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Abstract

Different tracing systems for Haskell give different views of a program at work. In
practice, several views are complementary and can productively be used together.
Until now each system has generated its own trace, containing only the information
needed for its particular view. Here we present the design of a trace that can serve
several views. The trace is generated and written to file as the computation pro-
ceeds. We have implemented both the generation of the trace and several different
viewers.

1 Introduction

Usually, a computation is treated as a black box that performs input and
output actions, but whose internal workings are invisible. As programmers,
however, we may want to look into the black box to understand how the
different parts of the program cause the computation to perform the observed
actions. Often the computation does not perform the intended actions and we
have to determine which parts of the program cause the erroneous behaviour.
Even if a program is correct, we may desire to understand its parts better by
seeing “how it works”; especially when we have to modify a program that we
did not write ourselves. Also for teaching it is sometimes useful to “see” a
computation.

In [2] we compared the Haskell tracing systems Freja 1 [5,6] and HOOD 2

[3] with our Haskell tracer Hat 3 [9,10,11]. The main conclusion of our com-
parison was that each system gives a unique view of a computation and these
views are usefully complementary. In experiments, we discovered that after
using one system to help track a bug to a certain point, users often wanted to
change to another system to continue the search, or to confirm their suspicions.

1 http://www.ida.liu.se/~henni
2 http://www.haskell.org/hood
3 http://www.cs.york.ac.uk/fp/hat
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All three tracing systems take a two-phase approach to tracing: during
the computation information describing the computation is collected in a data
structure, the trace. After termination of the computation the trace is viewed.
An advantage of a trace as a concrete data structure is that it liberates the
viewer from the time arrow of the computation. However, each system creates
its own trace, containing only the information required for its particular view.
We noted in [2] that Hat’s trace, called a Redex Trail, contains nearly all
the information contained in Freja’s trace. Hence we decided to extend the
Redex Trail structure to the Augmented Redex Trail structure (ART). With
separate tools we can view an ART trace in at least three different ways: à
la Freja, à la Hat and à la HOOD. Whereas Freja, HOOD and the old Hat
system generated their traces in main memory, the new Hat writes the ART
trace to file as computation proceeds. Hat’s new architecture has the following
advantages:

• As a stand-alone description of a computation, the ART trace serves as in-
terface between trace generation and trace viewing. The two phases become
completely separate.

• A trace in file supports sequential access and forms of indexed search that
were not feasible for heap-based traces.

• The ART trace clarifies the relationships between the different views of a
computation. It suggests ways for integrating different views and creating
new views.

• The size of the trace is no longer bound by the size of the main memory
but only by the far larger size of the file store.

• The trace is no longer transient but can be archived for later viewing.

• Trace system developers only need to implement trace generation once for
several views.

• The user only pays the cost of generating a trace once for several views.

In Section 2 we review the Redex Trail of the old Hat system, while Section
3 briefly illustrates some alternative tracing views. In Section 4 we develop
in several steps the new Augmented Redex Trail structure. In Section 5 we
describe how several tools for different views obtain their information from
the ART trace. In Section 6 we outline the generation of the ART trace. In
Section 7 we discuss ideas for future work. Section 8 concludes.

We have modified Hat to produce the ART trace and have implemented
new tools for viewing the trace in the style of Freja and HOOD. The system
has been publicly released as Hat 1.04.

2 The Redex Trail Model

Let us view a computation abstractly as a series of rewrite steps. Starting
from a single expression (main), at each step a reducible expression (redex)
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is replaced by another expression (its reduct), by instantiating the lhs of
an equation, and replacing it with the corresponding instance of the rhs.
Eventually, only irreducible expressions (values) remain.

The original Redex Trail structure is a directed graph, recording copies
of all values and redexes, with a backward link from each reduct (and each
proper subexpression contained within it) to the parent redex that created it.

