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Abstract. The safety analysis of an evolving software system has to consider the impact that changes might have on the software components, and to provide confidence that the risk is acceptable. If the impact of a change is not thoroughly analysed, accidents can occur as a result of faulty interactions between components, for example. This paper presents an approach that enhances the process of safety analysis by providing appropriate abstractions for modelling and analysing interactions between the components. Instead of considering components as the locus of change, the proposed approach assumes that components remain unchanged while their interactions (captured by connectors) adapt to the different changes. The behavioural description of connectors is provided in terms of extended time automata, and the safety analysis is performed using model checking, which verifies whether safe behaviour is maintained when interactions between components change. The feasibility of the approach is demonstrated in terms of a case study that deals with the safety procedures associated with the launching of a sounding rocket.

1. Introduction

The causes for failures of software systems are invariably related with the failure of multiple software components, rather than with the failure of a single component. The failure of multiple components is usually associated with incorrect interactions between components, also known as interface faults according with the study conducted by Lutz /Lutz 93/. This study is consistent with previous studies, which have shown that systems which have highly interactive components had proportionately more errors than less interactive subsystems /Selby 91/. In the wider context of system’s engineering, causes of system accidents can also be traced to errors occurring in the interactions between the components, rather than the failure of individual components /Perrow 84/.

A major reason for the existence of these interaction faults is the inherent difficulty of extracting behavioural dependencies from the specifications of components. Moreover, if the identification of these dependencies is left for the late stages of software development then the task of performing the analysis of the safety properties of a system becomes extremely complex, hence prone to errors. The proposed approach identifies the behavioural dependencies of components at the early phases of the software development. This provides the appropriate level of abstraction for modelling and analysing the interactions between components, in addition of performing behavioural analysis of individual components that characterises the more conventional approaches.

Evolution of software systems can be made more robust to interaction faults if the appropriate modelling abstractions are used for describing the architecture of the software. Instead of relying on the provision of means and mechanisms which focus on supporting the adaptation of components /Aksit 93, Bosch 99/, this paper presents an approach for the evolution of software models which is based on adapting the interactions between components. The motivation for this approach comes from the current trend of component-based software engineering that relies on the re-use of ready available software components, such as COTS and legacy software, which are not expected to undergo any type of change. Hence, it is assumed that components remain unchanged, while the behavioural dependencies between the components may change according to the evolving needs of the software.

In order to represent interactions between the components for the purpose of facilitating the incorporation of change, components and connectors are employed as modelling abstractions: while components embody computation, connectors embody the description of interacting behaviour between components. However, in the proposed approach, connectors in addition of mediating interactions between components, they are also able of describing collaborative behaviour between components in terms of the roles played by the components /Balzer 99/. That is, connectors in addition of being the place of communication between components, they are also the place of state and computation. This approach has some similarities with the features of collaboration-based designs. In these designs, software systems are represented as a composition of independently-definable collaborations /Smaragdakis 98/. There are several design description languages, which have rich vocabulary, and that are able to describe in the form of collaborative diagrams interactions between objects in terms of messages and events /Booch 98/, and to represent the implementation of components as a composition of object roles /D’Souza 98/. However, these object-oriented languages lack the means for describing the properties associated with object and their interactions, which should be an essential feature of architectural description languages. In this paper, we employ the modelling abstraction co-operative action (CO action) as an architectural entity (i.e. connector) for representing collaborative activity between objects /de Lemos 98/. The notion of a CO action has some similarities to that of an action in DisCo /Kurki-Suonio 96/, and joint actions (or use cases) in Catalysis /D’Souza 98/.

 In the proposed approach the architectural interpretation of an action as a connector is obtained by identifying the participants, and the conditions for the participants for starting, maintaining and finishing a collaborative activity.  In a previous work, we have introduced the basic concepts of the approach by describing the collaborative activity of the connectors in terms of Extended Real-Time Logic (ERTL) /de Lemos 00/. In this paper, we have revised and expanded that work, and instead of using ERTL, we have defined a more accessible process and notation for modelling and analyse evolving architectural representations. The new approach employs an extended version of use cases for describing collaborative activity, which is formally specified using propositional logic. This formal representation can then be transformed into state transitions that can be easily verified using model checking. However, for enhancing confidence on the outcome of safety analysis based on model checking, we also advocate the utilisation of complementary techniques for analysing the failure behaviours of architectural representations.

The rest of this paper is organised as follows. In section 2, we define the architectural style that provides the appropriate abstractions for modelling and analysing the safety properties of a system in terms of interactions between its components. Section 3 discusses the benefits of the proposed architectural style when considering the analysis of safety properties in evolving systems (or models). A brief description of the methodology adopted for the specification and validation of safety requirements is presented in Section 4. In section 5, we discuss the feasibility of the proposed approach in terms of a case study that consists specifying and verifying the destruction of a sounding rocket for the purpose of maintaining its safety behaviour. Finally, section 6 concludes with a discussion evaluating our contribution.

2. Co-operative Object-Oriented Style

Architectural structures for systems tend to abstract away from the details of a system, but assist in understanding broader system-level concerns /Shaw 96/. This is achieved by employing architectural styles that are appropriate for describing the software components, the interactions between these components, and the properties that regulate the composition of components.

In the following, we present the co-operative object-oriented style that adopts basic features of object-orientation, in which components are represented as classes and connectors as co-operative actions, and the instantiation of these abstractions are respectively, objects and co-operations. Objects are able to participate in several co-operations through the different roles that they are able to play while co-operations co-ordinate the interactions between the objects, through the roles that objects play. The behaviour of both objects and co-operations is described in terms of properties that have to be maintained for the system to provide the required services. This uniform way for describing the elements of software architectures allows checking early in the lifecycle whether the composition of components and connectors is able to satisfy the system requirements. Moreover, the description of software systems in terms of components and connectors provides the necessary architectural flexibility for representing adaptive software because of its ability of reducing the impact of change compared other existing approaches, like object-oriented design. In the following, we present in more detail the co-operative object-oriented style, which adopts some basic features of the object-oriented model.

