A framework for UML consistency

John Derrick and David Akehurst and Eerke Boiten

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK
{J.Derrick,D.H.Akehurst,E.A.Boiten}Qukc.ac.uk

Abstract. In this paper we discuss a framework by which one might
approach questions of consistency in UML. The framework derives from
work undertaken in the Open Distributing Processing (ODP) standard-
isation initiative which looked at consistency checking across the ODP
viewpoints.

This work has resonance with some of the problems facing those using
the many different aspects of UML, and the purpose of this paper is to
discuss how the existing work could be applied in a UML context.

Keywords: UML, Consistency, Viewpoints, Open Distributing Processing, Re-
finements.

1 Introduction

The UML is rather unique as a modelling language, since it combines multiple
notations in a loosely coupled framework. Indeed this combination of multiple
notations defined in a framework which is non-prescriptive (i.e., a designer is
free to use and interpret these notations with some freedom) has many potential
benefits, and has helped its popularity.

There is a flip side, however: the loose coupled nature means there does not
exist a unified semantics. This lack of semantics means that it is not immediately
clear how to determine the consistency of a UML specification, or indeed what
consistency means in the language.

This situation contrasts with most notations, even wide-spectrum languages
such as RAISE [22] or ones containing more than one sub-notation as in SDL
[11]. In these situations a unified semantics is defined as part of the language,
and this allows a smooth transition to be defined between the sub-notations in
the language, and a well-defined notion of consistency to be given.

However, there are existing techniques and a wide-ranging body of work
that offer ways to approach the problem of defining and checking consistency
for UML. In particular, we focus here on the work on viewpoints, or partial
specifications, which has investigated ways in which to check consistency for
combinations of disparate notations.

The problems facing UML can, we believe, usefully draw upon many of these
ideas and the purpose of this paper is to draw out some of these ideas and
comment on how UML might build upon this existing work. We thus offer less

of a solution to the issue of consistency in UML, but rather tentatively put
forward a framework by which techniques might be developed.

In Section 2 of this paper we discuss the ideas of viewpoints and partial
specification. The central thesis is that a viewpoint represents one particular
perspective of a system, that is, it is a partial specification. There are a number
of approaches to partial specification but, like UML, they all bring an attentive
problem, viz. how to check whether the partial specifications are consistent with
one another.

In this paper we focus on work related to one particular viewpoints approach,
namely that which has taken place in the Open Distributed Processing (ODP)
domain. ODP [25] was initially developed as a standardisation framework for dis-
tributed systems, but has more recently been proposed as a development archi-
tecture for the construction of distributed systems [12]. In Section 3 we describe
the approach to consistency in ODP, with pointers to its relevance to work on
consistency in UML. This is expanded in Section 4 where we sketch some of the
techniques that are available to check the consistency of specifications. Section
5 then describes the issues that would need to be resolved for this work to be
applied to a UML context.

2 Viewpoints and partial specification

To understand the relevance of the work on viewpoints and partial specification
consider the UML specification given in Figures 1, 2, and 3.

post: oclinState(Connected) j VoDBrowser ServiceManager

+logon() +connect(user:String, passwd:String) : Boolean
+sveMingr

—————— +select(show:Integer) +getProgramme() : Sequence
pre: oclinState(Connected) j +selectTo) in:

v +shows| 0.*

VideoWindow ScheduledShowing

+connectTo(win:VideoWindow)

Fig. 1. Class diagram of a video on demand browser

These consist of a class diagram to define some of the structural aspects of
the system, a state chart to define the behaviour within one particular object,
and a sequence diagram to define some of the allowable interactions between the
components in the system.

No single diagram defines the behaviour of the complete system, this is only
given by their collective constraints. Indeed, the philosophy of UML is that
complex systems are best specified via a number of different views of a model.

Thus each diagram represents a partial description of the complete system.
Such a partial description is usually called a partial specification or a viewpoint
[18].

Fig. 2. State chart for the video on demand browser

Work on viewpoints goes back many years, with relevant work being done
in requirements engineering [20], formal system development [36], distributed
systems [24] and in software engineering in general [31]. The idea is that rather
than having a single thread of system development, in the style of the classic
waterfall approach, multiple partial specifications (i.e. viewpoints) of a system
are considered. Each particular specification represents a different perspective on
the system under development and, in fact, may well be written by a different
specifier.

Work in distributed systems is of particular relevance since there has been
significant progress on viewpoint consistency in that domain, and in particular
within the Open Distributed Processing standardisation initiative.