2.1 Example

oneTrue :: [Bool ] → Bool

oneTrue [] = False

oneTrue (x : xs) = xor x (oneTrue xs)

xor :: Bool → Bool → Bool

xor x True = not x

xor False = True

main = print (oneTrue [False, not True])

Fig. 1. Example program

The small example program shown in Figure 1 produces the Redex Trail
illustrated in Figure 2. A subexpression with a different parent is represented
as a box within a box. A solid arrow denotes the parent relationship. Of
course, the user is not expected to see and understand a complete graph of
this nature. A tool called the Redex Trail viewer permits the whole graph
to be explored interactively one expression at a time, as illustrated in this
snapshot:

• True

not False

xor False True

• xor (not True) False

5 oneTrue []

5 oneTrue (not True : [])

oneTrue (False : not True : [])

main

Each redex is shown on a separate line. The parent of an expression is
shown below it. (Because parents are shown below their children in the viewer,
we have drawn the full graph in Figure 2 similarly.) The parent of a whole
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main

oneTrue [False, not True]

oneTrue [not True]

oneTrue []

xor (not True) False

xor False True

not False

True

Fig. 2. An example of a Redex Trail

redex starts in the same column, whereas the parent of a proper subexpression
is further indented. Underlining, and colouring if available, is used to show to
which subexpression a parent belongs.

2.2 Structure

Figure 3 formalises the Redex Trail structure as a set of concrete Haskell
types. An App node represents a redex in the obvious way, with a trace for the
function and separate traces for each argument. It also contains the parent

trace describing the redex that created it. Each function and argument is
likewise of Trace type and therefore has its own, possibly different, parent. The
SrcPos type records the location in the source code of the relevant application
site on the rhs of a definition.

A Const node represents an irreducible value (an Atom), such as an integer,
character, or a constructor or named function from the program, represented
simply as a string identifier. (In the latter case, a SrcPos is associated with
the identifier to record its static definition site.) A Const node also has a
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data Trace = App { fun :: Trace, args :: [Trace]
, parent :: Trace, src :: SrcPos }

| Const { value :: Atom
, parent :: Trace, src :: SrcPos }

| Root
data SrcPos = SrcPos { file :: FilePath

, line :: Int , column :: Int }
| NoPos

data Atom = Id String SrcPos | IntVal Int | CharVal Char | ...

Fig. 3. The original Redex Trail structure.

parent redex and a SrcPos to indicate its dynamic origin. For instance, two
uses of the function f in a computation may have different positions in the
source code, because they are introduced to the trace by rewriting different
redexes.

Finally, it is possible for a redex to have no parent, represented simply as
Root . This clearly occurs at the very start of the computation, namely for the
main function. It also applies in the case of other top-level pattern-bindings
(cafs).

3 Alternative Views

We would like to adapt the original Redex Trail structure to support additional
styles of viewing, such as Algorithmic Debugging and Observations. So what
do these views look like? And what information do they require from the
trace?

3.1 Algorithmic Debugging

Algorithmic Debugging is a well-known technique in declarative languages [8],
implemented for a subset of Haskell by the Freja system [5]. The algorithm
locates an error in a program, given a user who can provide answers to a
sequence of questions. Each question concerns a reduction of a redex to a
result, presented as an equation. The user should answer yes if the equation
is correct with respect to his intentions, and no otherwise. After some number
of questions, the system identifies an incorrect function definition.

Here is such a session for the example program of Figure 1. The symbol
‘ ’ represents an expression that has never been evaluated and whose value
hence cannot have influenced the computation.

1> oneTrue (False:_:[]) = True (Y/?/N): n

2> oneTrue (_:[]) = True (Y/?/N): n

3> oneTrue [] = False (Y/?/N): y

4> xor _ False = True (Y/?/N): n
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Error located!

Bug found in: xor _ False = True

Freja creates an Evaluation Dependency Tree (EDT) as its trace structure.
Figure 4 shows the EDT for this example. Each node of the tree is a reduction.
The tree is basically the derivation/proof tree for a call-by-value reduction with
miraculous stops where expressions are not needed for the result. The call-by-
value structure ensures that the tree structure reflects the program structure
and that arguments are maximally evaluated.

main ⇒ True

oneTrue [False, ] ⇒ True

oneTrue [ ] ⇒ True xor False True ⇒ True

oneTrue [] ⇒ True xor False ⇒ True not False ⇒ True

Fig. 4. An Evaluation Dependency Tree

The viewer dialogue walks the tree, presenting each node as a question –
some answers permit some branches of the tree to be ignored.

