
Using Policies in the Checking of Business to Business Contracts

Peter F. Linington and Stephen Neal
University of Kent, Canterbury, Kent, CT2 7NF, UK

pfl@ukc.ac.uk, sn7@ukc.ac.uk

Abstract

 The mechanization of business-to-business contract
enforcement requires a clear architecture and a clear and
unambiguous underpinning model of the way permissions
and obligations are managed within organizations.
Policies will need to be expressed in terms of the basic
model, and the expressive power available will depend, in
part, on the ability to compose sets of policies derived
from different sources. The models used must reflect the
structure of the organizations concerned and how the
behaviour of organizations is constrained by broader
shared rules. This paper considers a contract monitoring
system intended to provide automated checking of business
to business contracts, sets out a suitable model and
explains how it can be used to guide the representation
and control of contracts in a prototype monitoring system.

1. Checking business to business contracts

As an increasing amount of routine commercial activity
becomes automated, the importance of techniques for
checking the correctness of interactions and flagging
incorrect behaviour increases. Many situations involving
the supply of goods and services are carried out on the
basis of periodic demands regulated by a previously
established proforma agreement – a contract. Such a
contract will specify the parties involved and the
constraints on the behaviour of each of them. The steps
described are likely to be a mixture of real world events,
such as delivery of goods, and synchronous or
asynchronous interactions between systems in the IT
infrastructure. This may be via web services, workflow
systems or various other forms of middleware. Some of
these steps may be directly observable with suitable tools,
and some may need to be inferred indirectly from
subsequent reports.

The unpredictability of human activities and the need to
satisfy conflicting requirements makes this problem much

more complex than previous requirements to check the
correctness of distributed behaviour, such as protocol
conformance testing. In this environment more flexibility
of interpretation is needed and a certain degree of
backtracking and reassessment is very likely to be
required.

The work described here builds upon previous work at
the University of Kent on the automated checking of the
correct application of design patterns [1][2], which had
many similar features. It also draws upon the work within
the International Organization for Standardization on Open
Distributed Processing (ODP) [3][4] and particularly on
the definition of the Enterprise Language for ODP [5] to
give a framework for modelling contracts and
organizational structures. In this area it takes a similar
approach to the earlier work on Business Contract
Architectures (BCA) [6][7].

This paper starts with a review of the problems
associated with electronic business contracts (in section 2)
and then gives an overview of the architecture adopted (in
section 3). It then reviews the modelling approach being
taken to express organizational structures in terms of
communities (in section 4) and how this relates to the
checking of the correct composition and application of
policies (in section 5). Finally, it describes how the
checking mechanism is being implemented (in section 6),
examines the likely impact of such systems on the
business process (in section 7) and draws conclusions for
future work (in section 8).

2. Assumptions about contracts

2.1. The Form of Contracts

Contracts are rarely self-contained. A contract is an
incremental piece of specification that depends on already
established social and legal norms, and draws on the
organizational structure and place in it of the parties to the
contract. Some of the issues of rule composition and

behavioural inheritance that arise from this positioning
within an overlapping set of environments were explored
in [8]. The most important feature for our current purposes
is the imposition of rules from the environment to
constrain or modify features in the contract. This process
needs to be reflected in the contract interpretation and
checking mechanisms if they are to give effective
guidance on correctness to the business process.

The ODP reference model defines a contract in terms of
a set of permissions, prohibitions and obligations. From
the conformance point of view, prohibition is the easiest of
these to interpret. If something is prohibited, a single
contrary observation is sufficient to demonstrate non-
conformance, and the absence of a prohibited event is
unremarkable.

 Permissions are slightly more complex to interpret.
This is because, although absence of a permitted event is
still unremarkable, and occurrence of a permitted event
confirms that the permission is being satisfied, the failure
of an event is problematical. Although the failure can be
observed, demonstration that it is a failure to honour the
permission depends on the analysis of the cause of the
failure. This is not hard if a failed event is labelled as
being caused by a lack of permission, but is much more
difficult if failure could arise from a number of causes. At
what point, for example, does declaring a resource busy
every time an attempt is made to use it amount to a failure
to honour the permission to do so?

