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Abstract

This paper discussesongoing work on simulating the
propagationwithin thecell of a prion proteinin yeast.The
biological backgroundto theprojectis outlined,anda num-
ber of questionsabout this systemare posed. The paper
then discusseshow computersimulationis being usedto
provide a “virtual laboratory” for this system,which will
be employedto supportand understandreal experiments.
Furthermore, thedevelopmentof theapplicationis detailed
with emphasison thechallengesencounteredto date.

1 Biological introduction

Certainproteinswithin cellsarecapableof folding into
abnormalthree-dimensionalstructureswithout any change
in theiramino-acidsequence.Suchconformationalchanges
are interesting,but rarely of clinical significancebecause
thereis no informationat the sequencelevel which would
causethechangeto bereplicatedandthushavealarge-scale
cellulareffect.

However a small numberof suchchangeshave an ex-
traordinary“infectious” property, wherebyproteinsin the
normalconformationcanbe changedinto the unusual,in-
fectious form by contactwith a protein in the abnormal
form. It hasbeenpostulatedthat theseabnormalproteins
actasa templatefor this transformationprocess.Abnormal
forms of proteinswhich have this infectiouspropertyand
known asprion proteins[9, 10,14].

Prionproteinshavecometo theforefrontof medicaland
veterinaryresearchin the last coupleof decadesbecause
they arebelieved to play a role asan infectiousagentin a
numberof diseases,suchasscrapie,BSE andCreutzfeld-
Jakob disease[14]. However prionscanalsobe found in
simplerorganismssuchasyeasts[20], whichmakeanideal
subjectfor laboratorystudyof the prion phenomenon[1].
The particularsystemwe are interestedin in this paperis
theproteinSup35pwhich is presentin yeastcellsof species
Saccharomycescerevisiae [17]. It is producedin the cy-

Figure 1. Normal and abnormal behaviour of
Sup35pand related proteins within the cell.

toplasmof the cell and,after combiningwith Sup45ppro-
teins, is utilised by the ribosomewhereit plays a role in
RNA translation.

Thehypothesisedbehaviour of theyeastprionsis illus-
tratedin figure1. Sup35pmoleculesarecreatedwithin the
cell and, dependingon the other moleculesthat they en-
counterin their randomwalk aroundthe cell, take oneof
two routes.Thefirst is that they bind with Sup45pto form
theproteinknown aseRF. This is usedby ribosomes, which
arestructuresthat translateRNA sequences(ultimatelyde-
rived from the DNA in the cell nucleus) andassemblethe
proteinsneededfor thecell to function. Thesecondfateis
that unstableclusters(oligomers) of Sup35pform. Whilst
Sup35pmoleculesare part of a cluster, they cannotbind
with theSup45p. However theclusterscanbreakapartand
sothis routeis reversible,unlike theotherroute.

Theseclustersare believed to be the structureswhich
canbe transformedinto the prion protein. During a very
rarecellular event Sup35pclustersarethoughtto undergo
a spontaneouschangeof conformationto form the abnor-
mal infectiousprotein.Oncethis structureis formedit will
actasa seedon otherSup35poligomers by a complex and
little-understoodprocessthat converts theminto the prion
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form. Theseprion clustersgrouptogetherinto large,sticky
structurescalledamyloidplaques. Whenanumberof these
havebeenformed,they interferewith thecell’s functioning
to suchan extent that it canno longersurvive. It is these
plaqueswhich causebraindegenerationin prion braindis-
eases.This processcanbereadilystudiedin thelaboratory
by theinsertionof anumberof prion seedsinto thecell.

Thereareanumberof questionswhichwewould like to
understandaboutthisprocess.


 Whenproteinswithin thecell comecloseto eachother,
what is the probability that they will bind to form an
aggregate structure? Can we usea model to deduce
likely valuesfor theseprobabilitiesfrom theglobalbe-
haviour observed?