To allow algorithmic debugging starting from a Redex Trail rather than
an EDT, we need to add the ability to extract redexes from deep within the
Trail – for instance, the very first question is about the reduction of main,
which lies at the farthest tip of the Redex Trail graph. Furthermore, we need
to record dependency information in the opposite direction – the reduction of
an expression depended on what sub-reductions?

3.2 Observations

HOOD [3] allows observation of individual values within computations. The
programmer annotates the expression(s) of interest in the program source with
the combinator observe. For each annotation, HOOD records the value in
all of its intermediate stages of evaluation, so that after termination of the
computation the observed expression can be shown to exactly the degree to
which it was demanded.

By a few clever tricks, HOOD can record not only data values, but also
functional values, again only to the degree they are really used in the compu-
tation. Thus a functional value is recorded as a bag of actual argument/result
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data StoredEvent = Value { value :: String
, inside :: Ref , position :: Int }

| Constr { name :: String , arity :: Int
, inside :: Ref , position :: Int }

typeObservation = Ref → StoredEvent

dataObservedValue = Value { value :: String }
| Constr { name :: String

, arguments :: [ObservedValue] }

Fig. 5. The two HOOD observation structures. StoredEvents are recorded as a
simple sequence during the computation, but the viewer must later traverse the
StoredEvents to construct an ObservedValue that can be displayed.

mappings [4].

Here we illustrate the output when observing the functions oneTrue and
xor in our example program. The symbol ‘ ’ again represents an unevaluated
expression.

oneTrue (False:_:[]) = True

oneTrue (_:[]) = True

oneTrue [] = False

xor False True = True

xor _ False = True

The HOOD trace structure (sketched in Figure 5) is a sequence of individ-
ual ‘events’. Every event represents the creation of a data value or constructor
(in whnf) during the computation. It has a backwards link to identify the en-
closing data structure of which it is a component, and the particular argument
position it occupies. Each constructor also has a note of how many argument
‘holes’ it can accept. A functional value is treated like a data constructor with
two components, an argument and a result.

At viewing time, the HOOD viewer transforms the stored structure inter-
nally by constructing forward links from each constructor to the final value of
each of its components. This can be expensive for a large structure.

The most notable difference between these structures and the Redex Trail
is that HOOD stores only irreducible values, not reducible expressions. An-
other major difference is that HOOD records only individual annotated values,
not a full trace of the whole computation.

In another paper at this workshop Reinke describes a graphical viewer for
HOOD observations [7].
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4 The Augmented Redex Trail Structure

The EDT structure used in Freja’s algorithmic debugging is very similar to
a substructure of the Redex Trail, but with pointers reversed. Most of the
information in HOOD’s Observations can be derived from either an EDT or
a Redex Trail by searching through those structures for named values and
source positions. The Redex Trail lacks some small pieces of information that
would permit the reconstruction of an EDT by the reversal of pointers. This
same lack also prevents the reconstruction of Observations.

In this section we extend the original structure in stages to become the
Augmented Redex Trail, or ART structure. 4

4.1 Linearisation and Explicit Sharing

The original Redex Trail is an ephemeral heap-based structure, but we want
to store the trace in a file so it is persistent, does not depend on connecting a
viewer to a live program, and can be accessed many times by different tools.

The original Redex Trail type Trace (in Figure 3) is self-recursive, so to
place it in file requires the structure to be linearised. Linearisation gives two
benefits: we can write the trace into the file one node at a time; and we can
access a part of the trace piecemeal without necessarily following all possible
paths. In both cases, efficiency is important: when generating, sequential
writing is best; when viewing, the viewer tool should need to read only a
small fragment of the whole structure.

Another benefit of linearising the structure is that it makes sharing of
nodes explicit. In the original graph model, sharing and cycles are implicit
via the self-recursive type, but in the new model this information is revealed
directly to the viewing tool. There is a great deal of sharing in a trace of a
typical program.

data Expr = App { fun :: Ref , args :: [Ref ]
, parent :: Ref , src :: SrcPos }

| Const { value :: Atom
, parent :: Ref , src :: SrcPos }

| Root
type Trace = Ref → Expr

data Ref = NoRef | Ref FilePos deriving Eq

Fig. 6. The linearised Redex Trail structure.

