
An OO Visual Language Definition Approach Supporting Multiple Views

D.H.Akehurst
University of Kent at Canterbury

D.H.Akehurst@ukc.ac.uk

Abstract
The formal approach to visual language definition is to

use graph grammars and/or graph transformation
techniques. These techniques focus on specifying the
syntax and manipulation rules of the concrete
representation. This paper presents a constraint and
object-oriented approach to defining visual languages
that uses UML and OCL as a definition language. Visual
language definitions specify a mapping between concrete
and abstract models of possible visual sentences, which
can subsequently be used to determine if instances of each
model “ validly” express each other. This technique
supports many:many mappings between concrete and
abstract model instances, and supports the
implementation of functionality that requires feedback
from the abstract domain to the concrete.

1. Introduction and Background
Techniques for formally specifying textual languages

have been in use for many years and the implementation
of tools that make use of such languages is based on these
formal techniques.

The formal approach to visual language (VL)
specification is more complex. Graph Grammars (GG) are
a technique used for specifying visual languages ([5]).
The input concrete syntax is scanned to produce a Spatial
Relationship Model (SRM); this is parsed using graph
transformation ([1]) operations to construct the output
Abstract Syntax Model (ASM).

The GG specification technique has three distinct
drawbacks, as discussed in [5]:

• There is no clear distinction made between the two
graphs, other than the names of the nodes;

• The combination of the two graphs and the added
connecting arcs is cumbersome;

• The graphical part of the transformation rules is not
expressive enough.

Our requirement is to build a tool that creates and
updates the abstract model in parallel with the user’s
construction of the concrete expression. We also require a
specification technique that keeps a clear distinction
between the SRM and ASM.

The research behind this paper is an offshoot of a
project ([8]) aimed at producing performance models
from system designs. These requirements came from the
need to capture the design of a distributed system,
involving the specification of information from multiple
viewpoints ([2]). Different VL’s are appropriate for
illustrating specifications in each viewpoint; each
viewpoint may need multiple diagrams (views) to convey
all the required information, but the underlying system
model (ASM) is common across all diagrams and all
viewpoints.

Graph translation is a process for specifying a mapping
between two distinct graphs. The conventional approach
is to combine the graphs by adding arcs between related
nodes. A grammar is then defined over the combination.
The technique for constructing one graph (the target) from
the other (the source) is to alter the graph grammar into a
set of rewrite rules that build the combined graph from
parts of the source graph. The resulting target graph is
consequently a subgraph of the combination.

The Triple Graph Grammars (TGG) approach ([7])
addresses the problems with GGs. Using this approach,
separate grammars are produced for each of the graphs
involved. The key is the production of a set of
correspondence rules (the third grammar), which specify
the homomorphic mapping between the two graphs.

An OO model can be considered as a graph of object-
nodes and link-arcs. A GG could be defined to specify a
pattern of possible models. However, a Class Diagram is
an existing mechanism within the OO domain for
specifying patterns of object models.

If an OO mechanism is developed for specifying a
mapping between two class models, then we can achieve
the same functionality as a TGG within the OO domain.

2. UML/OCL Specification Technique
The specification of a VL is considered to consist of

five parts; three models and two sets of relationships. The
models are the concrete syntax, SRM and ASM; the
relationships define a mapping between the concrete
syntax and SRM and between the SRM and ASM.

The concrete syntax to SRM mapping specifies the
relationship between the concrete symbols and the more
abstract SRM, which specifies the relationship between

the symbols. The SRM to ASM mapping is the equivalent
of the parsing process, which constructs an abstract model
from the “ tokenised” (SRM) form of the concrete
symbols.

Each of the three models is specified independently,
and they are combined using the mappings to form VL-
editor implementations. It is possible to define multiple
concrete representations of the whole of or parts of an
ASM, and/or use a CSM or its components to visualise
multiple (independent) ASMs.

This VL-definition technique does not specify how to
generate one graph (or model instance) from another, but
it specifies if one model instance is a valid expression of
the other. I.e. given a concrete model, an abstract model
and a VL-definition, it should be possible to deduce if the
models are valid interpretations of each other, according
to the constraints of the given VL-definition.

