ″ ″⇒ ″ ″¬

title  : Map Course String,[ ]

title : Course String→
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The trait Type-String specifies the sort of strings String, which is available in the Larch
HandBook of specification modules [11]. Any constraints on the attribute title are
expressed as axioms on the function title in the asserts section of the trait. In a very sim-
ilar way we interpret the other object types for the course administration system.

3.2 Associations

We now extend the interpretation of object types and attributes given in the previous sec-
tion to include binary associations. We interpret associations between object types as two
related mappings that map an object of one type to the set of associated objects of another
(or the same) type. These mappings are specified in a way that is independent of the struc-
ture of types they associate. Thus we have a generic Larch theory for associations that can
be renamed to specify each particular association in the model.

The many-many association between Instructor and Course (Figure 1) has two role
names qualified and qualifiedFor. Intuitively, the role name qualifiedFor of the associa-
tion is a mapping that maps an object i of type Instructor to a set of objects of type
Course that are associated with i. In some navigation expressions the role name
qualifiedFor is also used to map a set of instructors to a set of courses. In our formalisa-
tion, this association would be represented as two mappings qualified and qualified-
For with the following signatures:

where Set[Course] and Set[Instructor] are the power sorts of Course and Instructor
respectively. By choosing power sorts for the domains and ranges of these mappings, we
have a uniform treatment of associations which simplifies the formalisation and provides
generic theory for associations. The case where navigation is from a single object is sub-
sumed with the general case where the set is a singleton containing that object. In addition,
the corresponding mappings that map single objects can be defined in terms of those that
map sets of objects (see later). A similar approach for formalising associations as two
related mappings is presented in [10].

The two mappings qualified and qualifiedFor satisfy the axioms:

The operation  is the union operation on sets, and  is the empty set. These axioms
imply that these functions are completely determined by their values at singleton sets.

In order to represent the association, these functions must also be related. This rela-
tionship is expressed by the following axiom:

Object-Type-Course: trait
        includes
               Type-String
        introduces
               

Figure 3: specification of object type Course with attribute title

title: Course String→

qualified : Set Course[ ] Set Instructor[ ]→

qualifiedFor  : Set Instructor[ ] Set Course[ ]→

qualified {}( ) == {}

qualifiedFor {}( ) == {}

qualified s s'∪( ) == qualified s( ) qualified s'( )∪

qualifiedFor s s'∪( ) == qualifiedFor s( ) qualifiedFor s'( )∪

  ∪  {}
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Intuitively, this axiom asserts that if instructor i is qualified to teach course c, then i must
be included in the set of instructors qualified to teach c.

The corresponding functions that operate on single objects may be constructed from
those whose domains are power sorts as follows:

Semantically, navigating from a single object is equivalent to navigating from a singleton
set containing that object. Note that we are overloading the function names which is

allowed by LSL.1

A trait for the association between Instructor and Course is presented in Figure 4.

Multiplicity constraints on roles can be interpreted quite easily in terms of the map-
pings that represent them by imposing a limit on the cardinality of the obtained sets. For
further details and for the generic traits of types and associations the reader is referred to
[12] and [13].

4 Interpreting Navigation Expressions

In this section we extend the object type, attributes, and association semantics given in the
previous section to include navigation expressions. Navigation expressions are actually
interpreted as terms (or expressions) over the signatures of object types and associations
specifications.

4.1 Invariants

We start with simple expressions. The expression c.title represents the title of the course
denoted by c. In our language this expression is interpreted as  that is, the opera-

1. An alternative way is to define the functions that operate on sets in terms of those that operate of single elements as:

where {} denotes the empty set, insert(c,s) denotes the set obtained by adding c to the set s.