 Are the prion seedsand aggregatesmoving around
within thecytoplasmof thecell?


 How doesthe rate of productionof the Sup35pand
Sup45proteinsaffect thestateof thecell?


 How dotheprionaggregatesdissociate?Do they break
apartinto largepiecesor do individual moleculesdis-
sociatefrom theedgeof thecluster?Whateffect does
thishaveon thesystem?Doesthisdiffer from theway
thenon-prionclustersdissociate?


 Why do someprocesses(e.g. the inclusionof guani-
dine into thecell [2]) stoptheprocessof prion propa-
gation? How canwe distinguishbetweenvarioushy-
pothesesto explain this phenomenon?


 It hasbeenobserved that almostall daughtercells of
a cell which containsprion structuresarethemselves
infectedwith theprion protein. Is this explainableby
diffusion of prion seedsinto the daughtercells whilst
thedaughtercell is buddingoff from theparentcell, or
is anothermechanismrequiredto explain this?


 A numberof structuresin thecell (thenucleus,themi-
tochondria,etcetera)restrictthemovementof proteins
in thecell. Is thepresenceof thesesignificantin under-
standingthe propagation of the prion throughoutthe
cell?

2 Understanding cellular dynamics using
computer simulation

Wearecurrentlyconstructingcomputersimulationof the
propagationof the prion proteinwithin the cell. Thereare
a numberof reasonsfor approachingthis problemthrough
computersimulation.

Thefirst reasonis that it is possibleto “look inside” vir-
tual cells in a way which cannotbe donewith real cells.

Whena simulationof a systemis constructed,it is neces-
saryto specify the variousparametersrequired. This pro-
videsa mechanismto discover feasiblevaluesfor system
parameters,which canbeusedto drive futureexperimental
work. Onewayto to thisis asfollows. Measureanumberof
characteristicsof therealsystem;for examplein thissystem
it would bepossibleto measurethe time betweentheseed
being insertedand cell death,a time seriesof numberof
seedsfoundatcertainsampletime-points,andtheresponse
of thesystemto variousinterventions.Similar characteris-
tics could thenbe measuredfor instancesof the simulated
system,andtheparametersadjusted(usinganoptimization
techniquessuchassimulatedannealing[11,15], tabusearch
[4, 5, 6], or geneticalgorithms[13]) until a setof parame-
tersis found for which thesimulatedcharacteristicsmatch
the real characteristics.Clearly it is not possibleto con-
cludedirectly that the underlyingparametersarethe same
in thesimulatedandreal systems,astherecouldbemulti-
ple parametersettingsgiving rise to the samecharacteris-
tics; nonethelesssuchconjecturesareusefulfor suggesting
wherefutureexperimentalwork maybemostfruitful.

More generally, the ability to searchthe spaceof pos-
sible variantson a systemis a powerful reasonfor using
simulation.In additionto searchingtheparameterspaceof
asystemfor parameterswhichmatchreality, it mayalsobe
possibleto drive the searchto look for “critical points” in
the systemat which a particularinterventionmakesa sig-
nificant changein systembehaviour. One of our current
projectsis usingthis typeof searchto look for intervention
targetsin complex cellularsystemsfor drugdevelopment.

Anotherway in whicha “virtual lab” canbeusedaspart
of the scientific processis in distinguishingbetweenvar-
ious hypotheses.If we have a choiceof hypotheseswith
which to explain a phenomenon,thenwe canusethe sim-
ulation to createmodelswhich assumeeachhypothesisin
turn, andby comparingsimulationandexperimentwe can
show which hypothesesare sufficient to explain the phe-
nomenonat hand.We areaboutto usethesystembelow in
this way to investigatevarioushypothesesfor the “curing”
of proteinsby guanidinehydrochloride.