2.1. Architectural Elements

The architectural elements of the co-operative object-oriented style are classes as the basic components, and co-operative actions (CO actions) as the basic connectors. Co-operative actions (CO actions) were introduced as entities for modelling interactions between classes that characterise collaborative behaviour /de Lemos 98/. The use of CO actions is motivated by their ability of extracting from the specification of a class those issues related with its collaborative activities, thus avoiding a specification of a collaboration to be scattered among classes. CO actions are a variant of co-ordinated atomic actions (CA actions) which are design mechanisms for structuring complex concurrent activi​ties and supporting error recovery between multiple inter​acting objects in an object-oriented system /Xu 95, Xu 99/.

In the co-operative object-oriented style, the behavioural description of classes and CO actions is done in terms of templates, while the structural description is done in terms of diagrams. The template describing a class contains the following fields: a name, declaration of attributes in terms of constants and variables that are local to the class, and a description of the behaviour of the class. The behaviour field includes the initial state of the object, and behavioural assumptions or (consistency invariants) associated with the class. The behavioural field also includes the specification of the complete space of the behaviour of the class, in terms of its normal, exceptional and failure behaviours.

CO actions, in the co-operative object-oriented style, in addition of being the place of communications, they are also the place for computation. The difference between classes and CO actions is that classes perform local computation, while CO actions can either co-ordinate the computation performed by the participant classes, or perform local computation that is not part of any participant class. In a CO action, the role of a class is prescribed by the activity of that class. A class may have as many roles as the number of CO actions it participates in. The composition of these roles defines the interface of the class.

The template describing a CO action has the following fields: the CO action's name, declaration of attributes in terms of the names and types of the participants of the CO action, constants and variables local to the CO action, and the specification of the collaborative behaviour of the classes participating in the CO action. The behaviour field includes initial state of the object, and the specification of the complete behaviour space of the CO action, in terms of its normal, exceptional and failure behaviours. The initial state of a CO action represents its state when is activated, and is dissociated from the pre-conditions of the CO action: it either refers to the state of classes participating in the co-operation or the state of the variables local to the CO action. Associated with the description of normal behaviour, pre-condition and post-condition establish the respective conditions for a set of classes to start and finish a particular collaborative activity, the invariant establishes the conditions that should hold while the collaborative activity is being performed, and the collaborative operation to be performed by the CO action. For the description of systems that are potentially concurrent, there is the need to consider the conditions that define the pre- and post-conditions to be trigger (necessary and sufficient) conditions. The successful execution of a collaborative operation occurs when the pre- and post-conditions of the normal behaviour are satisfied, and that the invariant associated with the collaborative activity is not violated during its execution. 

In addition of specifying the collaborative operation in terms of what the CO action should do, it is equally important to specify what the CO action should not do, mainly those behaviours that can affect the safety of the system. Two types of failure behaviours have to be considered: failures of omission when no services are delivered by the CO action, and failures of commission when the service delivered by the CO action are different from the required service. At the architectural level description of the system, is expected that both omission and commission failures are specified in terms of the hazards of the system. For the specification of exceptional behaviour, a handler replaces the operation, and defined in terms of its start and finish events. Although the pre-conditions for normal and exceptional behaviours are the same, the post-conditions for the exceptional behaviour might be different, depending on the degraded outcomes of a CO action, once an exception has occurred. In the definition of a CO action, an exception can be associated with the invariant whenever this is violated, or with the post-conditions whenever one of the conditions is not satisfied. Normal and exceptional behaviours are related with the liveness properties of a system (“something good” eventually happens), while failure behaviours are related with the safety properties of a system (“something bad” does not happen).

A CO action provides the basis for dealing with both co-operative and competitive concurrency by integrating two complementary concepts: conversations /Randell 75/ and transactions /Gray 93/. Conversational support is used to control co-operative concurrency and to implement co-ordinated and disciplined error recovery, whilst transactional support maintains the consistency of shared resources in the presence of failures and concurrency among different collaborative activities competing for these resources / Xu 95, Xu 99/.

2.2. Configuration Rules

For the description of systems, the configuration rules of the co-operative object-oriented style define how classes and CO actions can be combined. In a co-operative object-oriented architecture each class and CO action has a unique name. Classes can participate in more than one CO action, and at least two classes have to be associated with a CO action, thus avoiding the “dangling” of CO actions. A CO action defines and is defined by the roles of the classes, thus creating the context in which classes collaborate. Only CO actions contain relational information. An advantage of this is that, once a co-operative object-oriented architecture is instantiated, co-operations can be added or removed without interfering with the implementation of objects, thus restricting the impact of change. 
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Figure 1. Co-operative object-oriented architecture.
For describing the architecture of a software system, two different diagrams are employed: a class diagram describing the relationships between components, and a CO action diagram describing the relationships between connectors. These diagrams provide a compact representation of the software system, which can be completed with a more detailed textual description. 

An example of a co-operative object-oriented architecture is shown figure 1: CO action CON1 has three participants (COMP1, COMP2 and COMP3), and the nested CON2 has two participants (COMP2 and COMP3).

3. Evolving Co-operative Object-Oriented Architectures

The architecture of a software system is an important factor that affects the flexibility of software in adapting to changes. The dynamics of an evolving system is dominated by the slow changing components, which in the case of software are the large granularity abstractions that describe a software system. On the other hand, although the small granularity components are bound to change quicker, any change is certainly constrained by the slow changing components. In other words, changes at higher levels of abstraction are more likely to impact the architectural description of the system, compared with those made at the lower levels. Hence the need of focusing on architectural description languages when handling change. The aim is to have languages that are able to restrict the impact of change, thus allowing localised changes to be incorporated more effectively by avoiding their propagation into the rest of the system. This is not the case, for example, in object-oriented design languages where a change in the interface or name of an object can have a great impact on the whole design of the software. 