Association-qualified-qualifiedFor: trait
        includes
                    Set(Instructor),  Set(Course)
        introduces
                   

       asserts
                   

Figure 4: Specification of the association between Instructor and Course

c qualifiedFor i{ }( )∈  == i qualified c{ }( )∈

qualified c( )  ==  qualified c{ }( )

qualifiedFor i( )  ==  qualifiedFor i{ }( )

qualified {}( )  ==  {}
qualified insert c s,( )( ) ==  qualified c( ) qualified s( )∪

qualified : Set Course[ ] Set Instructor[ ]
qualified : Course Set Instructor[ ]
qualifiedFor : Set Instructor[ ] Set Course[ ]
qualifiedFor : Instructor Set Course[ ]→

→
→

→

i:Instructor, c:Course, s ,s':Set Course[ ], t , t' : Set Instructor[ ]
qualified {}( ) == {}
qualifiedFor {}( ) == {}

∀

c qualifiedFor i{ }( )∈  == i qualified c{ }( )∈
qualified c( )  ==  qualified c{ }( )
qualifiedFor i( )  ==  qualifiedFor i{ }( )

title c( )
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tor  is interpreted as the application operator. Parameterised attributes can also be inter-
preted in a similar way.

An expression with a role name such as i.qualifiedFor is interpreted as
 or equivalently . When a navigation expression

yields another object or a set of objects, then it is possible to navigate on to their attributes.
In the case where the result is a set of objects, any subsequent navigation must be applied
to each member of the set and the result is a set of values constructed from the attributes of
each of the objects located. For example, the expression i.qualifiedFor.title yields a set of
strings. In this case the attribute title is applied to the set i.qualifiedFor (using the 
operator) and the result is a set whose members are the results of applying title to the
members of i.qualifiedFor. It is clear that we cannot interpret this expression as

 since the attribute title is interpreted as a function that oper-
ate on single objects. What we need is to define a function that takes a set as argument and
returns a set obtained by applying title to each member of the argument set. For this, we
introduce the function  with the signature:

 satisfying the axioms:

Function symbols can be overloaded, so we can use title instead of . Now

the expression i.qualifiedFor.title is interpreted simply as . 
The expression i.qualifiedFor.presentations represents the set whose members are

all the objects of Presentation which can be obtained by evaluating the expression i.quali-
fiedFor yielding a set of Course’s objects, and then by navigating from each member of
this set using presentations to obtain a set of sets of Presentation’s objects. Taking the
union of these sets we obtain the resulting set. This expression is interpreted as

.

4.2 Filters

Navigation expressions of the form s[pred], where s is a set and pred is a boolean predi-
cate, denotes the set of members in the set s for which the predicate pred is true. That is,
the set s is filtered using the predicate pred. In Figure 1, the expression c.presentations is
the set of presentations for a course c. The expression c.presentations[is_cancelled] is the
set of all presentations of course c, for which is_cancelled is true, i.e. the set of cancelled
presentations. Formally, the attribute is_cancelled is represented by the func-
tion: . Now, we define a function filter with
the signature: satisfying the axi-
oms:

Intuitively, filter(s) returns the elements of s that satisfy the predicate is_cancelled.
This can be easily generalised to predicates with several arguments.

The navigation expression c.presentations[is_cancelled] is interpreted as
. The expression c.presentations[is_cancelled].students

″.″

qualifiedFor i( ) qualifiedFor i{ }( )

″ .″

title qualifiedFor i( )( )

mapSettitle

mapSettitle  : Set Course[ ] Set String[ ]→

mapSettitle {}( ) ==  {}
mapSettitle insert c s,( )( )  ==  insert title c( ) mapSettitle s( ),( )

mapSettitle

title qualifiedFor i( )( )

presentations qualifiedFor i( )( )

is_cancelled : Presentation Bool→

filter : Set Presentation[ ] Set Presentation[ ]→

filter {}( )  = {}
filter insert p s,( )( )= if is_cancelled p( )  then  insert p filter s( ),( )  
                                                else  filter s( )

filter presentations c( )( )
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represents the set of students associated with the cancelled presentations for course c and
is interpreted as , where students is the inter-
pretation of the default role name students.