Thisdrawn uponapowerful featureof simulations—that
they candemonstratewhatis sufficientto produceaparticu-
lar behaviour. If a certainsimplifiedsimulationof a system
canreproducethebehaviour of interest,thenit is likely that
other componentsof the systemare irrelevant to produc-
ing thatbehaviour. This underpinsmuchof thework in the
“artificial life” area[12], an importantaim of which is to
show how complex behaviour canarisefrom fairly simple
systems.
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3 Details of the simulation

We have createdan individual-basedobject-oriented
model of the above system. The object-orientedframe-
work providesa powerful way of modellingsystemssuch
asthese,asthereis no needto directly modelthecomplex
behaviour of thesystemasa whole; individual components
andthewaysin whichthey interactcanbemodelledandthe
complex behaviour whichemergesfrom thiscanbestudied.
Thefirst stepwasidentifyingthevariouscomponentsof the
systemand their interactions. The objectswithin the cell
which wereincludedin themodelwerethefollowing:

� Sup35pmolecules
� Sup45pmolecules
� Sup35p/Sup45pdimers (joined pairs of one of each

molecule)
� TransientunstableSup35poligomers
� Prionseeds
� Prionaggregates
� Ribosomes
� Thenucleus

Classesto representeachof thesewerecreated,with ap-
propriatebehaviours.Themainbehavioursweretheability
of thestructuresto movearoundin thecell (implementedby
usingBrownianmotionmovementto simulatethecomplex
environmentwithin the cell) and interactionsandbinding
with othercomponents.Thevariousrelationshipsbetween
the componentsin the cell and the CellSegment class
(the main object which holds the above componentsand
controlsthe model) is illustratedin figures2 and3 in the
form of a UML [3, 18] classdiagram.

TheCellSegment classrepresentsa cuboidextracted
from a typical point in thecytoplasmof thecell (figure4).
It is a reasonableassumptionthat theflux of moleculesout
of thecell segmentis equalto theinwardflux of molecules
into thatsegment.This is approximatedby giving atoroidal
topologyto thecuboid,sothatparticlesleaving onefaceof
thecuboidre-enterat theoppositeface.

An objectof thisCellSegment classdrivesthesimu-
lation,by providing a discrete-timestepclock andtherefore
sending“move” instructionsto eachobject in the simula-
tion at eachtimestep,and by sendingout collision-check
requestsandmanagingtheresultsthereof.

The problem of detectingpreciselywhen two objects
overlapcomesup in many computationalcontexts. It is a
crucialstepin studiesof moleculardocking,suchassimu-
lationsof how two proteinsbindto eachother. Theproblem
of thedetectionof thecollisionof two proteinsin thissimu-
lation wassimplifiedto thedetectionof collisionsbetween
two spheres.Whentwo spheresrepresentingproteinscol-
lide, the decisionasto whetherthey form an aggregateor

Figure 4. Sketc h of the cell-segment as used
in the sim ulation.

not is thendecidedby giving aprobabilitythatthetwo pro-
teinsarein a positionin which they canbind together. The
problemof detectingcollisionsbetweenspheresis known
in computationalphysicsasthebilliard ball problem. It has
beenfairly well studied;see[8, 16] for surveys.

It wasdecidedto implement(at leastin theinitial simu-
lation) a naı̈ve algorithmto detectsuchcollisions.Namely,
whenever aProtein is movedto a new position,thedis-
tancebetweenthisproteinandall theotherProteins was
calculated.If thedistance,measuredfrom centre-to-centre,
waslessthanor equalto thesumof the two sphericalpro-
teins’ radii, a collision hasoccurredand the Proteins
musteitherdock/bindor bounceoff oneanother.

Therearea numberof drawbackswith employing this
algorithm.Efficiency is anissue.Thecollisiondetectional-
gorithm is an ��������� algorithm—becauseeachProtein
might conceivably collide with any other ball, the effort
risesasthesquareof thenumberof Proteins in thesys-
tem.Doublingthenumberof Proteins bringsafour-fold
increasein computationallabour. Additionally it maybear-
guedthatthis methodof detectingcollisionsis artificial, as
by the time a collision is detectedthespheresmayalready
havepenetratedeachother’s volume.