A co-operative object-oriented architecture of a software system can either evolve by changing the components (i.e. the interface of the components, or their implementation), or by changing the connectors (i.e. the roles of the components, or the collaborative operations). When a component changes, its impact is restricted to the connectors in which the component plays a role, because the system connectors, and not the components, maintain all the relational information in a co-operative object-oriented architecture. In this case, the other system components do not need to know that a component has changed. Similarly, when a connector changes, the components that play a role in the connector and the other connectors of the software architecture do not need to know about this change. The reason being that, first, there is no need to change neither the component interface nor its implementation when there is a change in one of the roles of a component, and second, there is information confinement across connectors. 


[image: image2.wmf]COMP1

COMP2

COMP3

COMP4

CON2

COMP2

COMP3

CON3

COMP1

COMP2

COMP3

COMP4

CON4

COMP3

COMP4

(i) Class diagram

(ii) CO action diagram


Figure 2. An evolving co-operative object-oriented architecture.
The co-operative object-oriented architecture of figure 2 is an evolution of that of figure 1: the component COMP4 was added to the original architecture, and connector CON1 was replaced by CON3. The addition of a new component should not have an impact on the other components, but it is expected that connectors have to change, by modifying the roles played by the other components. From the CO action diagram, we infer that CON2 and CON4 are nested CO actions of CON3, and that CON2 and CON4 should be mutually independent because they share a common resource (COMP3). 

4. Modelling and Analysis of the Safety Requirements

For the modelling and analysis of the safety requirements, we follow the methodology for the safety analysis of requirements specifications that is based on the stepwise refinement of the safety specifications, from the identification of the system accidents until the specification and verification of the architectural representation.

4.1. Specification of the Architectural Representation

The process for obtaining a formal description of the architectural representation of a system that is amenable to analysis is based on these major steps:

· Identification of the system hazards and violations to the system mission requirements;

· Definition of the requirements specifications for maintaining the safe behaviour of the system;

· Definition of the architectural representation of the system using the co-operative object-oriented style;

· Specification of the behaviour of architectural connectors (i.e. CO actions).

The definition of failure behaviours in the requirements specifications and architectural representation is derived from the specification of system hazards and violation of the mission requirements; we assume these to have been identified beforehand. 

For the specification of requirements the approach relies on use cases. A use case is a description of a set of sequence of actions, including variants that a system performs to yield an observable result of value to an actor /Booch 98/. An actor represents a coherent set of roles that users of use cases play when interacting with these use cases. In the approach proposed in this paper, the textual description of use cases is expanded. In addition to the description of normal behaviour, we have also included the description of failure behaviours. The description of normal behaviour is detailed by defining the use case in terms of its pre- and post-conditions, invariants that should hold, and the basic operations performed by the use case. The failure behaviour of a use case is partitioned in commission and omission faults, and is derived from failure behaviour of the system and expressed in terms of the actors of the use case.

In order to provide an unambiguous and precise description of the use cases, we also provided a formal description using propositional logic. Compared with a previous approach in which we have used Extended Real Time Logic (ERTL), in this paper we have formally specified the requirements in a much simpler notation. The main reason being that the syntactic nature of ERTL makes it hard to understand the requirements specifications, which should not be the case for this early stage of development.

After the definition of the uses cases, the next step is to define an architectural representation of the system in terms of the co-operative object-oriented style. For that, actors become classes and use cases become CO actions. This approach is similar of that of Catalysis in which uses cases are implemented as collaborations /D’Sousa 98/. The semantic interpretation of CO actions follows the approach described in next section, in which the normal behaviour is described as a state transition system, and the failure behaviour is captured as invariance and reachability properties.  

4.2. Automaton Representation of a CO Action

In a previous work, the collaborative activity was expressed using Extended Real Time Logic (ERTL) /de Lemos 96, Hall 96/. In this paper, the behavioural description of CO actions is represented in terms of a timed automata (finite-state automata with clock variables /Alur 94/) extended with integer variables /Larsen 97/. There were several reasons for representing the collaborative activity using timed automata instead of ERTL. In terms of expressiveness, a detailed behavioural description using ERTL almost reassembles a state machine specification. Moreover, the ubiquitous reference to time in ERTL (like in Real Time Logic /Jahanian 86/, in which all events are associated with occurrence times) becomes a distraction when the behavioural description of a system refers more to value rather than timing properties. In terms of formal manipulation, the undecidability nature of ERTL constraints formal analysis, on the other hand timed automata offers model checking, which is more amiable to the verification process of the architectural models.

The UPPAAL model was employed for providing the behavioural description of the CO actions. The basis of the UPPAAL is the notion of timed automata extended with data variables, such as integer and Boolean variables /Larsen 97/. The automata consist of a collection of control nodes connected by edges. The control nodes of the automata are decorated by invariants that are conditions expressing constraints on the clock values. The edges of the automata are decorated with guards that express a condition to be satisfied for the edge to be taken, synchronisation actions that are performed when the edge is taken, and clock resets and assignments to integer variables.

A simplified normal behavioural description of CO actions in terms of extended timed automata is shown in figure 3. The locations of the automaton capture the main internal states of a CO action, while the labels on the transition capture the conditions for the CO action to evolve, and the operations associated with the collaborative activity of the components. The logic expressions that decorate the nodes and edges of the automata are derived from the propositional logic specifications of the normal behaviour of the use cases. For a group of components to engage into a co-operation it is necessary for the pre-condition to be satisfied (pre==true), which is expressed as a set of conditions on the values of clocks and integer variables that must be satisfied. Once the co-operation starts, the invariant should hold (invariant==true), otherwise the co-operation is interrupted and an exception is raised. If the invariant holds, components perform the collaborative operations, which are simple manipulations on the values of clocks and integer variables and expressed in terms of assignments of the form w:=e, where w is a clock or integer variable and e is an expression. The group of components can leave the co-operation either via a normal (post_normal==true) or an exceptional post-condition (post_exceptional==true). 
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Figure 3. Automaton representatioqn of a CO action.

