
FUNCTIONAL PEARL

Pretty Printing with Lazy Dequeues

Olaf Chitil

University of York, UK

Abstract

There are several Haskell libraries for converting tree structured data into indented
text, but they all make use of some backtracking. Over twenty years ago Oppen
published a more efficient imperative implementation of a pretty printer without
backtracking. We show that the same efficiency is also obtainable without destruc-
tive updates by developing a similar but purely functional Haskell implementation
with the same complexity bounds. At its heart lie two lazy double ended queues.

1 Pretty Printing

Pretty printing is the task of converting tree structured data into text, such
that the indentation of lines reflects the tree structure. Furthermore, to min-
imise the number of lines of the text, substructures are put on a single line
as far as possible within a given line-width limit. Here is the result of pretty
printing an expression within a width of 35 characters:

if True

then if True then True else True

else

if False

then False

else False

John Hughes [2], Simon Peyton Jones [3], Phil Wadler [7], and Pablo
Azero and Doaitse Swierstra [1] have all developed pretty printing libraries
for Haskell. A pretty printing library implements the functionality common
to a large class of pretty printers. The layout of a subtree does not only de-
pend on its form but also on its context, the remaining tree. A pretty printing
library provides functions for compositionally defining a transformation of a
tree data structure to an abstract document. Finally, such a library has one
function to transform a document into the desired text. For example, Wadler’s
library [7] provides the following functions:

183

Chitil

text :: String -> Doc

line :: Doc

(<>) :: Doc -> Doc -> Doc

nest :: Int -> Doc -> Doc

group :: Doc -> Doc

pretty :: Int -> Doc -> String

The function text converts a string to an atomic document, the document
line denotes a (potential) line break, and <> concatenates two documents.
The function nest increases the indentation for all line breaks within its doc-
ument argument. The function group marks the document as a unit to be
printed on a single line by converting all its line breaks into single spaces,
if this is possible without exceeding the line-width limit. Hence a document
describes a set of texts with the same content but different layouts. Finally,
the function pretty yields the text with the minimal number of lines that
does not exceed the given line-width limit.

To obtain the pretty printed expression shown at the beginning of the
paper, we only have to compositionally define a function that transforms an
abstract expression into a document:

data Exp = ETrue | EFalse | If Exp Exp Exp

toDoc :: Exp -> Doc

toDoc ETrue = text "True"

toDoc EFalse = text "False"

toDoc (If e1 e2 e3) =

group (nest 3 (

group (nest 3 (text "if" <> line <> toDoc e1)) <> line

group (nest 3 (text "then" <> line <> toDoc e2)) <> line

group (nest 3 (text "else" <> line <> toDoc e3))))

All previous implementations of Haskell pretty printing libraries use back-
tracking to determine the optimal layout. They limit backtracking to achieve
reasonable efficiency, but their time complexity is not just linear in the size
of the input. However, back in 1980 Dereck Oppen published an imperative
algorithm for a pretty printer with linear time complexity [6]. At the heart
of his algorithm lies an array that is updated in a complex pattern. Are de-
structive updates necessary to achieve efficiency? No, but the proof is not
straightforward. We develop here, starting with a simple but inefficient im-
plementation, step by step, guided by Oppen’s algorithm, a similar but purely
functional implementation in Haskell.

We implement Wadler’s pretty printing interface. The interfaces of Hughes’
and Peyton Jones’ libraries are more complex, but extending our implemen-
tation to support them seems straightforward. 1 Supporting the interface of

1 Hughes’ and Peyton Jones’ implementations do not always yield the optimal layout with
respect to Hughes’ semantics. The layouts that the implementations can produce seem

184

Chitil

pretty width d = fst (inter False width d)

where

inter :: Bool -- in fitting group

-> Int -- remaining space on current line

-> Doc -- input document

-> (String -- formatted output

,Int) -- remaining space on last line

inter f r (Group d) = inter (f || fits d r) r d

inter f r (Text z) = (z,r - length s)

inter f r (d1 :<> d2) = (s1 ++ s2,r2)

where

(s1,r1) = inter f r d1

(s2,r2) = inter f r1 d2

inter True r Line = (" ",r-1)

inter False r Line = ("\n",width)

Fig. 1. Recursive Implementation using fits

Azero’s and Swierstra’s library is impossible, because it is considerably more
expressive than the others.