The technique is best illustrated by following through
an example. The visual language for Sequence Diagrams
is used as the example. These diagrams have a complex
structure and editors are not easily implemented.

[1] discusses the specification of the Sequence
Diagram VL and illustrates the complexity and problems
with the GG approach to the specification. The
UML/OCL approach does not suffer from the same
problems.

The symbols of a sequence diagram are essentially
vertical lines (object lifelines) and horizontal arrows
(messages). The connectivity of the symbols (i.e. the
SRM) is similar to a directed graph. The arrows map to
arcs in the graph, and the object lifelines map to nodes.

There is one major difference; the connectivity of the
nodes to arc ends must be ordered, thus reflecting the
order of the messages.

The three models are separately defined. The concrete
symbols are defined in terms of appropriate rendering
components. The SRM and ASM are defined as UML
models. In this example, the ASM is the part of the UML
meta-model that relates to interactions.

Mapping constraints are specified between components
of each model, using UML concepts. An association is
created for each mapping between classes. OCL
constraints are specified in the context of this association.
These specify constraints on instances of the mapped
classes that must be met if the models as a whole are to be
considered validly mapped.

The implementation of VL-editors based on this
technique uses a two-way adaptation of the observer
pattern. Each model is independently implemented as an
OO data structure that fires events when it changes. The
mapping objects are defined to listen to these events and
make changes to the models that keep the constraints
valid.

The concrete model can be implemented as a simple
drawing editor. Events must be fired when symbols are

added or removed, when their size or position changes or
if the value of text components change.

The concrete to SRM mapping controls the
visualisation of the connectivity modelled by the SRM.
For example moving an object lifeline symbol must cause
each arrow symbol that represents an arc connected to the
moved lifeline’s node, to be altered so that the
connectivity remains correctly rendered.

The SRM and ASM models fire events indicating that
value have been changed, or elements added or removed
from collections.

3. Conclusion
A number of different VL’s have been specified and

implemented using this technique. These include class
diagrams (including association class support), flowcharts
and state machines. Work is in currently in progress for
generating a Constraint Diagram ([3]) editor.

The technique enables reuse of much of the
implemented code enabling rapid generation of new VL-
editors.

The implementation structure allows multiple editors
to be used to form expressions on the same underlying
abstract model.

4. References
[1] Bardohl, R., Taentzer, G., Minas, M., Schürr, A.;

Application of Graph Transformation to Visual Languages;
Handbook on Graph Grammars and Computing by Graph
Transformation, Volume 2: Applications, Languages and
Tools, World Scientific; 1999.

[2] ISO/IEC; Open Distributed Processing - Reference Model -
Part 1: Overview; International Standard 10746-1, ITU
Recommendation X.901; July 1995.

[3] J Gil, J Howse, and S Kent; Constraint Diagrams: A Step
Beyond UML; Proceedings of TOOLS USA’99. IEEE
Computer Society Press; December 1999.

[4] M.Minas, G.Viehstaedt; DiaGen : A Generator for Diagram
Editors Providing Direct Manipulation and Execution of
Diagrams; Proceedings of the 11th IEEE Symposium on
Visual Languages; September 1995.

[5] J. Rekers; On the use of Graph Grammars for defining the
Syntax of Graphical Languages; Proceedings of the
colloquium on Graph Transformation; 1994.

[6] J. Rekers, A. Schürr; A Graph Grammar Approach to
Graphical Parsing; Proc. Twente Workshop on Language
Technology 10 joint with First AMAST Workshop on
Language Processing; 1995; pp. 163-172.

[7] A. Schürr; Specification of Graph Translators with Triple
Graph Grammars; Proc. WG’94 20th Int. Workshop on
Graph-Theoretic Concepts in Computer Science, LNCS
903, Berlin: Springer Verlag; June 1994; 151-163.

[8] Gill Waters, Peter Linington, David Akehurst, Peter Utton,
Gino Martin; Permabase: Predicting the performance of
distributed systems at the design stage; To appear in IEE
Procedings - Software; 2000.