The failure behaviour is described in terms of invariance and reachability properties that represent those system states that should not be reachable from an initial state. These properties are derived from the propositional logic specifications of the failure behaviour of the use cases. The commission faults are expressed as invariance properties, while omission failures are expressed as reachability properties. How these properties will be used for model checking the automata representation is discussed in the next section. 

4.3. Verification of the Architectural Representation

The safety analysis of the architectural representation should confirm that the combined co-operative behaviour of the system CO actions is able to maintain the system safety.  The verification process of the co-operative object-oriented architectural representation follows the inverse steps of the specification process. First, we check whether the behavioural description of an architectural connector (i.e. CO actions), in terms of extended timed automata, satisfies the invariance and reachability properties that represent the CO action failure behaviours. Second, once it is confirmed that all the architectural connectors satisfy their respective safety properties, we check whether the combined behaviour of the CO actions can satisfy the system safety properties.

In the proposed approach, model checking, a formal verification technique based on state exploration has been employed for obtaining evidence that system safety is not violated. While the normal behaviour of the system is expressed as state transitions, the failure behaviour is specified as invariance and reachability properties corresponding to the failure behaviours of the CO actions. Given a state transition system and a property, model checking algorithms exhaustedly explore the state space to determine whether the system satisfies the property. The result is either a claim that the property is true or a counter-example in terms of a sequence of states that falsifies a property.

The model checker employed for performing the verification of the CO action behavioural specification is UPPAAL, an automated tool for the analysis of real-time systems /Larsen 97/. The model checker in UPPAAL can check reachability and invariance properties of Boolean combination of automata locations, and clocks and integers constraints. E<>( expresses the possibility of reaching a state satisfying (, which might be of the form  “( is guaranteed to hold within time t” and may be used to verify that an expected situation occurs within a specified time bound. Dually, A[]( expresses invariance of (, which might be of the “( is always true” and may be used to verify that certain situations never occur. The safety properties to be confirmed are obtained from the specification of failure behaviour of a CO action. However, before proceeding to perform the model checking of the safety properties of a system, confidence has to be obtained that the automata model to be verified is an accurate representation of the actual system. This confidence can be obtained either by simulating the model of the system to check whether the behaviour of the model is in accordance with the expected behaviour of the system being modelled, or using the reachability analysis of the model checker to confirm the absence of deadlocks in the extended timed automata model. 

In the next section, we perform the modelling and analysis of a case study that is essentially an evolving system, and which is modelled using the co-operative object-oriented architectural style.

5. Case Study: Destruction System for the VS-40X Sounding Rocket

The purpose of sounding rockets is to carry scientific instruments on the payloads into space. Their sub-orbital flight follows a parabolic trajectory that is appropriate for performing scientific experiments. The VS-40X is a two stages sounding rocket which has a dual purpose within the Brazilian Space Programme: apart from performing scientific experiments, it will be used as an experimental platform for the new equipment of the Brazilian Satellite Launcher (VLS). In this case study, we analyse the safety procedures for the destruction of a rocket when its trajectory violates a pre-defined flight envelope. Currently, a safety operator destroys the rocket remotely, but the intention is to replace it with an automatic system for its self-destruction. However, before introducing a complete new system, confidence has to be obtained that this system is as safe as the existing manual one. In order to obtain such confidence, an additional intermediate configuration is considered in which the two modes of destruction are redundant in their operation, with the self-destruction system possessing different degrees of autonomy.

The purpose of this case study is to show how effective is a co-operative object-oriented architecture when checking the stability of the safety properties of an evolving system. Instead of having to re-model and re-analyse the whole system, the approach presented in this paper claims that the impact of changes can be restricted by modelling and analyse the interactions between the system components. Whether a system component is changed or removed, or a new component added, the impact of change is scoped by the co-operations between the components.

The safety requirements of the VS-40X system aim to maintain the integrity of the environment
 of the vehicle (in terms of damage to property, injuries and loss of lives) when there is a failure in the behaviour of the vehicle. 

Depending on the flight phase and the flight trajectory of the vehicle, we can identify two types of accidents:

· During the pre-launching or initial flight instants, an unintentional destruction of the vehicle can cause damage to the launching installations, injuries, or the loss of lives;

· During the rest of the flight, the fall of debris after a failure in the behaviour of the vehicle can cause damages to property, injuries, or the loss of lives.

There are two hazards associated with the above accidents, which can be stated and formalised as follows:

· Hazard_A: during the pre-launching (v.preLauncPhase) and initial flight instants (v.initialPhase), there is a destruction of the vehicle (v.destroyed):

(v.preLauncPhase ( v.initialPhase) v.destroyed

· Hazard_B: during the intermediate phases of the flight (v.intermediateIPhase and v.intermediateIIPhase), the vehicle has violated the safety plan (v.outsideSP) when the projection of the point of impact of the vehicle’s trajectory crosses the limit line of impact into the protected region:

(v.intermediateIPhase ( v.intermediateIIPhase)  v.outsideSP (v.destroyed

The above safety requirements have to be considered in the context of the mission requirement for the VS-40X: 

· MissionRequirement: under normal conditions during the flight, the vehicle should not be destroyed:

(v.intermediateIPhase ( v.intermediateIIPhase)  (v.outsideSP (v.destroyed

Hazard_A and the violation of MissionRequirement are identified as commission failures, while Hazard_B is identified as an omission failure.

5.1. Requirements for the Destruction System

Once the system hazards are identified, the next step is to define a use case for capturing the destruction system of the VS-40X sounding rocket. The diagrammatic representation of this use case is shown in figure 4.
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Figure 1.  Use case of the VS-40X system

The correspondent textual description of the use case DestructionSystem is presented in box below. At this level of abstraction, the only operations specified for the DestructionSystem are those for maintaining safety behaviour, and for not violating the mission requirement. The failure behaviours of this use case were defined above in terms of the system hazards and the violation of the mission requirement.

5.2. Requirements for the Remote and Self -Destruction Systems

The destruction system should be considered as an integrated procedure for the remote destruction and self-destruction of the vehicle.

· The remote destruction allows the safety operator to destroy the vehicle when the flight safety plan is violated.