2 Recursive Implementations

We can define a document simply as an algebraic data type with a constructor
for each function that yields a document:

data Doc = Text String

| Line

| Doc :<> Doc

| Group Doc

text = Text

line = Line

(<>) = (:<>)

group = Group

For simplicity we ignore the function nest for the moment. We will see in
Section 6 how it can easily be added to the final implementation 2 .

We define the function pretty as an interpreter of documents that imple-
ments the whole functionality. The only slightly difficult case is the formatting
of a group. We take Oppen’s approach: a group is formatted in a single line if
and only if it fits on the remaining space of the line. Previous Haskell libraries

to coincide with those of Wadler’s library, except for a difference in nesting discussed in
Section 6.
2 Therefore it is fortunate that separate functions nest and group exist, although for most
applications a single function combining the two is useful.

185

Chitil

take a slightly different approach which we discuss in Section 5.

The implementation is given in Figure 1. The function inter has to pass
some state information: first, if the interpreter is within a group that fits in
the remaining space on the current line; second, the size of the remaining
space on the current line.

For a Group document the interpreter has to determine if the group fits.
It obviously fits if the group is within another group that fits. Otherwise, a
function fits is used to determine if the document d fits within the remaining
space r.

A näıve implementation of fits evaluates the width of the document d

(with a Line equal to a single space) and compares the result with the re-
maining space r.

fits :: Doc -> Int -> Bool

fits d r = width d <= r

width :: Doc -> Int

width (Group d) = width d

width Line = 1

width (Text z) = length z

width (d1 :<> d2) = width d1 + width d2

Unfortunately, the additional traversals of the sub-documents to determine
their widths cause the function pretty to require exponential time for for-
matting some documents with nested groups.

The implementation is more efficient if fits traverses the document d at
most up to the width r. When that point is reached, it is clear that the
document does not fit.

fits :: Doc -> Int -> Bool

fits d r = isJust (remaining d r)

where

remaining :: Doc -> Int -> Maybe Int

remaining (Group d) r = remaining d r

remaining Line r = r ‘natMinus‘ 1

remaining (Text z) r = r ‘natMinus‘ length z

remaining (d1 :<> d2) r = do

r1 <- remaining d1 r

remaining d2 r1

natMinus :: Int -> Int -> Maybe Int

natMinus n1 n2 = if n1 >=n2 then Just (n1-n2) else Nothing

This pruning method is similar to Wadler’s method of pruning backtrack-
ing and hence we obtain the same time complexity: In the worst case it is
O(n · w), where n is the size of the input and w the line-width limit. This
pruning method has, however, a major drawback. We want to obtain O(n)

186

Chitil

pretty width d = fst3 (inter False width 0 d)

where

inter :: Bool -- in fitting group

-> Int -- remaining space on current line

-> Int -- absolute start position

-> Doc

-> (String

,Int -- remaining space on last line

,Int) -- next absolute start position

inter f r p (Group d) = (s,r’,p’)

where

(s,r’,p’) = inter (f || p’-p <= r) r p d

inter f r p (Text z) = (z,r-l,p+l)

where

l = length z

inter f r p (d1 :<> d2) = (s1 ++ s2,r2,p2)

where

(s1,r1,p1) = inter f r p d1

(s2,r2,p2) = inter f r1 p1 d2

inter f r p Line = (o,r’,p+1)

where

(o,r’) = if f then (" ",r-1) else ("\n",width)

fst3 :: (a,b,c) -> a

fst3 (x,_,_) = x

Fig. 2. Recursive Implementation that Returns the Next Start Position

time complexity, independent of w, but a further optimisation is not in sight.
The optimisation leads into a cul-de-sac.

On the other hand, we can obtain a linear implementation 3 from the
näıve definition by applying the tupling transformation: instead of a separate
function that traverses a document to determine its width, the interpreter
inter can determine the width in addition to its other tasks.

Because groups can be nested, it is not obvious how inter should be
defined to return the width of its input document. The solution is to introduce
an absolute measure of a document’s position. The absolute position gives
the column in which the document would start, if the whole document that is
passed to pretty was formatted on a single line. The function inter receives
the start position as argument and returns the next start position which is

3 The use of (++) for formatting a document d1 :<> d2 actually leads to quadratic time
complexity. However, we can use the same optimisation as is used in the Haskell class Show
to assemble the result string in linear time: inter has to return a value of type String ->
String instead of just a String and list concatenation becomes function composition. We
do not apply this optimisation here to not to distract from the main issues.