Obligations are even more difficult, because of the need
to assess the urgency with which the obligation is to be
discharged (and the related issues of continuing and
recurrent obligations). Thus the failure to fulfil an
obligation as soon as is reasonably possible is extremely
difficult to assess from observation. The fact that the
required action has not yet been observed is evidence for a
failure to meet the obligation only in simple cases where
the contract specifies an obligation for action before an
explicitly stated deadline. In general, failure to observe an
action does not imply failure to attempt it, and many kinds
of extenuating circumstances are possible.

 If these problems are to be overcome, it will be
necessary to base the implementation on a solid theory of
contract interpretation, particularly with respect to
hierarchies of permissions and obligations, and to
represent this by having a clear reference model for the
steps in performing actions subject to contract. The
approach taken is to express the semantics of a contract in
terms of the behaviour of a core policy interpreter.

The aim of the system described here is to test the
correctness and expressive power of our contract model by
experiment with a pilot implementation of the contract

checking function, and by making trials with a set of
example contracts.

2.2. Contract specification

The starting point for contract specification is the
declaration of the context in which the contract is to be
applied; doing this establishes the constraints under which
the contract is to operate. The contract then needs to be
both consistent with these constraints and internally self-
consistent. Checking consistency can be expensive in
complex cases, but the costs can be reduced considerably
by using suitable conservative approximations. See [18]
for an approach to conflict resolution using logic
programming.

One would expect the contract model to support:
• declaration of pre-existing constraints from the

environment;
• a range of kinds of composition operations on

contracts, allowing their incremental combination and
supporting reuse of existing fragments;

• the delegation of responsibility (although this may be
expressed by using a suitable compositional structure of
communities in the description of the organizational
parties – see below);

• the description of how permissions and obligations are
incorporated into the contract.

One of the distinctive features of our model is in the
reification of both permissions and obligation, using a
capability-like mechanism (see, for example, [9][10][11]
for background to capabilities in the world of operating
systems). This approach unifies the treatment of
distribution of permissions and obligations, particularly
permissions or obligations to make or change policies or to
override pre-existing behaviour. However, a
straightforward capability model is not sufficient; we will
need to combine it with a constrained role structure so as
to give some dual control mechanism explicitly to support
separation of duties. This can be expressed by use of a
combination of roles in action templates and roles in
communities (see below).

Other policy languages, such as Ponder [17], use
unreified systems of permissions and prohibitions to
perform similar modelling. They distinguish between
permitted and prohibited behaviours, but rely on the
definition of defaults when neither a prohibition nor a
permission is specified. We solve the same problem by
deriving constraints from a series of overlapping
communities, so that there is no need for a concept of
default, merely visibility of unmodified rules from an
overarching community in cases where no specific
constraint is being applied. This is in some ways similar to

the way nested contexts are built up in natural language,
an approach that the Opera group in Cambridge are
investigating [15].

3. The control Architecture

The objective in this work is to test the completeness of
our contract model by the construction of a free-standing
contract checking component and the demonstration that it
can identify a significant proportion of the contract
violations that occur. This, and a wish to evolve towards a
Model-Driven Architecture approach, leads us towards a
repository-based architecture. Although the starting point
is different, this has led us to similar conclusions to the
authors of the Business Contract Architecture [6].

Figure 1. The main architectural components.

The main components of an application environment for
the current purposes are thus considered to be:
• a set of enterprise (application) objects;
• a federated contract repository, so that the contract or

contracts applying in any particular situation can be
accessed;

• a monitor that uses the information from the repository
to check events and generate summaries of correctness
and exception reporting events;

• an event distribution infrastructure, capable of
distinguishing between event types, based on a publish
and subscribe model;

• a pervasive infrastructure capable of supporting abstract
binding to form communities and the associated filling
of roles by objects. This infrastructure will also
originate events to describe changes in bindings,
although such information may not always be available;

• some mechanisms for trading or broking available
services to support the dynamic configuration of the

environment and the set of participants covered by the
contract.

Since the current emphasis is placed on testing the
expressive power of the contract model and the checking
system, we exclude for the present such security related
components as a notary. Non-repudiation support will be
essential in a practical system, but does not change the
contract-checking behaviour significantly, and so can be
omitted here.