The Open Distributed Processing is a joint ITU/ISO standardization frame-
work for constructing distributed systems in a multi-vendor environment. The
architecture has reached a level of maturity, with the main ODP document, the
Reference Model for Open Distributed Processing (RM-ODP), an established
international standard. For introductions see [28,29,2] and the standards docu-
ments themselves [24]. Significant features of ODP include object based specifica-
tion and programming, use of transparencies to hide aspects of distribution and
viewpoints. The latter has relevance to UML since the viewpoints provide a ba-
sic separation of concerns, enabling different participants to observe the system
from suitable perspectives and at suitable levels of abstraction.

A central tenet of ODP is the use of these viewpoints to decompose the task
of specifying distributed systems, and this has resonance with the use of different
diagrammatic notations within UML. ODP defines five viewpoints, Enterprise,
Information, Computational, Engineering and Technology. It is beyond the scope
of this paper to give a full introduction to ODP viewpoints modelling. The
interested reader is referred to [27]. In contrast to many other viewpoint models,

I user ;. l I browser ; VoDBrowser l sveMngr film : ScheduledShowing

T

!
. I
logon '

: connect

T
'
I
L
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I

I
'

'

I

'

'

: selectToview 1
'

I

'

|

'

'

|

F---1
N
1
‘
I
‘
‘
I
‘
‘
I
‘
‘ 5
i g
1 z
‘
I
‘
‘
I
‘
‘
I
1
1 4
‘
L E
‘

: selectToview(fim, wi) |

I
: conneqfTo(w)
I

 play film

Fig. 3. Sequence diagram for the video on demand browser

'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
'
I
'
L

ODP viewpoints are predefined and in this sense static, i.e., new viewpoints
cannot be added, and this contrasts with how they arise in other models, e.g.,
[20]. Each of the viewpoints has a specific purpose and is targeted at a particular
class of specification.

One of the consequences of ODP adopting a multiple viewpoints approach
to development is that descriptions of the same or related entities can appear
in the different viewpoints and must co-exist. Thus, the different ODP view-
points can impose contradictory requirements on the system under development
and consistency of specifications across viewpoints becomes a central issue. The
problem is complicated by the fact ODP viewpoint specifications can be written
in different languages, that is, languages particularly suited for the viewpoint
at hand, e.g., Z [32] for the information viewpoint and LOTOS [5, 23] for the
engineering viewpoint [7].

A significant amount of work has taken place on consistency in ODP [8, 1, 17].
In particular, a number of research projects were undertaken at the University
of Kent at Canterbury in order to explore this issue. The scope of the work was
broad, including theoretical investigations of the nature of consistency check-
ing [10, 6], techniques for consistency checking within specific formalisms, e.g.,
LOTOS [33,10, 34] and Z [4, 16] and, techniques for consistency checking across
specification languages [14, 15]. The rest of the paper explains the approach and
discusses how the solutions developed might be applied in a UML context.

3 Consistency in ODP

The complete specification of any non-trivial distributed system involves a very
large amount of information. Attempting to capture all aspects of the design
in a single description is generally unworkable. Most design methodologies aim
to establish a coordinated, interlocking set of models each aimed at capturing
one facet of the design, satisfying the requirements which are the concern of
some particular group involved in the design process. In ODP, this separation
of concerns is established by identification of five viewpoints [24]. For each of
the five viewpoints, the reference model presents a set of definitions and a set
of rules which constrain the ways in which the definitions can be related, this is
known as a viewpoint language.

Furthermore, since different languages are applicable to the specification re-
quirements of different viewpoints, e.g., LOTOS for the engineering viewpoint
and Z/Object-Z for the information viewpoint, consistency checking for ODP
specifications must be performed both within and across specific languages.

The relevance to UML should be obvious. The problem of consistency in
ODP is one of relating partial specifications of a system. These specifications will
typically be written in different notations, with some of the partial specifications
existing at the same level of abstraction, but others existing at different levels
of abstraction. Although the context is slightly different, this is the same issue,
essentially, as that facing UML. The UML situation does have one advantage,
and thats that the specification languages used are known in advance (i.e., they
are the notations that make up the UML). Thus, we know the set of notations
that will potentially arise in a UML specification, whereas in general in ODP
any specification language at all could be instantiated as one of the viewpoint
languages.

In order to be able to check the consistency of multiple viewpoint specifica-
tions (whether in ODP or UML) we first need to define what is meant by con-
sistency. This is not obvious, for example, at one time the ODP reference model
alluded to three different definitions. However, this can be resolved by adopting
a formal framework (e.g., see [9]) and this provides a definition of consistency
between viewpoints general enough to encompass all three ODP definitions.