187

Chitil

free after its input document. The difference between the two positions is the
width of the input document.

Figure 3 shows the new implementation. It takes advantage of the lazy
evaluation of the recursive call of inter: the result position p’ is passed as part
of the first argument. The implementation has linear time complexity, because
a computation spends only constant time on each document constructor.

3 Iterative Implementations

Unfortunately our current implementation has a major drawback: only after
the full traversal of a group it is known if the group fits on the remaining line.
Hence a computation produces most of the output string for a group only after
it has traversed the whole group. The time delay may not be a problem in
practice, but the delayed computation of the output uses memory space linear
in the size of the group. We would like our pretty printer to use only a small
amount of space which is independent of the formatted document. Because
the document will usually be constructed lazily or even be read sequentially
from a file, pretty printing a document element should also only require a
limited look-ahead into the remaining document.

The recursive implementation with pruning has the desired space behaviour,
but it is not obvious how it can be married with the time efficient tuppled
implementation. The problem is that pruning at a certain width and the tree
structured recursion of inter do not fit together. Hence we move from tree
structured recursion to sequential iteration. Following Oppen we represent
the document as a list of tokens:

type Doc = [Token]

data Token = Text String | Line | Open | Close

A group is represented as the sequence of an Open token, the sequence
of the grouped document and a final Close token. Translation from the old
document data type to the new one is straightforward. Alternatively, an
efficient direct construction can be defined in continuation-passing style. We
assume in the following that documents are well-formed, that is, the Open and
Close tokens are well-bracketed.

We redefine the tuppled implementation for the token sequence. Because
we no longer use recursion that follows the structure of the document, we have
to make the nesting structure of the groups explicit by using stacks. For every
group the interpreter has to determine the next absolute start position. Hence
it has to return a stack of positions — represented by a list. At the end of a
group the interpreter needs to know if there is a surrounding fitting group. For
this purpose we could pass a stack of booleans, but a natural number which
states how deep the interpreter is in fitting groups is simpler. The interpreter
no longer needs to return the size of the space that remains on the last line,

188

Chitil

pretty width d = fst (inter 0 width 0 d)

where

inter :: Int -- depth of fitting groups

-> Int -- remaining space on current line

-> Int -- absolute start position

-> [Token]

-> (String

,[Int]) -- next absolute start positions

inter f r p (Open:ts) = (s,es’)

where

e’:es’ = es

(s,es) = inter (if f>0 then succ f

else (if (e’-p)<=r then 1 else 0))

r p ts

inter f r p (Close:ts) = (s,p:es)

where

(s,es) = inter (pred f) r p ts

inter f r p (Text z : ts) = (z ++ s,es)

where

(s,es) = inter f (r-l) (p+l) ts

l = length z

inter f r p (Line:ts) = (o:s,es)

where

(o,r’) = if f>0 then (’ ’,r-1) else (’\n’,width)

(s,es) = inter f r’ (p+1) ts

inter f r p [] = ("",[])

Fig. 3. Iterative Implementation that Returns Next Start Positions

because the document constructor (:<>) has vanished. Figure 3 shows the
implementation.

To see how the implementation works, consider a simple example. The
following table shows the values of most variables for each iteration step. The
document is given in the top row. We assume that the strings of the Text

tokens have length 1. The line-width limit is 3. The arrows indicate in which
directions values are passed. The inner group fits on a single line whereas the
outer one does not.

Open Text Line Open Text Line Text Close Close

f 0 → 0 → 0 → 0 → 1 → 1 → 1 → 1 → 0 → 0

r 3 → 3 → 2 → 3 → 3 → 2 → 1 → 0 → 0 → 0

p 0 → 0 → 1 → 2 → 2 → 3 → 4 → 5 → 5 → 5

es [] ← [5] ← [5] ← [5] ← [5,5] ← [5,5] ← [5,5] ← [5,5] ← [5] ← []

189

Chitil

Laziness leads to a kind of co-routine computation. The applications of
inter to Close tokens can be identified with a front process and the other
applications of inter, especially to Open tokens, as a back process. The front
process determines the position of each Close token and passes this infor-
mation in the variable es backwards to the back process. The back process
determines the position of each Open token and the remaining space on the
line. Together with the end position obtained from the front process it can
determine if the group still fits. Despite this image, however, there is no sim-
ple implementation of the interpreter through two real processes, because the
communication channel between them is a stack.