4.3 Pre and Post Conditions

So far we have interpreted object types, associations and navigation expressions statically.
However, when specifying actions or operations on an object type it is necessary to refer to
the values of an attribute (say) before and after the action is executed. In some modelling
notations f, old(f) are used to refer to the value of attribute f before the action is executed
and f is used to refer to the value after the execution. In our formalisation, we introduce a
sort  to represent the system states. Attributes of a given object type are interpreted as
functions with additional argument for the system states. For example, the attribute title is
now interpreted as a function title with the signature: 
where the expression  is the title of the course c in the state . If  and  are
the states before and after an action is executed respectively, then  and

 is the title of course c before and after this action is executed respectively.
Associations are also interpreted as two related functions as in the previous section,

with an additional argument for the system state. The trait that specifies the association
between Instructor and Course is given in Figure 5.

The interpretation of navigation expressions in this case is very similar to the inter-
pretation given in the previous section where a new state parameter is added to the func-
tions interpreting navigation expressions. For example, Figure 6 gives the specification of
an action   assignInstructor in terms of pre/post conditions. The navigation expressions
in the pre and post conditions are interpreted as the following expressions respectively:

 

where  and  are the states before and after the action is executed respectively.

Association-qualified-qualifiedFor: trait
        includes
            Set(Instructor),  Set(Course)
        introduces
           

       asserts
           

Figure 5: Specification of the association between Instructor and Course

students filter presentations c( )( )( )

Σ

title : Course Σ, String→

title c σ,( ) σ σ σ'

title c σ,( )

title c σ',( )

qualified : Set Course[ ] Σ, Set Instructor[ ]
qualified : Course Σ, Set Instructor[ ]
qualifiedFor : Set Instructor[ ] Σ, Set Course[ ]
qualifiedFor : Instructor Σ, Set Course[ ]→

→
→

→

i:Instructor, c:Course, s,s':Set Course[ ] , t, t' : Set Instructor[ ] σ:Σ
qualified {}, σ( )  == {}
qualifiedFor {}, σ( ) == {}

,∀

qualified s s' σ,∪( ) == qualified s σ,( ) qualified s' σ,( )∪
qualifiedFor t t' σ,∪( ) == qualifiedFor t σ,( ) qualifiedFor t' σ,( )
c qualifiedFor i{ } σ,( )∈  == i qualified c{ } σ,( )∈

∪

qualified c σ,( )   ==  qualified c{ } σ,( )
qualifiedFor i σ,( )  ==  qualifiedFor i{ } σ,( )

instructor p σ,( ) =  {}( ) course p σ,( ) qualifiedFor i σ,( )⊆( )∧

instructor p σ',( ) = i{ }

σ σ'



11

4.4 Navigation Expressions Involving Bags and Sequences

In some cases s.f, where s is a set and f is an attribute, could be interpreted as a bag (rather
than a set) of values (e.g., as in Syntropy). To use the same notation could lead to ambigu-
ity. For this reason we propose to use the notation s.bagf for expressions with bags as
results. To interpret such expressions we define a mapping  that maps sets into

bags using the function representing the attribute f. This mapping has the following signa-
ture , where Bag[A] is the sort of bags of A’s elements, and

satisfies the following axioms:

where nil represents the empty bag and the function f represents the attribute f. The
expression s.bagf is interpreted as  where s interprets the set s. In a similar way

we interpret expressions s.seqf yielding sequences as results.1

In most cases navigating an association yields a set. However, some associations
have constraints that specify the order of objects obtained. For instance, we can use con-
straints to specify a sequence, a bag or a sort order.

Figure 7 shows a modified association between the types Course and Presentation
with a constraint that specifies a sequence indicated by the annotation [seq]. This means
that navigating from an object of type Course via the association yields a sequence of
objects of type Presentation. Formally, we interpret the role name presentations as a

function with the signature2: , where
Seq[Presentation] is the sort of sequences with elements from the sort Presentation. 