Figure 6 shows how the trace structure changes to accommodate lineari-
sation. We rename the original Trace datatype to Expr , and all self-recursive

4 The concrete types presented in this section are a slightly abstracted view of the real
trace structures in our current implementation.
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uses of the type become explicit pointers Ref . The new Trace type defines a
unique mapping from Ref s to Exprs. The Root constructor is replaced by the
null reference NoRef . Every Expr node of the graph can be written to or read
from a file individually. A Ref can also be updated in-place (see Section 4.2).

The trace structure as a whole is a sequence of Expr nodes, and the eval-
uation order of the program is apparent from the implicit ordering of Expr
nodes in the file.

4.2 Redexes with Results

The original Redex Trail structure records all of the intermediate steps in a
reduction sequence, but the links are made only in one direction – backwards –
allowing exploration only from ‘effects’ to ‘causes’ in a viewer. However, both
Algorithmic Debugging and Observations present equations in their viewers,
and hence require a ‘forward’ link from every redex (lhs) to its reduct (rhs).

In Figure 7 we once again modify the concrete Haskell representation of
the trace structure, this time to incorporate the ‘forward’ or result links.

data Expr = App { fun :: Ref , args :: [Ref ]
, parent :: Ref , src :: SrcPos
, status :: Eval , result :: Ref }

| Const { value :: Atom
, parent :: Ref , src :: SrcPos
, status :: Eval , result :: Ref }

data Eval = Applied | Blackholed | Completed | Value

Fig. 7. The core of the Augmented Redex Trail structure.

Although it may appear that the parent and result pointers simply repre-
sent the same relation with directions reversed, this is not so. A redex has at
most one outgoing result arc – to the single expression it is rewritten to – but
it can have many incoming parent arcs, because it is the creator of all subex-
pressions within the reduct. Hence, a result arc represents equality whereas a
parent arc represents only inclusion.

A Const representing a basic value (e.g. integer/character) has a parent

but no result ; a Const which is an identifier (e.g. a top-level pattern-binding)
could have a result , but no parent ; often a Const identifier (e.g. local pattern-
bindings) has both a parent and a result .

4.3 Unevaluated Expressions

Together with the result pointer we introduced a status :: Eval field. Even
though an Expr is created, the expression it represents may never be evaluated.

159



Wallace, Chitil, Brehm and Runciman

This has consequences for how a viewer should interpret the result pointer. 5

Every Expr can potentially go through three possible states. Initially, it
is created by rewriting another expression according to some equation (its
status is Applied and its result pointer is undefined). At some later point in
the computation, the value of the expression may be demanded, or ‘entered’
(status now becomes Blackholed). At that point the result pointer is set to the
newly written Expr that represents the reduct. Later again, the expression
may become evaluated to a result expression (although this of course may
still contain unevaluated subexpressions). At this point, the lazy evaluation
mechanism does an ‘update’, overwriting the original expression with its result.
In the trace, however, we do not overwrite the Expr , but update only the
status to Completed (see §6.2). The final possible Eval status of Value is for
irreducible expressions: an Atom, or an App with a data constructor in the
function position. The result pointer for a Value is undefined.

4.4 Example

The augmented version of the Redex Trail graph from Figure 2 is shown in
Figure 8. The subexpression relationship is now shown as a pointer (solid line).
Parents are shown as dotted lines, and results as dashed lines. Expressions
are annotated with their status .

4.5 Entry Points to the Trace

Every ART viewing tool needs an entry point at which to begin its presentation
to the user. These entry points can be different for different tools.

The entry point for algorithmic debugging is the ‘beginning’ of the com-
putation, the evaluation of the main function. In every ART trace, the Expr
for main is the first Expr in the generated sequence.

The entry point for some other viewers is at the ‘end’ of computation, for
instance when reconstructing a virtual stack-trace from an error message, or
when exploring a Redex Trail backwards from the program output. This sug-
gests that both the program output and any error messages must be recorded
in the trace, since they are the ‘end-points’ of the program. Output and errors
are easily added to the ART structure as strings with parent pointers. The
output need not be monolithic; it can be spread across many strings; however
we do not discuss here the various possible ways to split the output, nor how
to store it in the file in a manner that permits quick access.

Other viewers may have variable entry points. For instance, a HOOD-style
observation may need a named function or source position, and retrieve the
relevant information by linear search through the trace.