· The self-destruction is an autonomous system that allows the vehicle to destroy itself when the flight safety plan is violated.

In this paper, it is considered that the destruction system is an evolving system, in the sense that the remote and self-destruction subsystems should co-exist until sufficient confidence is obtained for the self-destruction subsystem, thus justifying the removal of the human-based remote destruction. The transformation of the destruction system, from one based on remote destruction to one based on self-destruction, can be represented in terms of three different configurations:

1. The destruction system is solely based on the remote destruction;

2. The destruction system is based on the remote and self-destruction – the remote destruction and self-destruction are both enabled;

3. The destruction system is solely based on the self-destruction.

The refinement of the use case DestructionSystem in terms of the remote and self-destruction is presented in figure 5. The actors were decomposed into other actors, and the use case DestructionSystem was partitioned in terms of RemoteDestruction, SelfDestruction, and EnableDestruction. The last use case captures the process of enabling the destruction of the rocket, and it is used by the other two use cases.
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Figure 2. Use case of the destruction system.
The correspondent textual descriptions of the use cases EnableDestruction, RemoteDestruction, and SelfDestruction, which are a refinement of DestructionSystem, are presented in following. 

The textual description of EnableDestruction is described in the box below in terms of its normal and failure behaviours The normal behaviour is specified in terms of its pre- and post-conditions, and the collaborative operation for enabling the destruction of the rocket five seconds after the umbilical has been disconnected. The failure behaviour of this use case is associated with the two system hazards previously identified. Although the commission fault does not destroy the vehicle, it nevertheless enables the destruction that can lead to the vehicle being destroyed, if there is a failure elsewhere in the system.

The textual description of RemoteDestruction is described in the box below in terms of its normal and failure behaviours, and specifies the collaborative operation for the remote destruction of the vehicle by the safety operator. The collaborative operation consists of the safety operator activating the destruction of the vehicle whenever it violates the safety plan or there is a failure in the radar system, which should lead to the destruction of the rocket. The failure behaviours of this use case are related to those failures previously identified, and they can lead to a hazard state or the violation of the mission requirement.

The textual description of SelfDestruction is described in the box below in terms of its normal and failure behaviours, and specifies the collaborative operation for the self destruction of the vehicle by the protection system embedded in the vehicle. Similar to RemoteDestruction, the failure behaviours of this use case are related to those failures previously identified, and they can lead to a hazard state or the violation of the mission requirement.

After definition of the above use cases, the next step is to define the system architecture that will be analysed for checking whether the safety behaviour of the system is maintained.

5.3. Evolving Architecture for the Destruction System

In this section, we present a partial architectural representation of the sounding rocket VS-40X from the viewpoint of the safety requirements. This co-operative object-oriented architecture focuses on the components and interactions responsible for the destruction of the sounding rocket.  The class and CO action diagrams that define the architecture are obtained, respectively, from the actors and use cases of the use cases specified in the previous section.

According with the class diagram of figure 6, the three basic components of the VS-40X System are the SafetyOperator, OperatorConsole, and Vehicle. In terms of the remote destruction system, the relevant component of the OperatorConsole is the SISGRAF that provides tracking information from the radar. The relevant components of the VS-40X Vehicle are: SafetyBox which provides the protection mechanism to avoid the unintentional destruction of the vehicle during the pre-launching and initial phases of the flight, and RemoteControl which receives and processes the control commands from the OperatorConsole (it contains a self-diagnostic mechanism which detects whether has failed or not). If self-destruction is considered, two additional components have to be considered as part of the Vehicle: Trajectory which calculates the flight trajectory of the vehicle based on information provided by the Inertial Reference System (IRS), and the ProtectionSystem which establishes whether the flight safety plan has been violated. These two components have similar roles of those associated with the OperatorConsole and SafetyOperator, respectively.
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Figure 3. Class diagram of the destruction system.

The three diagrams of figure 7 show the evolution of the destruction system in terms of the possible configurations of the components of the VS-40X System. In the following, these configurations are defined in terms of the CO actions that define the co-operations between the components. The CO actions enable to extract from the definition of the components of the VS-40X System those activities which are related to the destruction system.

1. The destruction system is solely based on the remote destruction – the two CO actions are the EnableDestruction which describes the collaborative activity between OperatorConsole, SafetyBox and Vehicle for enabling and disabling the destruction of the vehicle, and RemoteDestruction which describes the collaborative behaviour of components of the VS-40X System for destroying the vehicle by the SafetyOperator.

2. The destruction system is based on the remote and self-destruction – in addition to the two CO actions of the first configuration, CO action SelfBDestruction is a simplify version of SelfADestruction in which there is no need for maintaining mutual exclusion between remote (RemoteDestruction) and self-destruction (SelfDestruction).

3. The destruction system is based on the self-destruction – in addition to EnableDestruction, the other CO action is SelfDestruction that is responsible for the self-destruction of the Vehicle.
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Figure 4. The CO action diagram of the evolving architecture of the destruction system.

The architectural representation of the destruction system in figures 6 and 7 shows how flexible is a co-operative object-oriented architecture in adapting to changes in the system requirements, that is, without changing the components of the system, we are able to change its behaviour simply by changing the interactions between the components. Moreover, once major interactions of the system are identified, these can be composed in different ways in order to obtain different services for the system. In the next section, we demonstrate how effective such architectural representation can be while performing the safety analysis of the destruction system. Instead of tackling the system as whole, we show that the modelling of the system and the analysis of the safety properties focus on those aspects of the system that are more likely to change, that is, the interactions between the components of the system.

5.4. Modelling and Analysis of Components Interactions 

As already mentioned in section 4.2, the UPPAAL extended timed automata and its model checking capabilities will be used for the respective modelling and analysis of the destruction system. Since we are abstracting from the system components, the models of system behaviour are just in terms of components interactions, which are captured by the CO actions identified in the previous section. In this section, we formally specify the behaviour of CO actions using extended timed automata, and analyse the safety properties of every CO action and the system using model checking. The intent is to verify whether the safety behaviour of the system is maintained by the interactions between the system components. However, there is no need to exploit all the timing analysis capabilities of UPPAAL during verification because the problem at hand involves very simple timing constraints associated with CO action EnableDestruction.