This iterative implementation has the same time and space behaviour as
our last recursive implementation. 4 However, in the example we can already
see that the outer group does not fit, when we reach the absolute position 4
(p = 4). The group does not fit, because it starts at position 0 and the line
space remaining for it is 3 (the values of p and r at the first Open token).
Unfortunately, the interpreter does not know these values 0 and 3 when it
reaches position 4.

Therefore we introduce an additional argument that is passed from left
to right: a stack which holds for each Open token of a group the sum of the
absolute position and the space remaining on the line; we call this sum the
group’s maximal end position. We also simplify the resulting stack of end
positions to a stack of booleans instead. At a Close token we just have to
take the top position from the maximal end positions stack, compare it with
the current position, and push the result on the stack of booleans which we
return. Figure 4 shows the modified implementation and the following table
shows the values of the new variables for our example document.

Open Text Line Open Text Line Text Close Close

f 0 → 0 → 0 → 0 → 1 → 1 → 1 → 1 → 0 → 0

r 3 → 3 → 2 → 3 → 3 → 2 → 1 → 0 → 0 → 0

p 0 → 0 → 1 → 2 → 2 → 3 → 4 → 5 → 5 → 5

ps [] → [3] → [3] → [3] → [5,3] → [5,3] → [5,3] → [5,3] → [3] → []

fs [] ← [F] ← [F] ← [F] ← [T,F] ← [T,F] ← [T,F] ← [T,F] ← [F] ← []

Now for the optimisation. At position 4 the information for determining
that the outer group does not fit is now available. The bottom of the stack
ps contains the maximal end position of the outermost group. Because it is
3, smaller than the current position, the outermost group cannot fit. Hence

4 In contrast to the recursive implementation the use of (++) does not lead to quadratic
time complexity here, because the first argument of (++) is not constructed by a recursive
call of inter. No optimisation of list concatenation is necessary. Compare for Footnote 3.

190

Chitil

pretty :: Int -> Doc -> String

pretty width d = fst (inter 0 width 0 [] d)

where

inter :: Int -- depth of fitting groups

-> Int -- remaining space on current line

-> Int -- absolute start position

-> [Int] -- maximal end positions

-> [Token]

-> (String

,[Bool]) -- fitting infos

inter f r p ps (Open:ts) = (s,fs’)

where

f’:fs’ = fs

(s,fs) = inter (if f>0 then succ f

else (if f’ then 1 else 0))

r p (r+p:ps) ts

inter f r p ps (Close:ts) = (s,(p<=p’):fs)

where

p’:ps’ = ps

(s,fs) = inter (pred f) r p ps’ ts

inter f r p ps (Text z : ts) = (z ++ s,fs)

where

(s,fs) = inter f (r-l) (p+l) ps ts

l = length z

inter f r p ps (Line:ts) = (o:s,fs)

where

(o,r’) = if f>0 then (’ ’,r-1) else (’\n’,width)

(s,fs) = inter f r’ (p+1) ps ts

inter f r p [] [] = ("",[])

Fig. 4. Iterative Implementation that Returns Fitting Information in a Stack

at this point we can already remove the end position from the bottom of the
“stack” ps and add False (F) to the bottom of the boolean “stack” fs:

Open Text Line Open Text Line Text CloseClose

f 0 → 0 → 0 → 0 → 1 → 1 → 1 → 1 → 0 → 0

r 3 → 3 → 2 → 3 → 3 → 2 → 1 → 0 → 0 → 0

p 0 → 0 → 1 → 2 → 2 → 3 → 4 → 5 → 5 → 5

ps [] → [3] → [3] → [3] → [5,3] → [5,3] → [5] → [5] → [] → []

fs [] ← [F] ← [F] ← [F] ← [T,F] ← [T,F] ← [T] ← [T] ← [] ← []

191

Chitil

4 Lazy Dequeues

Obviously we no longer simply use ps and fs as stacks but as double ended
queues. Fortunately we find in Okasaki’s book [4] the Haskell implementa-
tion of the banker’s dequeue. If used in a single threaded manner as here,
each operation runs in O(1) amortized time. Hence our optimised iterative
implementation still has linear time complexity.