A moreseriousissueis that in somecasesthealgorithm
maymissa collision altogether. If theProteins arenot
touchingat time � andthey arenot touchingagainat ������� ,
thereis no way of knowing that they passedthrougheach
otherat somemomentbetweenthesetimes. Onepotential
solution would be to dynamicallyadjust ��� so that each
move is always to the time taken to the earliestnext col-
lision. Due to theseproblems,we choseto reengineerthe
heartof thesimulationby superimposinga grid in thevol-
ume and associatingeachProtein with a one or more
pointson thatgrid.
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Figure 2. First par t of a UML class diagram illustrating the various classes in the sim ulation and their
relationships.

This grid modelwill not only simplify the problemof
collisiondetectionbut alsospeedupthesimulation.Adopt-
ing a modeldevelopedearlierat theUniversityof Kent[7],
we useda systemthat exploits the ability of OO systems
to link two piecesof information togetherso that the two
piecesaremutually awareof eachother. The main repre-
sentationis asbeforewith theProteinsmoving in threedi-
mensionswithin acubicvolumewith theirrespectivecentre
positionsmonitoredasaglobalfloatingpointvalues.In ad-
dition to this spacea threedimensionalgrid of cubesspans
thespace.Eachpoint (whichmaybeacentrepointor posi-
tion of aProtein) on this Grid ”owns” thecubicvolume
representedby aGridCube objectthatis itself referenced
by its left-upper-front corner. At eachcrossingpoint on the
Grid thereis avariablelengthlist (suchasaJavaVector)
of GridCube references(C-stylepointers)to objectsthat
aremoving in theCellSegment.

When the simulation is startedwe iterate through the
objectsin theCellSegment, working out which regions
they belongto, and then add a referencefrom the appro-
priateGridCube point to the object. Thena list pointers
to the objectscontainedwithin eachGridCube is passed
back to the respective GridCube. ThuseachProtein
knows which GridCube(s) it occupiesandeachGrid-
Cube knows which Protein(s)occupy its volume (fig-
ure5).

Figure 5. Clamping the objects to the corner s
of the grid cubes that the objects occup y.
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Figure 3. Second par t of a UML class diagram illustrating the various classes in the sim ulation and
their relationships.
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Oncethis datais establishedcheckingfor collisions is
easy. Wetaketheobjectweareinterestedin, predictits next
positionanditeratethroughits list of grid points.Thisgives
usalist of regionstheobjectoccupies.Assumingthatall the
objectshave a speedof lessthanhalf the width of a Grid-
Cube, wesimplycheckthenearestneighbouringGridCubes
of this region for objectsthat could possiblecollide with
our objectduring this timestep.As we know the direction
of travel of thisobjectwecantrim thisalgorithmfurtherby
only checkingneighbouringcubessurroundingand in the
pathof object. Onceall the possiblecollisionshave been
identifiedwe thencarryout an intersectioncheck.Theex-
acttimewheneachof thepossiblecolliding pairsjust touch
is calculated. If the time of collision is betweenzeroand
onethis meansthat the collision occurswithin the current
time step.Theearliestcollision time within thetimestepis
foundandall theobjectsin theCellSegment aremoved
to this earliestcollision point (this ideawas introducedin
[16]). The two objectsthathave collided arere-orientated
or undergo bindingto form a new typeof Protein. Then
theprocessis repeatedafterupdatingthegrid referencesand
predictingthenext positionof eachobject. Whenthe total
time is one,a new timestepstartsandthe moleculeshave
their directionof travel calculatedaccordingto theBrown-
ian motion algorithm. If the total time taken plus the next
earliestcollisiontimeis greaterthanonethenall theobjects
aremovedto a time of oneandanew timestepstarted.