5.4.1. Modelling Interactions

The CO action EnableDestruction specifies the collaborative activities of the components of the VS-40X System involved in enabling the destruction of the Vehicle. The UPPAAL model of EnableDestruction is presented in figure 8. The pre-condition of the CO action is represented by the outgoing arc from location ED0, and the post-condition is represented by the two outgoing arcs from location ED3. The pre-condition is modelled as a communication channel (safeDest?), while the post-condition is modelled by two shared variables (v_destroyed==true or v_endFlight==true). The collaborative operation of EnableDestruction is represented by two transitions: one that waits for the umbilical to be disconnected (disUmbil?), and the other that enables the destruction (enDest!) five seconds after the disconnection of the umbilical. 
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Figure 5. UPPAAL model of EnableDestruction 

The CO action RemoteDestruction specifies the collaborative activities of the components of the VS-40 System involved in the remote destruction of the Vehicle by the SafetyOperator. The UPPAAL model of RemoteDestruction is presented in figure 9. The CO action pre-condition is captured by the guards of the outgoing arc from RD0. The post-condition is captured by guards on the incoming arcs into RD3 and RD4 that represent respectively the destruction of the vehicle (v_destroyed==true) and the end of flight (v_endFligh==true), and the guard on the incoming arc into RD0 that represent the failure of the remote control. The collaborative activity is represented by the assignment on the arcs between RD1 and RD2, which includes the scenario of the vehicle violating the safety plan (oc_sisgraf_outsideSP==true), or the radar system failing (oc_sisgraf_operational==false). 
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Figure 6. UPPAAL model of RemoteDestruction

The CO action SelfDestruction specifies the collaborative activities of the components of the Vehicle for its self-destruction, and the UPPAAL model of SelfDestruction is presented in figure 10. The timed automata model of self-destruction is similar to that of remote destruction, in which the failure of the remote control and the radar system are not need represented. The collaborative activity for destroying the vehicle includes: to activate the self-destruction (v_ps_actDest:=true) when the protection system (v_ps_actDest==true) detects that the trajectory taken by the vehicle has violated the safety plan (v_tr_outsideSP==true), and to destroy the vehicle (v_destroyed==true) once the self-destruction is activated (v_ps_actDest:=true).
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Figure 7. UPPAAL model of SelfDestruction

Although the design of the destruction system has changed considerably between the alternative ways for destroying the sounding rocket, it was nevertheless demonstrated that the modelling process is made easier by abstracting altogether from the components, and employing CO actions for modelling the interaction between system components. Once the basic interactions are identified, these can be combined in different ways for modelling the different behaviours of the system.

5.4.2. Safety Analysis of the Interactions

The purpose of the destruction system is to avoid the failure of the sounding rocket to cause injuries, deaths, and material damage when its flight safety plan is violated. A possible implementation for this system is the three CO actions specified in the previous section. In the following, we check whether EnableDestruction, RemoteDestruction and SelfDestruction are able to maintain the specified safety behaviour of the system. For performing the safety analysis of the destruction system specification, we have used the model checker in UPPAAL, where the failure behaviours of the individual CO actions and the system were modelled as invariance properties. 

The context for conducting the safety analysis of the three automata that specify the destruction system includes the following automata: FlightPhases that simulates the flight of the sounding rocket, FlightTrajectory that simulates whether the vehicle violates the safety plan, StateRC that simulates a failure in the remote control, StateSISGARF that simulates a failure in the radar system, and StateOCDest that simulates the operator console sending the signal for enabling the destruction. In the following we proceed to describe how the safety analysis was performed, and for the sake of brevity, we present only the invariance and reachability properties for SelfDestruction and VS-40X System, which were obtained from their respective failure behaviours defined in the use cases. However, before we could start the safety analysis of the architectural representation, we have performed a thorough preliminary analysis of the extended timed automata model of the destruction system to have confidence that the model was right, that is, the model was free of deadlocks. For example, we have checked that all the states on the FlightPhases automaton, and the automata describing the behaviour of the connectors were reachable. In addition of inspecting the traces from the simulation of the model, we have also used the model checking capabilities of UPPAAL to make sure that key system states were reachable from the initial state of the system. Once we obtained confidence that the model was an accurate representation of the system being modelled, we proceed with the model checking of safety properties associated with the destruction system.

The specification of the failure behaviour as invariance properties for the SelfDestruction follows directly from the definition of the two hazards, and the mission requirements of the system. There is a commission fault related to Hazard_A, when Vehicle is either in pre-launching or initial phases of the flight, and the ProtectionSystem activates the destruction of the Vehicle. There is another commission fault related to the violation of the MissionRequirement, when during the intermediate phases of the flight, the SelfDestruction is operational, the flight trajectory of the Vehicle is not outside the safety plan, but the ProtectionSystem activates the destruction. Finally, there is an omission fault related to Hazard_B when during the intermediate phases of the flight, the SelfDestruction is operational, the flight trajectory of the Vehicle is outside the safety plan, but the ProtectionSystem does not activate the destruction. While the first two properties were described as invariance properties, the latter was described as a reachability property. Using the model checker in UPPAAL, we have confirmed that the invariance and reachability properties associated with all CO actions were satisfied, that is, every automata model of the CO actions is able to maintain its associated safe behaviour. The next step was to check whether the System was able to maintain its safe behaviour.



The specification of System failure behaviour as invariance properties follows directly from what it was described for the SelfDestruction. However, instead of describing the failure behaviour using variables associated with the context of the self-destruction, we use Vehicle variables. The only exception is when describing the mission requirement that we have to consider that the SafetyOperator should activate the destruction of the vehicle whenever there is a failure in the radar system. This is the case for the first and the second configuration, but not for the third one where the destruction of the system relies only on the self-destruction. Using model checking, we have confirmed that our co-operative object-oriented specification of the destruction system is able to maintain the invariance and reachability properties of the VS 40X System. 