The traditional way to check for consistency is by translating all the view-
points to a common underlying semantic framework (e.g., first order predicate
logic [36]) — if all of these translations have a common model (their conjunc-
tion is satisfiable) then the viewpoints were consistent. However, this approach
suffers from traceability problems, see [3]: a reported inconsistency will be in
terms of the semantic framework, and can normally only be partially translated
back into the original languages. In any case, it will be hard to recover all of
the original syntactic structure in such a back-translation. Additionally, the use
of an underlying common model, also due to loss of syntax, makes incremental
consistency checks (on a specification in development) more difficult.

An alternative approach to consistency checking is described in [9, 10, 6]. Here
consistency of viewpoint specifications is defined as the existence of a common
“implementation”.

Although intuitively pleasing, this definition is not practical for actual con-
sistency checking. It would require the viewpoint specifiers to attempt to recon-
cile their viewpoints and prototype an implementation each time a consistency
check was desired, which, if at all possible, is completely unrealistic. Hence, for
consistency checking to be feasible, it has to be defined at the abstract level
of specifications. This is realised by using two important concepts: refinement
relations and correspondences.

The latter of these is a concept for describing the common aspects of different
viewpoints. The issue of consistency only arises because viewpoints may overlap
on certain aspects of the envisaged system. In simple examples, such overlap-
ping parts will be linked implicitly by having the same name and type in both
viewpoints. In general however, we may need more complicated descriptions for
relating these common aspects. Correspondences provide this linkage. It is also
worth pointing out that although correspondences between viewpoints may be
quite complex and intricate, many of them are generic. In the RM-ODP, for
example, many such correspondences can be derived directly from the ODP ar-
chitectural semantics, in UML some correspondences will arise from the different
roles the notations play.

Refinement is the usual notion of development, and its use is well documented
elsewhere. Its use is that the consistency of several partial specifications can be
checked by finding a common refinement. If both specifications use the same
refinement relation, and the refinement relation is complete (in the sense that
all implementations can be obtained by refinement), existence of a common
refinement is even mecessary. Furthermore, under certain conditions common
refinement of viewpoint specifications can be used to check consistency with
additional viewpoints, ensuring that all consistency checks can be just between
two specifications.

We can thus define consistency as:

A set of viewpoint specifications are consistent if there exists a specification
that is a refinement of each of the viewpoint specifications with respect to the
identified refinement relations and the correspondences between viewpoints. This
common development is called a unification.

As an example, consider the two simple pieces of behaviour, given as labelled
transition systems in Figure 4.

Are these consistent? Well, it all depends on the notion of refinement used. If
we use the LOTOS reduction relation or the CSP failures-divergence refinement
relation, then they are mot consistent since the first behaviour says that after
an a one must be able to do a b, but this behaviour isn’t allowed by the second
behaviour.

However, if one used a different refinement relation, say one that allowed the
extension of traces (as in the LOTOS ext relation), then these two behaviours
are consistent, their unification is given in Figure 4. Thus what this very simple
example illustrates is that consistency really is tied to the notion of development
of refinement used. This issue is as relevant to UML as it is to ODP, without

c
b V \C
Unification

Fig. 4. Two simple behaviours defined as labelled transition systems and their unifi-
cation according to extension

knowing what valid refinements (or implementations) of state charts, sequence
diagrams etc are we cannot hope to tackle consistency in UML with any meaning.

One natural consequence of the definition of consistency is that (“global”)
consistency between a set of viewpoints is not implied by consistency between
all pairs of viewpoints in the set. Each pair of viewpoints may have a nonempty
set of common refinements, but the intersection of those sets may still be empty.
However, if we use the least unification (with respect to the refinement order-
ing) then it ensures that using unifications as the intermediate results, global
consistency of a set of viewpoints can be established by a series of binary consis-
tency checks, assuming a few reasonable restrictions on the refinement relations
involved [10]. This is not the case if an arbitrary common refinement is selected
as the unification.

As just indicated, different viewpoint specifications may be related to the
unification by different refinement relations. For example, in ODP the LOTOS
engineering viewpoint might be related by a conformance relation, while the Z
computational viewpoint might be related by the Z refinement relation. Note
also that the definition makes no reference to ODP or its particular viewpoints.
We thus view this as a general definition which could be adopted as the basis
for consistency within UML.

