Denotational Semantics for
Teaching Lazy Functional Programming

Olaf Chitil

Lehrstuhl far Informatik 1, RWTH Aachen, Germany

chitil @nformati k. rwt h-aachen. de
http://wwi2.informati k. R\MMH Aachen. de/~chi ti l

Text books explain the meaning of a functional program
concretely only by showing how an expression is evaluated.
Thus the idea that a functional program defines mathemat-
ical functions and that a function is a value is not imparted.

To give a concrete idea of a function as value, we repres-
ent it as a table of arguments and results (its graph):

(&%) | False True
Fal se | Fal se Fal se
True | False True

In general, such tables are infinite and the tables of multi-
argument functions with large domains and higher-order
functions are too complex to visualise even partially. Non-
etheless any function can easily be imagined as being such a
table.

With such tables we can establish by look up that for ex-
ample the value of the expression

even 6 && (4 + 2 > 7)

is Fal se.

To determine the table described by a (recursive) function
definition, we have to evaluate the application of the func-
tion to some arguments. For evaluation we combine reduc-
tion with look up in tables for known functions and prim-
itive functions like (+) . | claim that using such a mixture
of reduction and table look up is a natural way to under-
stand a program. Alternatively, we can construct the table
of a recursive function by table look up alone, if we start
with arguments that do not require recursive calls and con-
tinue such that we only require table entries that we have
already determined. For example, we determine the table of
the factorial function

fac n
|n:: =1
| n>0 =n* fac (n-1)

inthe orderfac 0,fac 1,fac 2,fac 3,...1

I believe that the classical comparison of evaluation
strategies is the best introduction to laziness / non-strictness.
The lazy evaluation strategy is vital for the efficiency of the
data-oriented programming style? and it explains how infin-
ite data structures can be handled by the computer. How-
ever, it is important not to give students the impression that

Icompare with: Simon Thompson: Haskell: The Craft of Functional Program-
ming, 2nd edition, Addison-Wesley, 1999, Section 4.2.

2John Hughes: Why Functional Programming Matters, Computer Journal
32(2), 1989, pp. 98-107.

laziness means giving up the denotational point of view. In
practise, the lazy reduction sequence of an expression is too
complex for a human to follow. On the other hand, functions
can easily be composed.

Whereas it is straightforward to extend tables to cover in-
finite data structures, our table for (&&) lacks an entry for
determining that the value of Fal se && (1 == 1/0) is
Fal se. Hence we introduce a third boolean value L which
represents undefinedness and complete the table as follows:

(&%) | False True 1

Fal se | Fal se False False

True | False True 4
1 1 1 4

For analogous reasons every type contains a value L.
Moreover, projections like f st and head demonstrate why
1 may appear anywhere in an algebraic data structure and
thus gives rise to many partial values:

| L[] False:[] True:[] L:[] False:l ..
head | L L False True 1 Fal se

We can use these tables together with tables for nul | ,
(|]) andtail toconstruct the table of and:

and xs = null xs || (headxs && and(tail xs))

| L [] False:[] True:[] L:[] False:l ...

and | L True False True L Fal se

As an aside we note that we can also reduce expressions
which contain L. In patterns L matches only variables and
the wild-card _.

| taught several Haskell programming courses for second
year university students who are familiar with a (usually im-
perative) programming language. At the beginning of the
course | gave no definition of the meaning of Haskell pro-
grams but just pointed out the similarity to mathematical
definitions and appealed to the students’ intuition. Only
when | came to laziness | introduced reduction and reduction
strategies. Directly afterwards | explained the use of tables
and L.

I believe that tables and L assist in understanding (lazy)
functional programs. They could also be used as a starting
point for a formal introduction to denotational semantics.