5 The original Redex Trail structure had a kind of node (Sat) which incorporated aspects
of both the result pointer and the status marker, but these nodes were transient, removed
from the graph once an expression was evaluated. The Sat node did not permanently record
the full information required to forward-link every redex to its reduct.
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True V

not • A

False V

[] V

•:• V

•:• V

False VoneTrue • C

True Vxor • • ConeTrue • C

True Vnot • Cxor • • ConeTrue • Cmain C

Fig. 8. A Trace

4.6 Other Refinements – Lambda, Do, Case, If, Guard

Not all expressions in Haskell are either a simple value, an application of a
constructor to arguments, or an application of a named function to arguments.
We also have anonymous functions (lambda expressions), monadic bindings
(do statements), and various forms of conditional operations (ifs, cases, and
guards). For conditionals, it is important to record in the trace not merely the
final result, but how the decision was reached to take a particular branch. We
follow much the same treatment for these extra constructs as in the original
Redex Trail structure. For lambda expressions, we introduce a new kind of
Atom to represent any function without a name, and the various kinds of
conditional are handled by introducing new kinds of Exprs, each of which
differs only slightly from the standard App kind.

4.7 Projections

There are situations that are slightly tricky to record, due to interesting conse-
quences of the lazy evaluation model. One such is projections. In a definition
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like id x = x , the question is, who is the parent of x? In one sense, it is id ,
yet in another sense, id is merely passing on the value without touching it,
so x ’s parent is really whatever expression created it, not id . Once again, we
follow the original Redex Trail structure by introducing another special kind
of Expr , the Proj node, which can be thought of as attaching an additional
projective parent to the referenced redex.

4.8 Trusting

Finally, it is sometimes desirable not to record all reductions in the trace
structure – we trust some function definitions, such as those in the Standard
Prelude [10]. There are two main reasons for trusting. The first reason is to
improve performance. Trace files are very large and quite slow to write. If we
know that certain parts of the trace are not of interest, it makes sense to omit
them. The second reason is to reduce the amount of information presented to
the user of a trace-viewing tool. 6 Traces contain a huge amount of data, so
a trace that appears too complex can actually hide the information the user
wants. We do not elaborate the details of the trusting mechanism here.

5 Multiple Views from a Single Trace

Having outlined a unifying trace structure, we must now demonstrate that it
can satisfy the needs of the Redex Trail, EDT, and Observation views. We
have built three separate viewers which mimic the user interface behaviour of
the three previous systems (Freja, HOOD, and the old Hat). In this section,
we describe how the required information is reconstructed from the new ART
trace.

5.1 A Redex Trail View: hat-trail

The original Redex Trail structure can be recovered by following mainly parent
pointers. The result pointer chain is used to show a subexpression in its most
evaluated form. The original Hat browser has been adapted to use the new
ART trace, and is now called hat-trail. The viewer starts with program
output or an error message, and enables the user to interactively explore a
computation backwards from effect to cause by revealing the parent (origin)
of any selected subexpression.

5.2 A Static Call Stack: hat-stack

One special-case use of the parent pointers is to show a static call-stack back-
trace from any error message. This does not represent the real lazy evaluation
stack — often sadly incomprehensible. Instead the backtrace gives the virtual

6 It would of course be possible to implement a trusting mechanism in the viewing tool
itself, rather than omitting the data from the trace altogether.
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stack showing how an eager evaluation model would have arrived at the same
result. In our system, this tool is hat-stack.

5.3 Algorithmic Debugging: hat-detect

The tool hat-detect provides Algorithmic Debugging, by extracting a virtual
EDT ‘by need’ from the ART trace structure. 7 It can be seen from Figure 4
that we need three kinds of information from the trace: first, the EDT’s root
node; second, an EDT node’s label, where a label is an equation containing
an application and its result; and third, the children of an EDT node.

The root node of the EDT is always the main caf, found at the beginning
of the trace file.

Each EDT label is an equation: the lhs is an application or caf itself, and
the rhs is its result in its most fully evaluated form. When an App or Const
has a status of Completed , we can follow the result pointer to determine the
eventual value. The immediately referenced node might in turn be Completed ,
so the result chain must be followed iteratively until we find a node with
an Applied , Blackholed or Value status. An Applied node was unevaluated,
therefore it cannot have influenced the execution. It is presented to the user
as a ‘ ’ symbol. A status of Blackholed is similarly displayed as ⊥. Only a
Value status represents a genuine result, either a simple value or a complex
structure, and can be printed as a normal expression.