This perspective on consistency, that is, one that uses refinement as the key
notion in development makes for a very behavioural focus for questions of con-
sistency. This focus on behavioural consistency has consequences for UML. Such
an approach is allied to a behavioural semantics where the semantics of a spec-
ification records only the pertinent aspects of behaviour rather than structured
information or syntactic detail. All meaningful notions of semantics take such a
view.

Consider, for example, the two UML specifications given in Figures 5. They
describe the same behaviour, and therefore are consistent, a behavioural ap-
proach (to semantics and consistency) should record this rather than stressing
the syntactic or structural differences.

Thus to adopt these ideas in a UML context we have to take the view that
all that matters in a specification is its behaviour. Indeed most specification

Switch Sick m,
pre : oclinState(Of)
post : oclinState(On) o)
,,,,,,,, +lick_on() -
———————— +Hiick_off()
pre : oclinState(On)
post : oclinState(Off)

Fig. 5. Class diagram (with OCL annotations) and Statechart for a switch

notations take a behavioural view on semantics so, e.g., in a process algebra its
semantics is precisely the aspects of behaviour that are observed, so get events
in traces and not process structure. Although UML hasn’t got a settled formal
semantics we believe that the behavioural approach to semantics and consistency
is one of merit.

4 The behavioural approach

A central feature of our work is the use of formal methods and one motivation for
employing a formal approach is that they enable consistency checking through
analysis of the formal semantics of specifications. However, using formal methods
also allows one to take a behavioural approach to consistency.

Consistency of viewpoint specifications is often only considered at the level
of structural and syntactic consistency. However, for consistency to truly cor-
respond to implementability, behavioural aspects must also be checked. For ex-
ample, if we have a pair of viewpoints describing a particular object it is not
sufficient just to know that the signatures of the pair of specifications are non-
contradictory, but it is also necessary to know that both the order in which
operations can be performed and the effects of performing those operations are
non-contradictory.

Formal semantics give a behavioural interpretation of notations in a math-
ematical model, e.g., Z [32] is interpreted in ZF set theory and LOTOS [5] is
interpreted as labelled transition systems or trace/refusal models. Consequently,
through formal semantics the behavioural consistency of specifications written
in formal notations can also be checked.

Indeed, besides a definition of consistency, we have also investigated methods
for constructively establishing consistency [6]. This involves defining algorithms
which build unifications from pairs of viewpoint specifications. An important
notion in this context is that of a least developed unification. This is a unification
such that all other unifications are refinements of it. Thus, it is the least developed
of the set of possible unifications according to the refinements relations of the
different viewpoints.

Unfortunately, it is not the case that least developed unifications can always
be derived. In [6] properties that refinement relations must possess for such uni-
fications to exist are investigated. In most cases refinement relations possess the

required properties (in particular, for Z refinement, least developed unifications
can always be constructed).

One immediate consequence of this is that for consistency checking to be
defined in this many then the languages involved need a notion of development
or refinement. Most languages have this, e.g., there are well-defined refinement
relations for Z, LOTOS, SDL etc, however, there are obvious consequences for
UML in this respect. In particular, well-defined notions of refinement for the
languages used within UML are needed, since this is true for general software
engineering reasons, work in this direction will produce as a side-effect beneficial
consequences for the consistency checking work.

Based on the formal definitions of consistency and unification above, we have
developed several consistency checking techniques for and between specifications
written in different languages. Doubtless some of this work could be ported to
the UML context.

Consistency in LOTOS What makes viewpoint consistency checking in LO-
TOS a particularly challenging task is the existence of a large collection of refine-
ment relations. These characterise different ways in which LOTOS specifications
can be viewed as partial specifications, with refinement being e.g., conformance,
functionality extension, or reduction of non-determinism. We have defined unifi-
cation and consistency checking strategies for the spectrum of these relations [33,
34].

Furthermore, using this characterisation we can check the consistency of LO-
TOS specifications. We do this by generating the unification of source specifi-
cations using the above principle and if this unification is well formed (a set
of well defined criteria exist to check this) then the original descriptions were
consistent.

However, although this gives us an algorithm for consistency checking, it is
performed completely at the semantic level. In particular, the resulting unifica-
tion will at worst be a semantic model and will at best be a LOTOS specification
with no high level structure (in LOTOS terminology, conforming to the mono-
lithic specification style).

Consistency in Z and Object-Z For Z as a viewpoint specification language
we have so far assumed the established states-with-operations specification style,
with an eye towards encapsulation of these in object-oriented variants of Z [16].
The Z unification techniques described in [4] operate on two viewpoints at the
same level of decomposition.