Thebindingof two or moreproteinsis a processthat is
in equilibrium.Theiraffinity for eachotheris abalancebe-
tweentheir tendency to wantto stick together(measuredas
their associationconstant,kA) andtheir tendency to come
apart(known astheirdissociationconstant,kD). A highkA
anda low kD meanthat proteinshave a will tendto stick
together, thereverseis trueif they havealow kA andahigh
kD.

In biologicalsystemstwo colliding proteinsdo not nec-
essarilyresult in a successfulbinding. The Proteins
must collide or meeteachother at the preciseangleand
position to allow successfuldocking,much like the space
shuttledockingontoa spacestation.In orderto mimic this
behaviour usingthesimplifiedsphereproteinmodelit was
necessaryto introducebindingaffinities.

A new classBindingAffinityTable wascreated.
This providesa two dimensionalarrayof valuesfor thekA
of all theProtein types.Binding affinity valuesbetween
zeroandonestoredin the2D arrayindicatetheprobability
of a successfulbinding. On collision a randomprobabil-
ity (betweenzeroandone)is generatedandtheBindin-
gAffinityTable lookedup to find thekA basedon the
type of Proteins involved in the collision. If the prob-
ability generatedis less than the kA then binding occurs
otherwisethe two Proteins are reorientatedandhence
on thenext movebouncedoff eachother.

BothOligomers andAggregates dissociatebut the
actual implementationof this behaviour is different. An
Oligomer is a highly unstabletype of Protein which
maybreak-upreadily into smallerOligomers andto in-
dividual Sup35p proteins. In contrastAggregates are
highly stableandbelieved to fragmentto the prion Seed;
this processpropagates Aggregate growth. At each
timestepevery OligomerandAggregateis checkedfor dis-
sociation.

In order to predict the probability of an Oligomer
fragmentinga kDTable[] was introducedwhich deter-
mines if the Oligomer will fragmentbasedupon size.
ThekDTable is lookedup to determineif anOligomer
will fragment.As fragmentationoccurscarriedout thepo-
sition of eachfragmentis calculatedrandomlyusing the
Oligomers’ position as a starting point and the newly
createdProteins are addedto the CellSegment. A
simpler, but similar, approachwasusedto model the dis-
sociation of the Aggregate by incorporatingan Ag-
gregatekDTable. The implementationof the Ag-
gregatekDTable was almost identical to that for the
OligomerkDTable. A randomdouble wasgenerated
in therange� �!�#"$"#%&�!� andthis valueusedto calculatethe
numberof Seeds that would be shedif theAggregate
dissociates.This Aggregate may be switchedon or off
for aparticularrunof thesimulation.

Thefinal majorcomponentof thesystemis a visual in-
terface.This is illustratedin figure6. Thisvisualisesa two-
dimensionalprojectionof the cell segmentonto the back
faceof thecuboid. Currentwork is usingJava3Dtechnol-
ogyto provideathree-dimensionalvisualizationof thesim-
ulation.Thevisualcomponentis importantfor anumberof
reasons.Firstly it providesa tool by which scientistswho
areaccustomedto seeingimagesof thissystemthroughmi-
croscopy can comparetheir intuitions about the behavior
of the systemwith the simulation. This providesa way of
looking for errorsandinaccuraciesin themodel.Secondly
the informationthat canbe gainedfrom a visual interface
is unbounded-thevisual interfacecanbeusedasa tool for
”what if” type experiments,andthe resultsgainedarenot
limited to asmallnumberof possibleobservationstatistics.
Oncethesefeatureshave beenidentifiedthey canbeinves-
tigatedfurtherby developingstatisticalmeasuresthatallow
comparisonwith thesamefeaturesin realexperiments.

4 Notes and acknowledgements

Furtherdetailsaboutthe early part of this work canbe
found in thefirst author’s mastersthesis[19]. Theauthors
would like to thankJackiGoldmanfor herhelpandadvice
duringthedevelopmentof thiswork.
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Figure 6. A two-dimensional view of the yeast
cell
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