To determine the children of an EDT node, we must find all fully-evaluated
applications on which the evaluation of the current node depended. The first
child of a EDT node p, may be found by following p’s ART result pointer, but
the referenced node q is a child only if its status is Completed or Blackholed .
(Only with one of these status annotations does the node describe an appli-
cation or caf whose result was actually demanded.) Further children can be
found if q is Completed , Blackholed or a Value. In these cases the argument
pointers of q are considered. If an argument’s ART parent is also p, provided
the argument itself is Completed or Blackholed , it is also a child of p. More
children can be found recursively by the same method.

In this way, all the information necessary to define a computation’s EDT
can be retrieved from an ART trace file.

Only applications of top-level identifiers are considered by hat-detect. A
locally defined function may depend on the values of free variables bound in an
enclosing scope. To decide whether an application appears to be correct, the
programmer needs to know the values of the free variables, yet the ART trace
does not record any direct link to these variables. Program errors found by
our tool therefore always refer to the top-level function; computation within
local definitions is attributed upwards to its enclosing top-level definition.

7 Although we describe the reconstruction of an EDT as if performed in one pass, the
implementation need never build the whole structure - it can be constructed and traversed
piecemeal.
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The dialogue presented by hat-detect is straightforward to arrange, fol-
lowing the standard debugging algorithm. It starts at the root of the EDT,
the main caf. If the programmer answers that a node label is erroneous, he is
asked about the correctness of its children, but children of nodes identified as
correct need not be considered. An erroneous node with only correct children,
or no children at all, is the location of the bug.

5.4 Observation of Functions: hat-observe

Our tool hat-observe displays all function applications of a given identifier
within a computation. Unlike HOOD, no annotations are needed in the pro-
gram’s source code. As the observed identifier is chosen independently of the
program run, it is easy to make a number of successive observations without
modifying or rerunning the computation.

The tool observes a function by searching sequentially through the trace
file. First, the identifier itself is found as a Const node containing an Id atom
with the name. (See structures in Figures 7 and 3). Then every application
node is checked for a reference to the given Const in the function position.

To deal with partial applications we must search the ART trace not only
for references to the original Const node, but for references to any application
which in turn references the Const , and so on recursively. If the function
involved in an application is a reducible expression (with a function as result)
we must follow this expression’s forward result link, to see whether it is the
desired function, or a partial application of it. The cost of such searching from
application nodes to determine the associated function turns out to be low,
as the relevant expressions are usually found close to the original application
node. In particular, an additional file access is very rarely needed, as these
expressions are usually within the file’s buffer. Linearisation ensures that the
function reference in an application node can only refer to an earlier node in
the trace 8 , so a single linear scan through the trace is sufficient to collect all
applications of a specified function.

Not all applications or cafs have results – they may be unevaluated, or
an application may be partial – but where a result is available, the rhs of the
equation can be determined as described in Section 5.3. All applications or
cafs with results are displayed as a list of equations.

To avoid redundant output, equivalent or less general applications of the
identifier can be omitted in the display. One application of an identifier is
considered more general than another if all its arguments are less defined (due
to lazy evaluation). To avoid problems with local functions capturing free
variables, as described in Section 5.3, we again only permit observations of
top-level functions.

Our tool shows all applications of the function throughout the program,
whereas HOOD observes a specific function application at one point in the

8 All Ref s in the ART structure, apart from the result , refer to earlier nodes.
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source code. However, because the source code position is recorded in the
ART trace, an equivalent feature could be achieved by a different interface,
perhaps a source code browser allowing the user to select expressions to be
observed.

6 Trace Generation

The developers of Freja, Hat and HOOD made different choices about the
architectural level at which they implemented the creation of the trace. For
instance, in HOOD the trace is created by the combinator observe defined
in a high-level Haskell library, which uses side-effecting I/O to record the
information. In Freja the trace is created in the heap by low-level variants of
the graph reduction machine instructions [5].