The utilisation of CO actions as modelling abstraction for representing the behavioural dependencies between the system components has also facilitated the process of safety analysis of the destruction system by focusing on those issues that are more likely to affect the system safety, that is, the interactions between the system components.

5.5. Diversity in the Safety Arguments

A similar safety analysis exercise using laborious deductive and inductive analysis techniques was performed of the same destruction system /Lahoz 00/. The purpose of this exercise was not so much to compare different techniques, but instead to obtain diverse arguments in the provision of evidence that the safety properties of the system cannot be violated. 

In the deductive analysis, fault trees were employed to model the destruction system from the perspective of its failures by identifying component faults that could lead to the violation of either the safety or mission properties. There were four sets of fault trees, one set for the vehicle with the top events representing the hazards of the systems and the violation of the mission requirements, and the other three sets were associated with each of the co-operations identified in the analysis of the destruction system. The top events for each of these sets are an instantiation of the failure behaviours of the system in terms of the variables of the co-operations.

The purpose of this exercise was two fold. First, in terms of the operational model, check whether the component failures related with the primary events obtained from fault tree analysis were capture in the extended timed automata representation, thus obtaining confidence on the accuracy of the model. Those faults that are not captured in the automata model should be those that the destruction system is not protected against. Second, in terms of the property model, check whether the reachability formula captures all the expected failure behaviours of the system.

In the inductive analysis, event trees were employed to check whether certain component failures would lead to other system failures different from those otherwise known. 

The combination of a co-operative object-oriented architecture and model checking has shown effective when dealing with systems that undergo constant change. However, caution must be taken over the (false) confidence that can be obtained when employing model checking /de Lemos 99/, to compensate this deficiency we have to seek diverse sources of evidence to build trustworthy arguments about the safety of the system.

6. Conclusions

This paper has presented an approach for checking the stability of the safety properties of evolving software in which the safety analysis is enhanced by extracting from the definition of the system components the behavioural dependencies associated with their interactions. The proposed approach is different from existing approaches that rely solely on the behavioural specification of system components for obtaining confidence that the system safety will be maintained whenever there is a change. 

The basic claim of this paper is that the co-operative object-oriented style can enhance the safety analysis of evolving software systems. Compared with other approaches the major difference of the proposed approach is that, connectors in addition of being the place of communication, they are also the place of state and computation: they encapsulate roles of the components and collaborative operations between the components. Instead of having to spread change among a group of interacting components, a co-operative object-oriented architecture allows change to be localised in its connectors. Assuming the roles played by the components are mutually independent, the impact of change can be restricted because all the relational information is associated with the connectors, rather then the components. The feasibility of the proposed approach was demonstrated through the specification and verification of the destruction system of a sounding rocket. While keeping the components unchanged, the destruction system has evolved by changing the interactions between the components. Instead of having to consider the whole system, the modelling and analysis of the safety properties have focused on the interactions between the components.
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Use case:		DestructionSystem


Actors: 		SafetyOperator, OperatorConsole, Vehicle 


Description (Normal): It specifies the collaborative activities of the components of the VS40X System involved in maintaining the safe behaviour of the Vehicle.


Operation (avoid Hazard_A): During the pre-launching and initial phases of the flight, the destruction of the vehicle should be disabled (v.enDest):


v.preLauncPhase (v.initialPhase ( (v.enDest


Operation (avoid Hazard_B): During the intermediate phases of the flight, once the vehicle trajectory violates the safety plan the vehicle should be destroyed�:


(v.intermediateIPhase ( v.intermediateIIPhase)  v.outsideSP ( v.destroyed


Operation (maintain MissionRequirement): Under normal conditions during the flight, the vehicle should not be destroyed:


(v.intermediateIPhase ( v.intermediateIIPhase)  (v.outsideSP ( (v.destroyed





Use case:		EnableDestruction


Actors: 	OperatorConsole, Vehicle, Vehicle.SafetyBox


Description (Normal): It specifies the collaborative activities of the components of the VS40X System involved in enabling the destruction of the Vehicle.


Pre-condition: 	It starts when the OperatorConsole sends a signal (oc.safeDest) notifying that it is safe to destroy the Vehicle.


oc.safeDest


Operation:	It activates the safety relay (v.sb.safeDest) in the SafetyBox after receiving the signal oc.safeDest, and initialises a temporisation mechanism, which activates the inhibiting relay (v.sb.enDest), after the disconnection of the umbilical (v.disUmbil).


oc.safeDest ( v.sb.safeDest


v.sb.safeDest  v.disUmbil@T0 ( v.sb.enDest@T0+5


Post-condition: 	It finishes when the Vehicle either reaches the end of its flight, or it is destroyed.


v.destroyed ( v.endFlight





Description (Commission Fault): There is a commission fault, related to Hazard_A, when the Vehicle is either in pre-launching or initial phases of the flight, and the destruction of the Vehicle is enabled (v.sb.enDest).


(v.preLaunchPhase ( v.initialPhase)  v.sb.enDest


Description (Omission Fault): There is an omission fault, related to Hazard_B, when during the intermediate phases of the flight the destruction of the Vehicle is not enabled.


(v.intermediateIPhase ( v.intermediateIIPhase)  (v.sb.enDest





Use case:		RemoteDestruction


Actors: 	SafetyOperator, OperatorConsole.SISGRAF, Vehicle, Vehicle.RemoteControl, Vehicle.SafetyBox


Description (Normal): It specifies the collaborative activities of the components of the VS-40 System involved in the remote destruction of the Vehicle by the SafetyOperator.