There is a problem left: the intention of our optimisation is to enable the
interpreter to determine with a limited look-ahead if a group fits. By looking
at the bottom of the end positions dequeue, the decision can be made with
a look-ahead of at most the line-width limit. However, the interpreter adds
this information to the bottom of the dequeue fs and removes it from the
top of the dequeue fs at the Open token. To avoid further look-ahead these
operations must work without fully evaluating the dequeue fs. That means
in the example that the interpreter must be able to add and remove False

(F) without ever “touching” the True (T).

We can add and remove elements from a list without “touching” the re-
maining list, but can we do the same for dequeues? Yes, within the special
context of our pretty printer we can.

The two dequeues ps and fs are accessed in perfect synchrony: Each time
an operation is performed on one dequeue, exactly the inverse operation is
performed on the other dequeue. Hence we combine the operations on the
two dequeues. So

cons :: a -> Q1 a -> Q2 b -> (Q1 a, b, Q2 b)

adds an element to the front of the first dequeue and splits the second dequeue
into its front element and the tail dequeue;

rview :: Q1 a -> Q2 b -> b -> (Q1 a, a, Q2 b)

splits the first dequeue into an initial dequeue and a rear element and adds
an element to the rear of the second dequeue;

lview :: Q1 a -> b -> Q2 b -> (a, Q1 a, Q2 b)

splits the first dequeue into its front element and its tail dequeue and adds an
element to the front of the second dequeue.

The dequeue ps is passed from left to right and the dequeue fs is passed
from right to left. Furthermore, both dequeues are empty at the beginning and
at the end of interpreting the token sequence. Hence the internal structures of
the two dequeues are the same at each interpretation step. So we can use the
knowledge about the internal structure of ps, which may be fully evaluated,
to apply an operation to fs without evaluating any part of fs.

Because we use the structure of fs to manipulate ps, the operations cons
and lview are not identical up to swapping of arguments and result elements
but have different strictness properties. We define separate types for the two
dequeues to stress the asymmetry and enable a minor optimisation.

192

Chitil

pretty width d = fst (inter 0 width 0 empty1 d)

where

inter :: Int -- depth of fitting groups

-> Int -- remaining space on current line

-> Int -- absolute start position

-> Q1 Int -- maximal end positions

-> [Token]

-> (String

,Q2 Bool) -- fitting infos

inter f r p ps (Open:ts) = (s,fs’)

where

(ps’,f’,fs’) = cons (r+p) ps fs

(s,fs) = inter (if f>0 then succ f

else (if f’ then 1 else 0))

r p ps’ ts

inter f r p ps (Close:ts)

| isEmpty1 ps = inter (pred f) r p ps ts

| otherwise = (s,fs’)

where

(_,ps’,fs’) = lview ps True fs

(s,fs) = inter (pred f) r p ps’ ts

inter f r p ps (Text z : ts) = (z ++ s,fs)

where

(s,fs) = prune f (r-l) (p+l) ps ts

l = length z

inter f r p ps (Line : ts) = (o : s,fs)

where

(o,r’) = if f>0 then (’ ’,r-1) else (’\n’,width)

(s,fs) = prune f r’ (p+1) ps ts

inter _ _ _ _ [] = ("",empty2)

prune :: Int -> Int -> Int -> Q1 Int -> [Token]

-> (String,Q2 Bool)

prune f r p ps ts

| isEmpty1 ps || p <= p’ = inter f r p ps ts

| otherwise = (s,fs’)

where

(ps’,p’,fs’) = rview ps fs False

(s,fs) = prune f r p ps’ ts

Fig. 5. Iterative Implementation with Lazy Dequeues

193

Chitil

Without going into details of the implementation we note that a banker’s
dequeue is represented by two lists. One holds the top elements and the other
the bottom elements of the dequeue. An invariant requires that the lengths
of the lists are not too far apart. When addition or removal of an element
threatens to invalidate the invariant, list elements are moved from one list to
the other. The only operations applied to the two lists are reverse, (++) and
splitAt. We can easily define lazy variants of these standard list functions
which — given the length of a list argument or a result — construct the
list structure of the result without demanding evaluation of any of its list
arguments. Only demanding some list element of the result will lead to more
demand of the arguments. Here, for example, is the lazy variant of (++):

lappend :: Int -> [a] -> [a] -> [a]

lappend 0 _ zs = zs

lappend n xs zs = y : lappend (n-1) ys zs

where

y:ys = xs

Using the lazy variants to implement the dequeue operations cons, rview
and lview, we obtain the required lazy dequeues. The full implementation is
given in Appendix B.