A unification of two viewpoints is constructed in two phases. In the first phase
(“state unification”), a unified state space (i.e., a state schema) for the viewpoints
has to be constructed. The essential components of this unified state space are
the correspondences between the types in the viewpoint state spaces. At this
stage we have to check that a condition called state consistency is satisfied. The
viewpoint operations are then adapted to operate on this unified state.

In the second phase, called operation unification, pairs of adapted operations
from the viewpoints which are linked by a correspondence have to be com-
bined into single operations on the unified state. This also involves a consistency
condition (operation consistency) which ensures that the unified operation is a
refinement of the viewpoint operations. A similar procedure also needs to be
executed for the initialisations of the viewpoints, and the adapted initialisations
together need to be satisfiable. Automation of the checking of the consistency
condition is possible to a large extent.

Relating different notations We have also considered comparing viewpoints
written in LOTOS and Object-Z. This was interesting since it requires a bridge
to be built between completely different specification paradigms. Although both
languages can be viewed as dealing with states and behaviour, the emphasis
differs between them. Our solution for consistency checking between these two
languages was to exploit a behavioural interpretation of Object-Z.

Object-based languages have a natural behavioural interpretation, and there
is a strong correlation between classes in object-oriented languages and processes
in concurrent systems (see for example [35,21,30]). We used this correlation as
the basis of a translation between the two languages, which was verified by
defining a common semantics for LOTOS and Object-Z.

The ADT component of a LOTOS specification is translated directly into the
Object-Z type system. To translate the behavioural aspect of a LOTOS specifica-
tion we map each LOTOS process to an Object-Z class. Adopting this approach
allows a natural mapping to be identified between many of the behavioural con-
structs in the two languages, for example, we find that process instantiation in
LOTOS corresponds naturally to object instantiation in Object-Z.

To map a LOTOS process to an Object-Z class their observable atomic ac-
tions are related, i.e., events in LOTOS and operations in Object-Z. Therefore
the translation will map each LOTOS action into an equivalent Object-Z op-
eration schema. The Object-Z operation schemas have appropriate inputs and
outputs to perform the value passing defined in the LOTOS specification. In ad-
dition, each operation schema includes a predicate to ensure that it is applicable
in accordance with the temporal behaviour of the LOTOS specification.

The translation is given in [15], where it is verified against a common se-
mantic model of the two languages. This model is based upon the semantics for
Object-Z described in [30], which effectively defines a state transition system for
each Object-Z specification. This model is used as a common semantic basis by
embedding the standard labelled transition system semantics for LOTOS into
it in an obvious manner. This provides a basis by which we can verify that the
translation is correct, i.e., that the meaning of a term in one language is (bisim-
ulation) equivalent to the meaning of that term after translation. [15] verifies
the translation in detail.

Specifications, now written in a single language can be checked for consistency
by using mechanisms to unify two or more specifications as sketched above.

The key component of the consistency checking strategy presented here is to
be able to identify common refinements of multiple viewpoints with respect to the
correspondences between the viewpoints. Such refinements can also be viewed
as common models for the collection of viewpoints. These common models will
typically be expressed in terms of the most primitive entities in the viewpoints.
However, finding a suitable set of primitives is not always possible. In particular,
different ODP viewpoints occur at different levels of abstraction, thus identifying
one-to-one correspondences is almost certain to be impossible in general.

This difficulty raises many questions about how the viewpoints are specified,
how to document the correspondences and how to deal with changes in the
level of abstraction between viewpoints. General viewpoint models have great
difficulty dealing with correspondences, having to use similarity checking [19]
or low level common models [36]. However, because ODP has a fixed set of
viewpoints with predetermined roles, more specific guidance can be provided for
establishing correspondences. Similar leverage should be possible for UML given
the known set of notations which are likely to be used. But it is also necessary
to determine how best to describe the correspondences between the different
aspects of a complete UML specification.

5 The challenge for UML

As we have discussed above there are a number of possible existing techniques
for consistency checking partial specifications akin to those listed above. For
example, consistency checking might involve a transformational approach or use
a common semantics or construct unifications which are common refinements of
related viewpoints.

We comment on each of these in turn.

5.1 Transformation

A transformational approach is concerned with checking consistency by translat-
ing one specification into another, e.g., the LOTOS to Z translation mentioned
above. In order to do this one really needs a combined semantics in order to
verify that the translation is correct.