The relationship between the two functions course and presentations is
expressed by the following axiom:

where the  used on the left of the equation is the membership function on sequences. 
The expression c.presentations.is_cancelled is the sequence of results obtained by

applying the attribute is_cancelled to every member of the sequence c.presentations. To

assignInstructor(p : Presentation, i : Instructor)
       pre:         p.instructor = nil
                p.course i.qualifiedFor
       post:       p.instructor = i

-- assigns instructor ‘i’ to give presentation ‘p’
-- an instructor is not already assigned
-- the instructor is qualified to give the course
-- ‘i’ is assigned to give presentation ‘p’

Figure 6: A partial specification of action assignInstructor

1. An alternative approach would be to interpret expressions of the form s.f as yielding sequences, and then using 
appropriate coercion functions to obtain sets or bags as results.

Figure 7: Association with sequence constraint

2. An alternative way is to represent sequences as totally ordered sets

  ∧   ∈

mapSetf

mapSetf  : Set A[ ] Bag A[ ]→

mapSetf {}( ) == nil
mapSetf insert e s,( )( ) == insert f e( ) mapSetf s( ),( )

mapSetf s( )

title: String
Course is_cancelled: Boolean

date: Date

Presentation

1
*

[seq]

presentations : Course Seq Presentation[ ]→

p presentations c( )  ==  c course p( )∈∈

  ∈
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interpret this expression, we define the function  with the signature:
 and satisfying the axioms:

where  denotes the empty sequence and  is the sequence obtained by
adding the element p to the sequence s.

Associations with constraints that specify bags are interpreted in a similar way. 

4.5 Subtyping and Navigation

Subtyping is a special relationship between two object types, known as the is-a relation-
ship. An assertion that type B is a subtype of type A implies that objects that conform to
type B inherit all the attributes and associations of the supertype A, and can be used in con-
texts where objects of type A are expected. Navigation expressions involving subtypes are
interpreted in exactly the same way we interpret expressions involving supertypes. To do
this we must provide an interpretation of the subtype, its attributes and associations. See
[12] for details.

5 The Denotation Mappings

In interpreting the type diagrams of a model we associate with any object type name A a
sort in Larch of all possible object identities that conform to the type, denoted by A. Let
Type be the set of types given in a type diagram of a modelling notation. We assume that
the set Type includes object types (mutable) and value types (immutable). Let Sort be the
set of sorts in LSL. We define a mapping that associates with every type in the modelling
notation a sort in Larch:  by sort(A) =def A. That is, sort(A) is the

sort associated with the object type A. For example, we have sort(Course) =def Course,
sort(Instructor) =def Instructor, sort(Boolean) =def  Bool, etc..

For each attribute f of type T we associate with it a function symbol denoted by f.
Let Attributes be the set of attributes of an object type A, and let Functions be the set of
function symbols in LSL, then we define:  where
Fun(f:T) =def . If the type A has a parameterised attribute g(S):T of type T,

then we have: Fun(g(S):T) =def .

Let Associations be the set of association symbols in the type diagram, then for
association roles we define a similar mapping:
where Fun(r:set[B]) =def .

In a similar way we deal with parameterised association roles. The table in Figure 8
summarizes the above mappings.

Modelling Notation Description LSL

A object type (mutable) A  (sort of object identities)

T value type (immutable) T   (sort of values)

f : T attribute of type T, for  object type A

g(S) : T parameterised attribute of type T, for object type A

Figure 8: Mappings of types, attributes and associations

mapSeq

mapSeq : Seq Presentation[ ] Seq Bool[ ]→

mapSeq nil( )  == nil
mapSeq insert p s,( )( )  ==  insert is_cancelled p( ) mapSeq s( ),( )

nil insert p s,( )

sort : Type Sort→

Fun : Attributes Functions→

f  : A Σ T→,

g : A S Σ, T→,

Fun  : Associations Functions→

r : set A[ ] Σ set B[ ]→,

f : A Σ T→,

g : A S Σ, T→,
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We now define a mapping that maps navigation expressions to LSL expressions
based on the above mappings. Let NExpressions the set of navigation expressions and
LExpressions be the set of LSL expressions. We define

. The definition of L is given in Figure 9. The
interpretation of a navigation expression as given by L is given at a moment in time corre-
sponding to a system state . In this definition variables are mapped into variables in LSL,
and expressions of the form a.f are mapped to . Expressions of the form s.f, where
s is a set and f is an attribute, are mapped to , where s is the interpretation

of the set expression s, i.e. L(s) = s, which satisfies the following axioms:

Expressions of the form s.r where r (r : Set[B]) is an association role are mapped to
, where s is the interpretation of the set expression s, i.e. L(s) = s. Note that in this

case we obtain a set rather than a set of sets because of the interpretation of association
roles is different from the interpretation of attributes. If on the other hand we treat associa-
tion roles as attributes, then the expression  yields a set of sets obtained by applying
the function r to each element of the set s. However, in order to obtain the desired result
namely a set of objects of type B, the obtained set of sets need to be flattened by taking the
union of all its elements. Therefore, it is always necessary to distinguish between associa-
tion roles and attributes when interpreting navigation expressions. In Catalysis [5], [6]
where an association is considered to be a pair of related attributes, a notion of flat sets is
introduced when navigating via association roles, which does not seem to be strictly neces-
sary in our formalisation.

Filter expressions of the form s[p] where s is a set and p is a boolean predicate are
mapped to , where s is the interpretation of the set expression s, i.e.

L(s) = s, which satisfies the following axioms:

Other value expressions such as sets, boolean values, sequences, bags can be mapped
directly since value types can be specified algebraically.

r : set[B] association role with set result for object type A

r (S) : set[B] parameterised association role with set result

r : B association role with single result for type  A

r (S) : B parameterised association role with single result

 NExpressions   Description  LExpressions

  a   variable  a (variable)

  a.f   a variable, f attribute of type T  f(a,σ)

Figure 9: Definition of the mapping L

Modelling Notation Description LSL

Figure 8: Mappings of types, attributes and associations

r : Set A[ ] Σ Set B[ ]→,

r : Set A[ ] S Σ, Set B[ ]→,

r : Set A[ ] Σ Set B[ ]→,

r : Set A[ ] S Σ, Set B[ ]→,

L  :  NExpressions LExpressions→

σ

f a σ,( )

mapSetf s σ,( )

mapSetf {} σ,( ) ==  {}
mapSetf insert a s,( ) σ,( )  ==  insert f a σ,( ) mapSetf s σ,( ),( )

r s σ,( )

r s σ,( )

filterp s σ,( )

filterp {} σ,( ) ==  {}
filterp insert p s,( ) σ,( )  ==  if p a σ,( )  then  insert a filterp s σ,( ),( )  else 
                                                           filterp s σ,( )
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6 Conclusions

A semantics has been provided for navigation expressions, which are essential to making
object-oriented modelling notations precise. The semantics is given as theories in the
Larch Shared Language, and a systematic mapping from class diagrams, with accompany-
ing textual language, to Larch expressions has been defined. The semantics covers the use
of navigation expressions in invariants, pre and post conditions, and handles not only nav-
igation across single objects but also navigation across collections of objects, including
sets, sequences and bags. Filters within navigation expressions have also been considered.

This work provides the basis for a semantics for UML incorporating OCL. Since this
paper was originally submitted, this work has been further developed towards a semantics
for OCL [14]. This will pave the way for giving a semantics to state diagrams, which state
diagrammatically some of what otherwise can be said using class diagrams and pre/post
conditions, and sequence diagrams. These will involve extending the semantics to deal
with navigation expressions used to refer to operation invocations (This is the way naviga-
tion expressions are used in programming, and is similar to those expressions whose final
segment is an attribute.). The semantics can also be used as a basis for the semantics of
“Constraint Diagrams” in [15] which allow invariants and pre/post conditions to be visual-
ised diagrammatically.

In the short term, the main purpose of the semantics work is to clarify concepts and
refine notation. In the medium to long term we are interested in using it to develop CASE
tools which are able, for example, to check the integrity of models and check conformance
between models. This needs specific semantic support, so for example, we are currently
working out the semantics of refinement in the OO/UML setting, that is checking the con-
formance of design and implementation models against specification models; and working
on a compositional semantics [13], to support assembly of components through their spec-
ifications.
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