Pre-condition: 	It starts when the SafetyBox enables the Vehicle destruction (v.sb.enDest), while the RemoteControl and the SISGRAF are operational (respectively, v.rc.operational and oc.sisgraf.operational).


v.sb.enDest  v.rc.operational  oc.sisgraf.operational


Invariant:	The destruction of the Vehicle should remain enabled, and the RemoteControl and the SISGRAF operational, while SelfDestruction is active.


v.sb.enDest  v.rc.operational  oc.sisgraf.operational


Operation:	The SafetyOperator activates the destruction (so.actDest) and destroys vehicle (v.destroyed) when the operator detects via radar that the trajectory taken by the vehicle has violated the safety plan (oc.sisgraf.outsideSP), or when there is a failure in the radar system.


oc.sisgraf.outsideSP ( so.actDest


(oc.sisgraf.operational( so.actDest 


so.actDest ( v.destroyed


Post-condition: 	It finishes when the RemoteControl fails, the Vehicle reaches the end of its flight, or it is destroyed.


(v.rc.operational (v.endFlight (v.destroyed





Description (Commission Fault): There is a commission fault, related to Hazard_A, when the Vehicle is in either pre-launching or initial phases of the flight, and the SafetyOperator activates the destruction of the Vehicle.


v.preLaunchPhase ( v.initialPhase  so.actDest


Description (Commission Fault): There is a commission fault, related to the violation of the MissionRequirement, when during the intermediate phases of the flight, the flight trajectory of the Vehicle is not outside the safety plan, but the SafetyOperator activates the destruction.


(v.intermediateIPhase ( v.intermediateIIPhase)  (oc.sisgraf.outsideSP  so.actDest


Description (Omission Fault): There is an omission fault, related to Hazard_B, when during the intermediate phases of the flight, the flight trajectory of the Vehicle is outside the safety plan, but the SafetyOperator does not activate the destruction.


(v.intermediateIPhase ( v.intermediateIIPhase)  oc.sisgraf.outsideSP  (so.actDest





Use case:		SelfDestruction


Actors: 	Vehicle, Vehicle.SafetyBox, Vehicle.ProtectionSystem, Vehicle.Trajectory


Description (Normal): It specifies the collaborative activities of the components of the Vehicle for its self-destruction.


Pre-condition: 	It starts when the SafetyBox enables the destruction of the Vehicle (v.sb.enDest).


v.sb.enDest


Invariant:	The destruction of the Vehicle (v.sb.enDest) should remain enabled while SelfDestruction is active.


v.sb.enDest


Operation:	It activates the self-destruction (v.ps.actDest) and destroys vehicle (v.destroyed) when it is detected that the trajectory taken by the vehicle has violated the safety plan (v.tr.outsideSP).


v.tr.outsideSP ( v.ps.actDest


v.ps.actDest ( v.destroyed


Post-condition: 	It finishes when the Vehicle either reaches the end of its flight, or it is destroyed.


v.destroyed ( v.endFlight





Description (Commission Fault): There is a commission fault, related to Hazard_A, when the Vehicle is either in pre-launching or initial phases of the flight, and the ProtectionSystem activates the destruction of the Vehicle.


(v.preLaunchPhase ( v.initialPhase)  v.ps.actDest


Description (Commission Fault): There is a commission fault, related to the violation of the MissionRequirement, when during the intermediate phases of the flight, the flight trajectory of the Vehicle is not outside the safety plan, but the ProtectionSystem activates the destruction.


(v.intermediateIPhase ( v.intermediateIIPhase)  (v.tr.outsideSP  v.ps.actDest


Description (Omission Fault): There is an omission fault, related to Hazard_B, when during the intermediate phases of the flight, the flight trajectory of the Vehicle is outside the safety plan, but the ProtectionSystem does not activate the destruction.


(v.intermediateIPhase ( v.intermediateIIPhase)  v.tr.outsideSP  (v.ps.actDest





Description (Commission Fault): There is a commission fault, related to Hazard_A, when the Vehicle is either in pre-launching (FP.FP0) or initial phases of the flight (FP.FP1 or FP.FP2), and the ProtectionSystem activates the destruction of the Vehicle (v_ps_actDest==1).


A[] not ((FP.FP0 or FP.FP1 or FP.FP2) and v_ps_actDest==1)


Description (Commission Fault): There is a commission fault, related to the violation of the MissionRequirement, when during the intermediate phases of the flight (FP.FP3 or FP.FP4), the flight trajectory of the Vehicle is not outside the safety plan (v_tr_outsideSP==0), but the ProtectionSystem activates the destruction (v_ps_actDest==1).


A[] not ((FP.FP3 or FP.FP4) and v_tr_outsideSP==0 and v_ps_actDest==1)


Description (Omission Fault): There is an omission fault, related to Hazard_B, when during the intermediate phases of the flight (FP.FP3 or FP.FP4), the flight trajectory of the Vehicle is outside the safety plan (v_tr_outsideSP==1), but the ProtectionSystem does not activate the destruction (v_ps_actDest==0).


E<> (((FP.FP3 or FP.FP4) and v_tr_outsideSP==1) imply v_ps_actDest==1)





Description (Commission Fault): There is a commission fault, related to Hazard_A, when the Vehicle is either in pre-launching (FP.FP0) or initial phases of the flight (FP.FP1 or FP.FP2), and the Vehicle is destroyed (v_destroyed==1).


A[] not ((FP.FP0 or FP.FP1 or FP.FP2) and v_destroyed==1)


Description (Commission Fault): There is a commission fault, related to the violation of the MissionRequirement, when during the intermediate phases of the flight (FP.FP3 or FP.FP4), the flight trajectory of the Vehicle is not outside the safety plan (v_outsideSP==0), and the Vehicle is destroyed (v_destroyed==1).


A[] not ((FP.FP3 or FP.FP4) and (v_outsideSP==0 and oc_sisgraf_operational==1) and v_destroyed==1)


Description (Omission Fault): There is an omission fault, related to Hazard_B, when during the intermediate phases of the flight (FP.FP3 or FP.FP4), the flight trajectory of the Vehicle is outside the safety plan (v_outsideSP==1), but the Vehicle is not destroyed (v_destroyed==0).


E<> (((FP.FP3 or FP.FP4) and v_outsideSP==1) imply v_destroyed==0)











� In this paper we are not concerned with the integrity of the actual vehicle.
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