Such a transformational approach is not necessarily applicable to all aspects
of UML. This is because it is not clear that there is a single notation within
UML that can encompass all concerns (indeed if there was UML wouldn'’t be
composed of multiple notations). For example, it is relatively easy to translate
between collaboration and sequence diagrams, both providing the designer with
alternative ways to represent essentially the same behaviour.

Given a situation like that, appropriate consistency checks, defined for the
particular notation, could then be applied. Thus this gives rise to a further issue
for UML: namely defining consistency checks for the individual diagrammatic
notations. As described above, this should be defined via appropriate refinement
relations in the language concerned, and we comment on this below.

However, it is not always the case that a transformation is feasible. For
example, it is not clear that information in all the UML diagrams could be
transformed into a single diagram that is part of UML. Thus transformations are
likely to be useful for defining consistency checks between particular diagrams,
but they will not provide a complete solution to the problem.

5.2 Common semantics

One might wonder if a symmetric strategy, translating both viewpoint specifi-
cations to some common model might not be better. However, such models are
necessarily at a semantic level, bringing in the problems of consistency check-
ing at the semantic level as described above. Our experience suggests that in
effect using the more expressive abstract notation as a common model is more
effective.

However, what a common semantics can achieve is that it provides a basis by
which to define refinement in UML, and this can then provide a practical consis-
tency checking strategy. In terms of UML there is much work in this direction,
as a single example we consider the work of Davies and Crichton [13].

In their work Davies and Crichton are concerned with providing a formal
behavioural semantics to parts of UML. [13] shows how a semantics can be
given to class, object and state diagrams by using the semantic model of CSP.
This then induces refinement relations in UML based upon those in CSP.

For example, consider the class, object and sequence diagram given in Figure
6 (this example is taken from [13]).

The sequence diagram specifies that one particular trace is a desirable be-
haviour of the system, and thus they derive a trace in the CSP semantics that
represents this information:

in.m, message.m, out.m, ack, ready

In a similar, but slightly more complicated, way [13] derives the set of allowable
traces from the objet diagram.

A common semantics has thus been derived based, here, upon the traces
model of CSP. More discriminating models in CSP can also be used, in particular,
the failures-divergences model can capture information not present in a trace
model, and which semantic model is used will depend on which and how the
UML diagrams are put together.

With a common semantic model in CSP, the final piece in the consistency
jigsaw is to use CSP refinement to define refinement for UML diagrams. This is
defined in the obvious fashion: one UML specification is a refinement of another,
if they are CSP refinements when mapped into the common semantics. Using
different CSP refinement relations (trace, failures-divergences etc) allows one to
define different refinement relations in UML which can be used as necessary.

It is then possible to show that the sequence diagram given above is indeed
consistent with the object diagram (using the trace refinement relation).

This is but one example of relevant work in this area. There is much more
to be said about a common semantic model for UML, but this is not the forum

User Listener

user

ready out

1 1 listener
user listener
trans
trans rec -
trans\, 1 1 “Transmitter |—— [:Receiver

Transmitter | trans rec Receiver

The object diagram

1 1 | message

in(m:Msg)
ack

The class diagram

:User I I :Transmitter I l ‘Receiver I ‘Listener

in(m)

message(m)

out(m)

ack

ready

The sequence diagram

Fig. 6. A small fragment of UML specification

to do so. The point we are trying to make, however, is that common semantic
models provide a means by which to define consistency and possible even develop
tool support. Other common semantic models would provide similar frameworks,
for example, Jurjens [26] defines a common semantic model using Abstract State
Machines. He then uses this to define a notion of refinement for diagrams written
in UML, again opening up the way to achieve consistency checking via finding
common refinements.

However, the challenge for UML is to accept a common semantic framework.
This will clearly not be easy since there may be competing forces, and it might
even be the case that different semantic models are used.

5.3 Defining consistency

In fact, one can approach the definition of consistency from a number of angles.
Starting with either a definition of conformance, a definition of refinement or a
semantic model, consistency can be defined in a number of equivalent ways.