With these dequeues we can finally define our time and space efficient
pretty printer. Figure 5 shows the implementation. For each Text and Line

token the function prune tests if some surrounding groups do not fit. Hence,
if when reaching a Close token the maximal positions dequeue is non-empty,
then the group certainly fits.

5 Overfull Lines

We took Oppen’s approach to formatting a group: a group is formatted in a
single line if and only if it fits on the remaining space of the line. Unfortunately
this approach may yield layouts with lines wider than the width limit, although
a fitting layout exists. A group that still fits on a line may be followed by
further text without a separating line. Because there is no line, the text
has to be added to the current line, even if does not fit. Breaking the group
may have avoided the problem.

Our solution is to normalise the token list with respect to the following
two rewriting rules before applying pretty:

Close, Text s ⇒ Text s, Close

Open, Text s ⇒ Text s, Open

The normalised token list has the property that between a Close token
and the next Text token there is always a Line token. Hence the aforemen-
tioned problem can no longer occur. Like Wadler’s pretty printer ours always
produces a fitting layout if it exists. Note that rewriting only moves Text to-

194

Chitil

kens in and out of groups. Hence the set of lines “belonging” to each group,
which are either all formatted as new lines or all as spaces, is unchanged. So
rewriting does not change the set of texts described by a document.

Normalisation can be implemented by a linear, straightforward traversal
of the token list, keeping track of the number of currently opened and closed
groups. Note that analogous normalisation of the tree structured documents,
which we used in Section 2, is hard to implement efficiently.

6 Indentation

To complete the library we still have to implement the function nest. There
are different interpretations of the expression nest n. In Wadler’s library it
increases the current left margin by n columns whereas in Oppen’s pretty
printer (and other libraries) it sets the left margin to the current column po-
sition plus n. We can easily implement either of these variants by introducing
two new tokens

data Token = . . . | NestOpen Int | NestClose

and interpreting them appropriately in the function inter which also acquires
a stack of current left margins as additional argument. Alternatively, we can
implement Wadler’s variant just as he does by a preceding transformation
which moves the indentation information to every Line token.

7 Conclusions

We have developed a purely functional pretty printer that only requires time
linear in the size of the input/output and space linear in the line-width limit.
It demonstrates that we do not need updateable data structures to achieve the
same efficiency as Oppen’s imperative algorithm and also throws some light
on this rather monolithic algorithm. Oppen’s algorithm consists of two parts
which also work together in a co-routine like fashion. For communication
between the two processes an array is used as dequeue. The difference is
that dequeue elements are updated where our implementation uses a second,
synchronous, lazy dequeue.

We have obtained a useful library. An extended version is part of the
distribution of the Haskell compiler nhc98 5 . The compiler itself uses the
library to provide pretty printing of the abstract syntax tree after any compiler
phase.

On a general level the derivation of our pretty printing implementation
demonstrates two points in algorithm design: First, defining a function re-
cursively along the structure of the main data type may not lead to the best
solution. We sometimes have to leave the limits of an implicit recursive control

5 http://www.cs.york.ac.uk/fp/nhc98

195

Chitil

structure by making it explicit as data structure. A data structure can be re-
placed by a more flexible one (here a stack by a dequeue). 6 Second, there are
useful lazy variants of non-inductively defined abstract data structures such
as dequeues.

Acknowledgements

I thank Colin Runciman and the anonymous referees for many suggestions for
improving this paper.

The work reported in this paper was supported by the Engineering and
Physical Sciences Research Council of the United Kingdom under grant num-
ber GR/M81953.

References

[1] Pablo Azero and Doaitse Swierstra. Optimal pretty-printing combinators.
http://www.cs.uu.nl/groups/ST/Software/PP/, 1998.

[2] John Hughes. The design of a pretty-printing library. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, LNCS 925. Springer Verlag, 1995.

[3] Simon Peyton Jones. A pretty printer library in Haskell. Available from
http://research.microsoft.com/Users/simonpj/downloads/pretty-
printer/pretty.html, 1997.

[4] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
Cambridge, UK, 1998.

[5] Chris Okasaki. Breadth-first numbering: lessons from a small exercise in
algorithm design. In International Conference on Functional Programming,
pages 131–136, 2000.

[6] Dereck C Oppen. Prettyprinting. ACM Transactions on Programming
Languages and Systems, 2(4):465–483, 1980.