In addition to the identification of these major
components of the architecture, there are a number of
issues that need to be clarified about their responsibilities
and how they are to interact. The first issue is the
closeness of coupling of the monitor to the repository. One
would expect policy management tools to act on the
repository and changes to be pushed to the monitor, but it
needs to be clear when these changes take effect. Changes
may take effect:
• immediately they are available in the repository;
• for any new activities starting after the insertion of the

changes;
• at a pre-defined time, specified as part of each of the

changes.
Distinct business scenarios can be found to correspond to
each of these, and the expected behaviour should be
specified as part of the change on a case-by-case basis.

The second issue concerns the status of the monitor.
Such a component could function as an independent third
party, or it could be acting on behalf of one of the existing
parties to the contract being checked. If it is independent,
it would be expected to report all violations uniformly to
all parties. If it is acting as an agent for a particular party,
then emphasis will be placed on particular elements of the
behaviour, based on the objectives of that party. The
perceived checking priorities might well be modified by
structures within the environment, as, for example, where
some of the parties to a contract have an over-arching
allegiance based on common ownership. On the other
hand, the checker might be expected to exercise a Chinese
Wall policy, giving balanced reports without regard to the
authority responsible for it.

Finally, there is a need to decide how close the control
loop between the checker and the business processes is to
be. At one extreme, the checker could be seen as an out of
band activity, recording violations for subsequent, largely
unrelated, corrective action. At the other end of the
spectrum, the checker could be expected to make short-
term responses, triggering corrective action immediately.
If such corrective behaviour is foreseen within the
contract, the checking component has effectively become a
party to the contract in its own right. If the control loop is
very closely coupled there will also be a need to consider

the interaction of contract violation events with, for
example, any transactional structure of the application.

4. A basic organisational model

This model is a refinement of the model underpinning
ODP. It uses the foundation concepts defined in the ODP
Reference Model [3][4]. However, it goes beyond the
ODP work in providing a more integrated treatment of
permissions and obligations. Before looking at the detail,
we review some of the general properties of such models
to set the scene.

4.1. Actions and objects

An action represents something that happens; it refers to
a tangible behaviour in some system implementation; for
instance, a communication between two parties could be
considered an action. An action is associated with one or
more objects; if more than one object is involved, the
action is an interaction.

In object-oriented development, the term object is
commonly used to refer to a computational entity. In our
model, objects may represent more than this; for example:
a human that interacts with the system may be represented
as an object, as too may the hardware in use by the system,
or a data-item within it.

An object has a behaviour, and this behaviour is
expressed as constraints on the sequence of actions the
object can be involved in. Actions can be used to express
the contribution to the behaviour of a system from the
system’s human users, the computational model employed,
the hardware used and the system’s data state.

All actions in our model are part of a single type
hierarchy which has a root type called simply “action”. We
employ this type so that we can generalise about the types
of actions referred to in specifications. We assume that
different naming conventions can be resolved by the
mechanisms that support the federation of the contract
repository.

The observed occurrence of an action is an event. An
event will usually relate to one or more objects; this
relation will typically indicate which object has initiated
the performance of the underlying action. The model is not
restricted to this, and events could, for example, be used to
report the occurrence of a predefined sequence of actions.

An event will therefore contain information regarding
the type of action that has occurred and information about
the objects observed to be involved in the action.
However, not all participants are equal; there will
generally be some causal labelling distinguishing the

object that is the initiator of the action. This leads to the
need to distinguish action-roles, discussed further in 4.3.

4.2. Permission and obligation objects

The behaviour of an object constrains the actions it can
perform. The description of this behaviour can be
simplified by dividing it into two aspects, by separating
out those constraints that express the holding of rights,
authorities or obligations to perform particular actions
from the rest of the behaviour. We can express the first
kind of behaviour in a uniform way by talking about the
permissions and obligations themselves as objects. Thus
for an object having a permission to perform a particular
action, it is established practice in certain security systems
to talk about the object holding a capability and about the
management of its authority in terms of the passing or
revoking of capabilities. The passing of a capability is, of
course, an action, and it is in turn under the control of a
capability [9].