For example, given a notion of conformance between a UML specification S
and a program P, denoted conf(P,S), then a definition of consistency can be
given as: consistent(S1,52) = AP - conf(P,S1) A conf(P, S2)

Alternatively, as we have seen a notion of refinement between specifications
generates a definition of consistency. If the refinement of one specification into

another is denoted ref(S1,52), then a definition of consistency can be given as:
consistent(S1,52) = 353 -ref(S3,51) Aref(S3,52)

In fact, a notion of conformance can be used to generate the definition
of refinement (which shows the definitions of consistency are equivalent) as:
ref(S1,52) =VP - conf(P,S2) = conf(P,S1)

Finally, a common semantic basis for UML would provide a set of models of
a UML specification, mod(S). Consistency between specifications can then be
defined as finding a common model: consistent(S1,52) = 353-53 € mod(S1)N
mod(S2)

These definitions show, via a simple use of formalism, that there are a number
of approaches to consistency, all of which turn out to be equivalent. The definition
we have used in our work on ODP is that based upon a common refinement.
Whichever approach UML took, much of the above existing work could be re-
used.

6 Conclusions

In this paper we have tried to sketch how some of the existing work on consistency
checking could be applied to a UML context. In reviewing the existing work there
are a number of points around which the techniques are based.

Firstly, a specification in one viewpoint may need to be translated into a
specification in another viewpoint. Clearly with UML such translation techniques
may need to transform specifications from one notation into another.

Secondly, a collection of partial specifications may sometimes be integrated
into one specification by a technique called unification. Each partial specification
presents a partial description of the implementation. However, the ultimate aim
is to develop an implementation that satisfies all partial specifications. At some
stages during the development process it will therefore be necessary to compose
different specifications in order to obtain an integrated view of the system to be
developed.

Refinement plays an important part in consistency checking, but since a well-
defined notion of refinement is necessary from a software engineering perspective
anyway, this does not pose any additional burden on UML.

Finally, specifications are consistent with each other whenever it is possible
to find at least one implementation that satisfies them simultaneously. Finding a
common refinement is a sufficient consistency check. Consistency is also closely
related to unification. Specifications can only be unified successfully if, and only
if, they are consistent.

Existing work is tackling some of the issues necessary to realise these ap-
proaches to consistency, but if we have one conclusion, it is that we hope the
UML community will re-use much of the foundational and practical work on
viewpoints since some useful and relevant techniques have been worked upon for
some years.

References

1.

10.

11.
12.

13.

14.

15.

16.

17.

C. Bernardeschi, J. Dustzadeh, A. Fantechi, E. Najm, A. Nimour, and F. Olsen.
Transformations and consistent semantics for ODP viewpoints. In H. Bowman
and J. Derrick, editors, FMOODS’97, 2nd IFIP Conference on Formal Methods
for Open Object Based Distributed Systems. Chapman and Hall, July 1997.

. G.S. Blair and Jean-Bernard Stefani. Open Distributed Processing and Multimedia.

Addison-Wesley, 1997.

E. Boiten, H. Bowman, J. Derrick, and M. Steen. Managing in-
consistency and promoting consistency. In revision, available from
http://wuw.cs.ukc.ac.uk/research/tcs/consistency/tse.html, September
1997.

E.A. Boiten, J. Derrick, H. Bowman, and M. Steen. Constructive consistency check-
ing for partial specification in Z. Science of Computer Programming, 35(1):29-75,
1999.

T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14(1):25-59, 1988.

H. Bowman, E. Boiten, J. Derrick, and M. Steen. Strategies for consistency check-
ing based on unification. Science of Computer Programming, 1998. to appear.

H. Bowman, J. Derrick, P. Linington, and M. Steen. FDTs for ODP. Computer
Standards and Interfaces, 17:457-479, September 1995.

H. Bowman, J. Derrick, P. Linington, and M. Steen. Cross viewpoint consistency
in Open Distributed Processing. IEE Software Engineering Journal, 11(1):44-57,
January 1996.

H. Bowman, E.A.Boiten, J. Derrick, and M. Steen. Viewpoint consistency in ODP,
a general interpretation. In E. Najm and J.-B. Stefani, editors, First IFIP Inter-
national workshop on Formal Methods for Open Object-based Distributed Systems,
pages 189-204, Paris, March 1996. Chapman & Hall.

H. Bowman, M.W.A. Steen, E.A. Boiten, and J. Derrick. A formal framework for
viewpoint consistency. Formal Methods in System Design, 21:111-166, September
2002.

CCITT Z.100. Specification and Description Language SDL, 1988.

G. Cowen, J. Derrick, M. Gill, G. Girling (editor), A. Herbert, P. F. Linington,
D. Rayner, F. Schulz, and R. Soley. Prost Report of the Study on Testing for Open
Distributed Processing. APM Ltd, 1993.