To generate the new ART trace [11] we took the old Redex Trail ap-
proach, but adapted to write traces to file instead of constructing them in
heap memory. First, the original program is transformed into a new pro-
gram that computes its trace in addition to its normal result. Second, the
transformed program is compiled. Third, the compiled program is run. The
computation writes a trace to file in addition to any normal I/O of the original
program. Fourth, the trace is viewed.

Currently the program transformation is performed by an early phase of
the Haskell compiler nhc98. However, we intend to separate the transforma-
tion from the compiler, so that the transformed program can be compiled with
all Haskell compilers. The Augmented Redex Trail approach is then poten-
tially as portable as the HOOD implementation, in contrast to Freja. The
principle of using an automatic source-to-source transformation, coupled with
a library of combinators written in standard Haskell, permits the possibility
of using any Haskell compiler system to generate an ART trace.

6.1 The Program Transformation

The transformation wraps every expression of the original program into the
R data type, which is defined as follows:

data R α = R α Ref

The Ref is a reference to an Expr node of the trace in file. The pairing
assures that an expression and its description “travel together” throughout
the computation, so that when expressions are plumbed together by applica-
tion, the corresponding descriptions in the trace can be plumbed together by
creating an App node at the same time. Trace nodes are written to file by
side-effects which are triggered when certain expressions are evaluated. All
the plumbing and writing of trace nodes is performed by combinators which
are defined in a library.
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The program transformation introduces numerous calls of the combina-
tors into the program. For example, here is the original oneTrue definition,
together with its transformed version.

oneTrue :: [Bool ] → Bool

oneTrue [] = False

oneTrue (x : xs) = xor x (oneTrue xs)

oneTrue :: SrcPos → Ref → R (Ref → (R [Bool ]) → R Bool)
oneTrue sr p = fun1 (mkAtomId “oneTrue” 7) oneTrueW sr p

where

oneTrueW :: Ref → R [Bool ] → R Bool

oneTrueW p ′ (R [] ) =

con0 (mkSrcPos 2) p ′ False (mkAtomId “False” 6)
oneTrueW p ′ (R (x : xs) ) =

rap2 (mkSrcPos 3) p ′ (xor (mkSrcPos 3) p ′) x

(ap1 (mkSrcPos 4) p ′ (oneTrue (mkSrcPos 4) p ′) xs)

In this example the combinators fun1, con0, ap1, rap2, mkAtomId , and
mkSrcPos are used. The combinator fun1 wraps the function oneTrueW ,
which does the actual work, with R constructors. The combinator con0 wraps
the constructor False. The combinators ap1 and rap2 assure the correct
plumbing of applications. The combinators mkAtomId and mkSrcPos build
references to detailed information about the identifier oneTrue, the construc-
tor False and various source references. Numeric arguments are indexes to
tables that contain the detailed information.

Very similar combinators were used in the old Hat system. The most
important difference is that the new Hat combinators now record the trace
nodes directly to file.

6.2 Writing with Updating

The main technical obstacle is that the trace is a (usually cyclic) graph which
is continuously modified during generation. These modifications were no prob-
lem in main memory but for efficient writing to file updates have to be min-
imised.

We assume that writing nodes to file has much better performance if it can
be achieved sequentially. However, even a cursory examination of the ART
structure tells us that after writing an Expr node to file, it is highly likely
that we will need to return to it to update the result pointer. Although some
expressions remain completely unevaluated throughout the computation, the
vast majority of intermediate expressions are indeed entered and evaluated to
their reduct.
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What is more, in our scheme there are two possible updates for each Expr ,
one on entering the expression (Applied → Blackholed), and another on its
completion (Blackholed → Completed).

However, we observe that a Blackholed expression is almost always tran-
sient. The only situation in which such an annotation can remain in the final
trace is when the program’s overall result is undefined, such as an error or
interruption. We also observe that the order in which trace expressions are
entered and then completed follows a strict stack discipline, mirroring the
evaluation stack of the underlying abstract machine. Hence, we do not up-
date Applied to Blackholed on entry, but only write the remaining stack of
‘blackholes’ at the end of the computation should it fail.

We also try to avoid interspersing the final update of each Expr with the
sequential generation of nodes. This is easily achieved by storing a large queue
of updates that are performed all at once.

7 Future Work

The practical questions that interest most people are about time and space.
How large is the trace? And how long does it take to produce, relative to the
original computation?