Although this has not previously been considered, a
similar idea can be applied to obligations. An interaction
that results in one of its participants being required to
undertake some further actions can be described as passing
an obligation object, and obligations can be passed in
interactions, subject to the possession of appropriate
capabilities. Doing so modifies the behaviour of the
receiver of the obligation. Thus, we can pass some object
an obligation object to impose further obligations on it, or
to pass specific capabilities on to any objects it controls.

What about the repudiation of such obligations by the
object holding them? If one were considering the idea of
an operating system to police obligations, it would be
necessary to prevent an object from simply discarding an
obligation. However, this is not a problem in a
specification language. It should be kept in mind that the
reified obligations introduced here are part of the
description of the behaviour required by the contract, and
not necessarily an implementation mechanism. We can
therefore define the specific conditions under which an
obligation object can be destroyed, corresponding to the
discharge of the obligation and state that it remains in
existence until these conditions are met. A contract will
need to say what happens if an object ceases to exist while
holding an obligation. The obligation object may survive
and become associated with some larger organisational
unit.

To emphasise this uniform distinction between objects
and unlocalised constraints, and to avoid further
overloading the term “capability”, we will introduce new
terms, referring to reified permissions as permits, and to
reified obligations as burdens.

Just as with capability systems, one can define variants
of the model depending on the extent to which checking of
the principal exploiting or taking responsibility for the
object is prescribed in the model. The “purest” form of
permit or burden is one which is characterized entirely by
the pattern of behaviour described, but we can also define
variants in which the object being passed includes some
restriction on the set of principals that can validly invoke
it. Such a restriction could be based on community
membership, naming or could be an arbitrary predicate.

4.3. Interactions and action templates

The previous section considered the relation between an
object and the actions it performs from the perspective of
the object concerned.

Interactions are slightly more complicated. The different
participants in an interaction may require different permits
and pass different burdens, because the participants are
involved in different roles with respect to the action.1 For
example, the interaction “deliver goods” involves a
deliverer action-role and an acceptor action-role, and
carrying this one action out involves filling both action-
roles, checking the two distinct permits. The action will
result in a burden of responsibility for payment passing in
one direction and a burden for dealing with complaints
about faulty goods passing in the other. Note that, in this
example, the burdens are instantiated by performing the
interaction; a burden (or permit) factory may also be
included in the community specification to support this. In
other cases, such as an interaction establishing some
delegation relationship, an existing burden may be passed
on during the interaction.

In any particular instance, these action roles can be
associated with the community roles of the objects
concerned (see below), but in general the action-roles and
the community roles have different scopes and lifetimes.
The action role focuses on the properties of the action,
abstracting away from the behaviour in which it occurs,
while the community role focuses on the behaviour of a
collection of objects as a whole and the place of some
object within it.

The nature of an action can be represented by an action
template, which defines the possible action-roles involved
in performing the action. The granting of a permit gives an
object the authority to be involved in a particular action-

1 The ODP foundation concepts define the concept of role as part
of a general instantiation mechanism based on templates.
However, this generality has been obscured by the practice in the
ODP Enterprise Language of using role as a contraction of the
more specific concept of enterprise-role.

role, and does not necessarily permit it to be involved in
other action-roles in the same action. Thus a particular
object might have the permit to act as client or as server in
a particular client-server interaction and these roles are not
simply interchangeable.

4.4. Communities

A community is a group of objects that work together to
achieve a common goal or goals. Within a community,
actions are performed to provide the required behaviour to
achieve these goals. The collection of actions that are of
interest in a particular community may be referred to as
that community’s action alphabet.

The behaviour of any community is governed by the
permits and burdens it holds, and by how it distributes
them. The permits and burdens will each originally be
received from some source of authority, or created as a
result of some authorised action being performed. In our
model, these relationships to an authority are made explicit
by associating them with the community’s membership of
one or more superior communities with distinct
responsibilities to act as authorities. The authority is
responsible for determining the legality of the actions that
are performed within the community, and this is modelled
by its providing permits or burdens to the community
being controlled. The ability to create new permits may be
maintained at a single point within a community or shared
among multiple points to model a shared style of
management or policing.

The authority of a community will dictate permissions
and obligations that are assigned to community roles and
qualify the behaviour of the objects in these community
roles by providing the permits for the action-roles the
community object can be involved in. This can apply for
any of the actions in the community’s action alphabet.