[7] Philip Wadler. A prettier printer. Available from http://cm.bell-
labs.com/cm/cs/who/wadler/topics/language-design.html, 1998.

6 A related well-known example is breadth-first traversal of a tree: Depth-first traversal
can be implemented easily by direct recursion. However, instead of recursion we can also
use a stack. Replacing the stack by a queue we obtain breadth-first traversal of a tree [5].

196

Chitil

A The Complete Pretty Printing Library

module Pretty (Doc,text,line,(<>),group,nestInc,nestSet,pretty)

where

import LazyDequeue

-- Public interface:

-- precondition: string contains no formatting characters

-- \n \t etc.

text :: String -> Doc

text s = Doc (Text s :)

line :: Doc

line = Doc (Line :)

(<>) :: Doc -> Doc -> Doc

Doc l1 <> Doc l2 = Doc (l1 . l2)

group :: Doc -> Doc

group (Doc l) = Doc ((Open :) . l . (Close :))

-- increment indentation

-- the delta (i) may be any integer,

-- but runtime error if indentation becomes negative

nestInc :: Int -> Doc -> Doc

nestInc i (Doc l) =

Doc ((NestIncOpen i :) . l . (NestIncClose :))

-- set indentation to current column plus given increment

nestSet :: Int -> Doc -> Doc

nestSet i (Doc l) =

Doc ((NestSetOpen i :) . l . (NestSetClose :))

pretty :: Int -> Doc -> String

pretty width (Doc l) =

fst (inter width [0] 0 width 0 empty1

(normalise 0 0 (l [])))

197

Chitil

-- Internal parts:

newtype Doc = Doc ([Token] -> [Token])

data Token = Text String

| Line

| Open

| Close

| NestIncOpen Int

| NestIncClose

| NestSetOpen Int

| NestSetClose

-- normalise the stream of tokens with respect to the rules

-- Open, Close ==>

-- Open, t ==> t, Open

-- Close, t ==> t, Close

-- for all tokens t except Line, Open and Close

normalise :: Int -- number of deferred opening brackets

-> Int -- number of deferred closing brackets

-> [Token]

-> [Token]

normalise o c [] = replicate c Close

-- there should be no deferred opening brackets

normalise o c (Open : ts) = normalise (o+1) c ts

normalise o c (Close : ts)

| o == 0 = normalise o (c+1) ts

| otherwise = normalise (o-1) c ts

normalise o c (t@(NestIncOpen _) : ts) = t : normalise o c ts

normalise o c (t@NestIncClose : ts) = t : normalise o c ts

normalise o c (t@(NestSetOpen _) : ts) = t : normalise o c ts

normalise o c (t@NestSetClose : ts) = t : normalise o c ts

normalise o c (t@(Text _) : ts) = t : normalise o c ts

normalise o c (t@Line : ts) =

rep c Close . rep o Open . (t :) . normalise 0 0 $ ts

inter :: Int -- width

-> [Int] -- left margins (current on top)

-> Int -- depth of fitting groups

-> Int -- remaining space on current line

-> Int -- absolute start position

-> Q1 Int -- maximal end positions

-> [Token]

-> (String

,Q2 Bool) -- fitting infos

198

Chitil

inter _ _ _ _ _ _ [] = ("",empty2)

inter width ms f r p ps (Open:ts) = (s,fs’)

where

(ps’,f’,fs’) = cons (r+p) ps fs

(s,fs) = inter width ms (if f>0 then succ f

else (if f’ then 1 else 0))

r p ps’ ts

inter width ms f r p ps (Close:ts)

| isEmpty1 ps = inter width ms (pred f) r p ps ts

| otherwise = (s,fs’)

where

(_,ps’,fs’) = lview ps True fs

(s,fs) = inter width ms (pred f) r p ps’ ts

inter width ms f r p ps (Text t : ts) = (t ++ s,fs)

where

(s,fs) = prune width ms f (r-l) (p+l) ps ts

l = length t

inter width ms@(m:_) f r p ps (Line : ts) = (o s,fs)

where

(o,r’) = if f>0 then ((’ ’:),r-1)

else ((’\n’:) . rep m ’ ’, width-m)