An ART trace is undoubtedly big, to be measured in megabytes for a com-
putation of any significant size. We estimate about 40–50 bytes are required
per reduction. The largest trace we have yet generated is 240Mb in size, for a
computation of around 6 million reductions (a chess end-game solver). Traced
computations also take about 50 times longer than normal computations.

If Hat is to be used for substantial computations, we have to reduce the
slow-down factor for traced computations. The fact that only 10% of traced
computation time is spent on actually writing to file demonstrates that the
implementation of trace generation can be improved. Since the computation
of a transformed program spends most of its time evaluating the combinators,
efficient definitions of the combinators are vital. We will also separate the
program transformation from nhc98, so that a transformed program can be
compiled by an optimising Haskell compiler such as ghc. Not only would this
improve absolute runtimes, but aggressive optimisation may also reduce the
relative slow-down. Furthermore, the computation of trusted function defini-
tions is not yet much faster than that of untrusted definitions. We intend to
investigate how transformed modules can be combined with trusted untrans-

formed modules. Such a scheme, not requiring access to the sources of trusted
modules, would also aid portability.

Other issues we want to address include:

• Currently I/O actions are traced in a rather ad hoc way that works well
only with some views for simple I/O only. We aim to develop a general
method for tracing I/O actions.
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• We want to solve the problem that none of the views copes well with pro-
grams that make substantial use of higher-order combinators, for example
in monadic or continuation-passing style.

• We plan to extend hat-observe to observe values at any program point.
We could also add information about free variables to expressions in the
trace, so that hat-detect and hat-observe can show a fuller trace of local
computation. It may even be desirable to switch levels of detail within a
view.

• There is scope for new viewing tools. For instance, the evaluation order of
the computation is stored implicitly in the sequence in which Expr nodes
are written to file. Hence, the computation, or selected parts of it, could be
shown as an “animation”, perhaps in the style of GHood 9 . We could also
offer a “stories” view in the style outlined in [1]. A more specialised tool
could isolate the circular self-dependency that evokes a “blackhole” error.

• We have begun to integrate hat-detect and hat-observe into a single
tool. Eventually we hope for a full integration allowing the programmer to
switch between views at any point during the exploration of a computation.

• How can we evaluate the useability of Hat in practice and gain information
to improve it?

More generally, we intend to study the properties of the ART trace fur-
ther. Is the trace complete with respect to information, such as recorded re-
ductions, intermediate unevaluated expressions and values, and with respect
to distinctions and relationships, such as sharing and evaluation order? How
conveniently and efficiently can one access the trace to obtain a specific snip-
pet of information? Can we claim some sort of “universality” for the trace
structure, in terms of the range of queries it can support? How are all these
properties affected by trusting? Does the exclusion of trusted redexes from the
trace compromise the reachability of individual trace nodes from designated
entry points?

There should be a close relationship between tracing and operational se-
mantics, both of which aim to describe the relationship between a program and
the observed actions of a computation of the program. We have begun work to
define the ART trace and specific views through conservative extensions of an
operational semantics of a program. Different kinds of formal semantics may
suggest new views for tracing. For instance, the evaluation dependency tree of
algorithmic debugging is closely related to a big-step structured operational
semantics; the Redex Trail view was inspired by graph-rewriting machines;
the observation of values recalls denotational semantics, especially the view of
functional values as (finite) mappings (‘minimal function graphs’ [4]).

In principle, a semantics defines all the answers a tracer could give for
the computation of a particular program with particular input. A tracer

9 http://www.cs.ukc.ac.uk/people/staff/cr3/toolbox/haskell/GHood/
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makes this information available. A tracer avoids providing its own semantics
but hooks on to a compiler instead. A program transformation provides this
“hook” in a portable way. Even more important than the information in a
trace is its accessibility.

8 Conclusions

We have presented the new modular architecture of our Haskell tracer Hat.
At its heart lies the new Augmented Redex Trail trace structure, designed on
the one hand to be written to file while performing the traced computation,
and on the other hand to provide data sufficient for multiple views.

As an immediate result, we have widened the applicability of the new Hat
considerably. Initial experiences confirm the usefulness of generating a trace
only once and viewing it in several different ways.

The new modularity improves the understanding of the tracing process.
The new architecture has also prompted us to ask some more general questions,
such as those in the Future Work section.
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