In any model, there must always be a root authority that
holds ultimate responsibility for the system as a whole.
The root authority may choose to delegate authorisation to
child communities to allow certain behaviour as they see
fit. The root authority might also choose to withhold
permits from, or impose burdens on, a child community to
modify its behaviour; in this way, a community may
specify constraints on the behaviour of the objects in it, by
allocating burdens in a way that the participating objects
cannot refuse.

4.5. Roles

Community specifications are organised around the
roles that the community members play. They allow the
specification to be parameterised in a flexible way. In

order that community types may be specified prior to
knowing which actual objects will be combined to form
the community instances, roles are used to indicate the
position that an object may hold within a community. For
example, a hospital community may have roles for
administrative staff, doctors, nurses and patients.

The rules for any given community will specify the
permitted behaviour for objects playing these roles (or any
combination of them), constrained by the permits the
objects themselves hold, and the burdens placed on them.
Since an object may have obtained permits through its
membership of multiple communities, the communities
can influence their shared behaviour.

Roles can be considered as formal parameters for a
community. When a community is formed, objects will be
selected, in some way, to play these roles. Roles may also
specify their cardinality. Should a role specify a minimum
cardinality of greater than zero, then that role must be
filled at all times during that community’s lifecycle –
including when the community is initially formed.

The community specification may also constrain the
number of roles filled. In situations where a role must
always be played, fallback mechanisms to deal with
exceptional circumstances may be required to cater for
how a role should be filled in an emergency; for example:
to describe how an acting CEO should be appointed in
response to the current CEO’s sudden arrest.

Since communities are themselves objects, one
community can fulfil a role in another, and it is in this way
that hierarchies of communities are created. A single
object can also fill roles in several communities, coupling
their observable behaviours as a result.

When a permit to perform an action-role is given to an
object, this permit also applies, unless otherwise stated, to
the same action-role in all subtypes of the action.
However, refinement of the action may result in new
distinctions that can have different associated permissions.
This is an example of the legal principle of the specific
overriding the general, and allows the specification of
child communities to refine the permit, prohibiting some
action sub-types. Whether a child community can refine an
action that is not permitted by its parent depends on the
higher levels of the hierarchy; it would have to be
permitted at some higher level and not prohibited at any
point on the downward path.

4.6. Policies

Neither technical systems nor organizational systems
have a static specification; both evolve over time, but in
many cases, the aspects most likely to change can be
predicted at the time the initial design is performed [12].

In such cases, parts of the specification can be identified as
mutable.

These mutable collections of rules form the
community’s policies. An object that is a member of a
community adheres to that community’s policy. That is to
say, an object must conform to both the fixed rules given
in the predefined parts of the community’s specification,
but it must also conform to the specific collections of rules
representing the current policies. In general, the behaviour
of a community with a set of policies applied is a
refinement of the possible behaviour allowed by the union
of all valid policies (the policy envelope). However, this
general envelope for community behaviour may not itself
represent a valid policy; there may be mutually exclusive
choices within the set of possible policies.

A policy is therefore a named placeholder for a piece of
behaviour used to parameterise a specification in order to
facilitate response to later changes in circumstances. The
behaviour of systems satisfying the specification can be
modified by changing the policy value, subject to
constraints associated with the policy in the original
specification.

Stating a policy involves a number of key steps:
• defining a set of circumstances in which the policy is to

apply;
• identifying some non-trivial choice to be made under

the control of the policy (a specific set of rules);
• identifying an envelope that constrains the range of

behaviours that can be specified for the choice made by
the policy;

• identifying what information must be available for the
policy to interpret;

• defining a decision procedure to be applied in assessing
the situation and in actually making the choice;

• defining any invariants that may need to be respected
by the system in general for the policy to be effective.

4.7. Contract

In legal terms a contract involves agreement,
consideration, certainty and intention, and only sometimes
involves written formality.

In our model, a contract is an agreement between a
number of objects (although often only two). A contract
should be capable of specifying accurately:

a) the order of actions that the objects in the contract
should be involved in;

b) the timeliness of these actions;
c) whether these actions transfer permits or burdens,

and whether they discharge burdens;

d) fallback strategies to adopt, or penalties to apply,
should the above requirements not be met.