Jim Davies and Charles Crichton. Concurrency and refinement in the unified
modeling language. Electronic Notes in Theoretical Computer Science, 7(3), 2002.
J. Derrick, E.A. Boiten, H. Bowman, and M. Steen. Supporting ODP - translating
LOTOS to Z. In E. Najm and J.-B. Stefani, editors, First IFIP International
workshop on Formal Methods for Open Object-based Distributed Systems, pages
399-406, Paris, March 1996. Chapman & Hall.

J. Derrick, E.A. Boiten, H. Bowman, and M.W.A. Steen. Viewpoints and Con-
sistency - translating LOTOS to Object-Z. Computer Standards and Interfaces,
pages 251-272, December 1999.

J. Derrick, H. Bowman, and M. Steen. Viewpoints and Objects. In J. P. Bowen
and M. G. Hinchey, editors, Ninth Annual Z User Workshop, LNCS 967, pages
449-468, Limerick, September 1995. Springer-Verlag.

K. Farooqui and L. Logrippo. Viewpoint transformations. In J. de Meer, B. Mahr,
and O. Spaniol, editors, 2nd International IFIP TC6 Conference on Open Dis-
tributed Processing, pages 352—-362, Berlin, Germany, September 1993.

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. View-
points: a framework for integrating multiple perspectives in system development.
International Journal on Software Engineering and Knowledge Engineering, Spe-
ctal issue on Trends and Research Directions in Software Engineering Environ-
ments, 2(1):31-58, March 1992.

A. Finkelstein, G. Spanoudakis, and D. Till. Managing interference. In A. Finkel-
stein and G. Spanoudakis, editors, SIGSOFT ’96 International Workshop on Mul-
tiple Perspectives in Software Development (Viewpoints ’96), pages 172-174, 1996.
A.C.W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsis-
tency handling in multiperspective specifications. IEEE Transactions on Software
Engineering, 20(8):569-578, August 1994.

C. Fischer. CSP-OZ - a combination of CSP and Object-Z. In H. Bowman and
J. Derrick, editors, Second IFIP International conference on Formal Methods for
Open Object-based Distributed Systems, pages 423-438. Chapman & Hall, July
1997.

The RAISE Language Group. The RAISE Specification Language. Prentice Hall,
1992.

ISO 8807. LOTOS: A Formal Description Technique based on the Temporal Or-
dering of Observational Behaviour, July 1987.

ISO/IEC JTC1/SC21/WGT. Basic Reference Model of Open Distributed Process-
ing. ISO 10746, 1993. Part 1 to 4.

ITU Recommendation X.901-904 — ISO/IEC 10746 1-4. Open Distributed Pro-
cessing - Reference Model - Parts 1-4, July 1995.

Jan Jurgens. Formal semantics for interacting UML subsystems. In Bart Jacobs
and Arend Rensink, editors, Formal Methods for Open Object-based Distributed
Systems V, pages 29-44. Kluwer Academic Publishers, 2002.

P. F. Linington. Introduction to the Open Distributed Processing Basic Reference
Model. In J. de Meer, V. Heymer, and R. Roth, editors, IFIP TC6 International
Workshop on Open Distributed Processing, pages 3—13, Berlin, Germany, Septem-
ber 1991. North-Holland.

P. F. Linington. RM-ODP The Architecture. In K. Raymond and L. Armstrong,
editors, IFIP TC6 International Conference on Open Distributed Processing, pages
15-33, Brisbane, Australia, February 1995. Chapman and Hall.

K. Raymond. Reference model of open distributed processing (RM-ODP): Intro-
duction. In K. Raymond and L. Armstrong, editors, IFIP TC6 International Con-
ference on Open Distributed Processing, pages 3—14, Brisbane, Australia, February
1995. Chapman and Hall.

G. Smith. A fully abstract semantics of classes for Object-Z. Formal Aspects of
Computing, 7(3):289-313, 1995.

I. Sommerville. Software Engineering. Addison-Wesley, 1989.

J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.

M. W. A. Steen, H. Bowman, and J. Derrick. Composition of LOTOS specifica-
tions. In P. Dembinski and M. Sredniawa, editors, Protocol Specification, Testing
and Verification, XV, pages 73-88, Warsaw, Poland, 1995. Chapman & Hall.
M.W.A. Steen. Consistency and Composition of Process Specifications. PhD thesis,
University of Kent at Canterbury, United Kingdom, 1998.

A. Yonezawa and M. Tokoro. Object-Oriented Concurrent Programming. MIT
Press, 1987.

P. Zave and M. Jackson. Conjunction as composition. ACM Transactions on
Software Engineering and Methodology, 2(4):379-411, October 1993.