(s,fs) = prune width ms f r’ (p+1) ps ts

inter width ms@(m:_) f r p ps (NestIncOpen i : ts) =

inter width (m+i : ms) f r p ps ts

inter width (_:ms) f r p ps (NestIncClose : ts) =

inter width ms f r p ps ts

inter width ms@(m:_) f r p ps (NestSetOpen i : ts) =

inter width (width-r+i : ms) f r p ps ts

inter width (_:ms) f r p ps (NestSetClose : ts) =

inter width ms f r p ps ts

prune :: Int -> [Int] -> Int -> Int -> Int -> Q1 Int -> [Token]

-> (String,Q2 Bool)

prune width ms f r p ps ts

| isEmpty1 ps || p <= p’ = inter width ms f r p ps ts

-- note: to evaluate p’ fs does not need to be evaluated

| otherwise = (s,fs’)

where

(ps’,p’,fs’) = rview ps fs False

(s,fs) = prune width ms f r p ps’ ts

-- continuation style variant of ‘replicate’

rep :: Int -> a -> [a] -> [a]

rep n x rs = if n <= 0 then rs else x : rep (n-1) x rs

199

Chitil

B Implementation of the Lazy Dequeues

module LazyDequeue(Q1,Q2,empty1,empty2,isEmpty1

,cons,rview,lview) where

-- q12List (Q1 _ f _ r) = f ++ reverse r

-- Q1 also contains the lengths of the two lists

-- Q2 does not contain lengths

data Q1 a = Q1 !Int [a] !Int [a]

data Q2 a = Q2 [a] [a]

reverse1 :: Q1 a -> Q1 a

reverse1 (Q1 lenf f lenr r) = Q1 lenr r lenf f

reverse2 :: Q2 a -> Q2 a

reverse2 (Q2 f r) = Q2 r f

empty1 = Q1 0 [] 0 []

empty2 = Q2 [] []

isEmpty1 (Q1 lenf _ lenr _) = lenf + lenr == 0

-- Keep lengths of the two lists in balance

check :: Int -> [a] -> Int -> [a] -> Q2 b -> (Q1 a, [b], [b])

check lenf f lenr r q2 =

if lenf > balanceConstant * lenr + 1 then

let

len = lenf + lenr

lenf’ = len ‘div‘ 2

lenr’ = len - lenf’

(f’, rf’) = splitAt lenf’ f

(r2, rf2) = lsplitAt lenr r2’

in (Q1 lenf’ f’ lenr’ (r ++ reverse rf’)

,lappend lenf’ f2’ (lreverse (lenr’-lenr) rf2)

,r2)

else

(Q1 lenf f lenr r, f2’, r2’)

where

Q2 f2’ r2’ = q2

balanceConstant = 3 :: Int

200

Chitil

cons :: a -> Q1 a -> Q2 b -> (Q1 a, b, Q2 b)

cons x (Q1 lenf f lenr r) q2’ = (q’, head f2, Q2 (tail f2) r2)

where

(q’, f2, r2) = check (lenf+1) (x:f) lenr r q2’

rview :: Q1 a -> Q2 b -> b -> (Q1 a, a, Q2 b)

rview (Q1 _ (x:_) _ []) q2’ y = (empty1, x, Q2 [y] [])

rview (Q1 _ [] _ []) _ _ = error "empty dequeue"

rview (Q1 lenf f lenr (x:r)) q2’ y = (q’, x, Q2 f2 (y:r2))

where

(q’, f2, r2) = check lenf f (lenr-1) r q2’

lview :: Q1 a -> b -> Q2 b -> (a, Q1 a, Q2 b)

lview q1 y q2 = (x, reverse1 q1’, reverse2 q2’)

where

(q1’, x, q2’) = rview (reverse1 q1) (reverse2 q2) y

-- The lazy variants of standard list functions:

-- The first argument gives the length

-- of the argument/result list.

lreverse :: Int -> [a] -> [a]

lreverse n xs = lreverseAcc n xs []

where

lreverseAcc 0 _ acc = acc

lreverseAcc n xs acc = lreverseAcc (n-1) ys (y:acc)

where

y:ys = xs

-- The first argument gives the length of the second argument.

lappend :: Int -> [a] -> [a] -> [a]

lappend 0 _ zs = zs

lappend n xs zs = y : lappend (n-1) ys zs

where

y:ys = xs

-- The first argument gives the position at which the input list

-- shall be split. The list must be at least that long.

lsplitAt :: Int -> [a] -> ([a], [a])

lsplitAt 0 xs = ([],xs)

lsplitAt n ys = (x:xs’,xs’’)

where

x:xs = ys

(xs’,xs’’) = lsplitAt (n-1) xs

201