Communities model groups of objects and express the
ways in which the permits and burdens that the objects in
the community hold can be modified by the community
behaviour.

A contract instance can be represented as a short-lived
community, with rules specifying the obligations of that
contract.

4.8. The execution of actions

To summarize the basic model for the performance of
actions, the general behaviour of an object is the result of a
number of interlocking factors. It depends on the nature of
the objects concerned, the communities they form part of
and the environment created by the history and
composition of the overlapping and overarching
communities involved. In particular:
• an object has some broad intrinsic behaviour

determined by its object type; an object can never
perform actions outside this basic behaviour;

• each of the communities in which the object
participates constrains the behaviour available,
although the form of constraint may be affected by the
way multiple communities are composed or role-filling
constraints can be applied;

• the resultant potential behaviour of the object is then
restricted to a subset determined by the subset of
actions and action roles for which each object holds
permits. An object can perform a potential action if it
has the appropriate permit, irrespective of the route by
which the permit was obtained. It is not in general
possible to determine, where a potential action is
allowed, the contribution to the composition of
community behaviours from a particular community.
The potential behaviour is consistent with the
composition and hence necessarily with all of the
components, but the permit can come as a result of
behaviour involving a permit factory from just one
community.

• if the above conditions are satisfied, the action can take
place, and observations of it are considered valid.
Whether or not an object is willing actually to perform
the action will depend on the goal seeking objectives of
the communities, particularly the burdens it is obliged
to discharge. Performing the action can result in
creation or transfer of burdens to or from the objects
involved.

• if the completion of the action fulfils the obligation
represented by a burden supported by any of the objects
involved, that burden is discharged and ceases to exist.

Note that there is no inconsistency inherent in an object
holding a burden which needs to be discharged by an
action the object currently has no permit to perform. The
burden will have some associated urgency or failure
conditions, such as a time limit, and it may be validly
discharged at any earlier time by acquiring the necessary
permit. Alternatively, the burden may be disposed of by
passing it on to some other object, which has behaviour
specifying that it is willing to accept the responsibility.

Consider, for example, the “deliver goods” action
discussed earlier. An object in the deliverer action-role
may acquire a burden to carry out the delivery as a result
of the “place order” action being completed, but may
remain unable to do so because specific arrangements for
delivery have not been made. Thus, although the deliverer
object carries the delivery burden, the preconditions for
discharging it are not satisfied, and a reasonable contract
should not flag a violation.

This situation changes, however, when the acceptor
transfers a permit making performance of the “deliver
goods” action possible (together with other specific
parameterisation of it, such as a delivery address and
agreed time). When this is done, delivery can be expected
within the agreed interval, and failure to perform the
action in that interval is a violation.

5. Composition of communities and policies

5.1. The problem of composition

This section relates to both communities that are used to
represent contracts and to those used specifically to model
the more structural aspects of a system. There has been a
considerable amount of work on the requirements for
contract composition; see, for example, [13][14][16]. A
brief example illustrates some of the problems arising
from the composition of communities.

Consider a situation in which a number of clubs and
societies exist, and the social norms dictate that they be
explicit about whether their members can perform actions
of importance to their objectives. That is to say, they are
expected to define a number of policies, where relevant.

As a member of a gun club, I am given a permit to fill
the ‘shooter’ action-role on the fire-gun action.
Considering that I have this permission, a pacifist
organisation might choose not let me join2 their

2 They may allow me to join regardless of this role but make
objections when I exercise the right to fire a gun. This would
amount to a dynamic detection of policy infringement rather than
a pre-emptive static one.

community as they specify a policy that states that the
‘pacifist’ role in their society is prohibited from filling this
action-role. However, a local sailing club has no policy for
this action-role and therefore allows both pacifists and
shooters to join their community.

What this approach offers is the ability to declare a
policy where the ability to fill an action-role may not be of
relevance to a community. In our example, the sailing club
is not interested in whether or not I am capable of firing a
gun, and allows me to join regardless of this. In any
circumstances, a permit is needed to perform an action-
role. Any given community has an associated action
alphabet and only the actions in this set are of relevance to
rulings made by this community. By restricting the
alphabet of the sailing club to not include the fire-gun
action, we can indicate that it is not of interest to this
community. The consequence is that members may or may
not be capable of performing this action.

This scenario is illustrated in figure 2. The Gun club
community (GC) and the Pacifist community (P) both
have the fire-gun action in their alphabet. Only the gun
club grants permits for this action and the pacifist do not.
Members of GC may fire guns, members of P may not,
and the SC community is not concerned with such events.

GC SC

P

Figure 2. Actions in overlapping communities

It is often the case that a parent community does not
prevent behaviour that it does not permit (for example by
under-specification). It may still subsequently give a
permit to a child community to allow actions it does not
itself specify. In this case, if an object performs such an
action, it will be judged by the behaviour rules of the other
communities of which the object is a member. The use of
permits to allow a piece of behaviour is decoupled from
the behaviour by which the permit is obtained, and may be
derived from different community specifications. The
same can be said of objects filling more than one role in a
single community; a permit obtained in one role may be
used in another, and it is because of this that additional
constraints are needed to control role-filling to support
separation of duties.

5.2. The authority to authorise

As discussed above, authorisation is managed by
passing permits to administer policies from a parent to a
child community.

One such permit is that which allows authorisation to be
passed in such a manner. Any given community can (if it
is permitted to do so by its parent) pass this authority on to
the objects that play roles within the community.

Passing this permit on to the objects in the community
provides a model where the objects in the community are
capable of dictating their own rules and guidelines. This
might allow the objects to take on new burdens, or
delegate existing ones to other objects in the model.

By making the passing of such permits and burdens
explicit, it becomes possible to track the line of
responsibility in a system from the objects acting in it back
to the goals for each community.

When an object uses a permit to alter its own
permissions and obligations, it does so with respect to one
of the roles it plays. Therefore, should the object stop
playing that role, the obligations and permissions for that
role will no longer apply to it; instead they will apply to
the next object to play the role. Care should be taken to
ensure that obligations continue to be met when roles are
swapped in this way – this issue comes down to a correctly
designed model (see sub-section 5.3 below).

A community (or contract) will be defined with a
particular goal in mind. In order to achieve this goal
certain presumptions will almost certainly need to be made
regarding the permits of this community; for example,
members of the community may require access to
privileged data.

In order that communities may be specified without
concern for such issues, an appropriate syntax should
make all such presumptions explicit. This will also help to
facilitate a negotiation stage when the community is
realised. At this stage, the requirements of the community
can be negotiated with the community’s parent community
and the appropriate permits granted or refused.

A contract will therefore have two levels of correctness:
firstly, the contract should be well formed, or syntactically
correct; secondly, in order to be used the contract should
be contextually valid. This means that the requirements of
the community, as specified, are viable in the context in
which it is to be used. So, for example, a contract in which
one of the parties grants a cost discount to another will be
well formed if it is syntactically correct. However, it will
generally only be contextually valid if the community that
uses that contract has the ability to grant permits to give
cost discounts.

In addition to this, to facilitate community composition,
there must be a mechanism that allows a parent
community to decide whether or not to grant a permit to a
child. This is done by introducing a permit for the
delegation action. This too will need to form part of the
community’s specification and should allow decisions to
be made based upon a simple predicate logic notation.
This notation should specify to what level the child
community has control over this permit. Syntactic features
to manipulate composite permits give a compact
representation of the related permit to act and permit to
delegate control of the action. This can be used to indicate
whether the child is allowed to forward the permit to its
children or to others.

For example, a parent community may provide its child
with a variety of sets of control objects:

a) if a permit for action-role A is provided on its own,
then the receiving community can fill that action-
role but cannot delegate it to another community
(although it does decide which of its members will
perform the action – this distinction is not visible
until the receiving community is refined, and so is
not visible in the permit passed).

b) if a permit for the action-role A is provided together
with a burden that would be discharged by
performing it, the receiving community can be
expected to perform the action eventually.
However, the degree of urgency will depend on the
details of the burden.

c) if a permit and burden for action-role A are both
provided, together with a permit to transfer them to
all members of a particular group of objects (other
than the child community concerned, which would
be a trivial extension for the reasons given in (a)),
the receiving community can make a local choice to
perform the action or pass on the two objects. It
could also pass on just one of them, but this is
unlikely to satisfy its goal seeking behaviour.

d) if a permit and burden for action-role A are both
provided, together with both a permit and a burden
to transfer them to all members of a particular
group of objects, then the receiving community
must pass them on; if it performs the action itself,
the first burden will be discharged, and so the
second cannot be.

e) If a burden for action-role A is provided, together
with a permit and burden to pass it on, the receiving
community must attempt to pass them on.
However, their recipient will not be able to
discharge the burden unless it already has, or can
acquire, the necessary permit from some other
route.

These are just a few of the many possible combinations
that can lead to a rich variety of behaviours.

Finally, there should be a revocation mechanism in
place. The predicates that determine whether permit are
granted should be subject to review so that the parent
community is given the chance to withdraw permits that it
has previously granted.

5.3. Jurisdiction and delegation

Objects may belong to any number of communities.
When an object belongs to multiple communities, it is
bound by the conjunction of the rules and policies of these
communities. The policies of all the communities must be
observed by the object at all times.

It is possible that a new community is formed solely for
the purpose of allowing two, otherwise disparate,
communities to interact. In this case, the objects so
enabled in each of the disparate communities become
subject to the rules of the new community.

In order to form such a community, it is necessary that
the two parents are both prepared to grant permits via the
new community in order that the required actions be
performed. Contradictions in policy could prevent this
from happening; such conflicts could be detected in
advance of this and negotiated out before the new
community is formed. Alternatively, the new community
could be formed regardless of conflicts (as these may be
too restrictive) and its members then monitored for illegal
behaviour. This will allow communities to be formed more
freely, as the policies may contain contradicting rules, but
only when an object behaves in violation of these rules
will there be a problem. In many cases the object should
be aware of its limitations and behave correctly;
exceptions to this will be detected. The distinction being
made here is similar to the distinction between inherent
behaviour and social behaviour in [8].

One area where the relationship between parent and
child communities can be quite complex is delegation.
Here it is necessary to be able to express dynamic changes
in responsibility in a flexible way. This can be done by
introducing an additional indirection into the role-filling
process. Instead of the normal process of filling
community roles by objects, a community can be defined
that represents a dynamic role mapping between some role
it appears to fill and its member objects. This is, in effect,
a mutable compound binding and allows a richer variety of
reconfigurable chains of permission and responsibility
with a single point of configuration control. The resulting
structure can be combined with a suitable reconfiguration
trigger to overlay delegation processes on normal
behaviour.

5.4. Action hierarchies

At different level of abstraction, it should be possible to
specify contracts that define general rules for a
community.

Child communities should then be capable of giving yet
more specific rules for their members, perhaps even
overriding the rules specified by the new child’s
grandparent, if the permits held by the new parent permit
the appropriate actions.

In order to simplify this, all actions are defined as
belonging to a single inheritance system, although, to
allow constraints between non-adjacent generations, it will
be a directed acyclic graph, not a hierarchy. High-level
communities, then, can specify rules for abstract actions
and the children may be granted permission by the parents
to overrule their policies, within limits.

For example, in a high level policy it may be stated that
all employees must have prior approval before committing
company funds. However, this might be refined in the
purchasing department’s community by introducing a role
distinct from employee, to allow monthly budgets for
community members to be used with post-hoc
justification; the size of such budgets would vary
depending upon the staff seniority.

6. Implementation of the checking framework

6.1. The core interpreter

The aim in designing the core policy interpreter has
been to keep it as flexible as possible; we need to be able
to experiment with different forms of constraint expression
and composition. The policies as a whole are expressed in
XML, including the behavioural specifications, which are
represented as simple tree-structured forms in which the
internal nodes represent process-algebra style composition
operators.

An eXecutable XML Language (XXL) framework has
been created to support the interpreter. XXL uses an XML
DOM to represent a program’s canonical structure and
interprets it to support threads, stacks, scoped variables,
and basic control flow structures. Programs for XXL are
therefore well-formed XML documents where the
operators in the language are the elements within the
document. XXL has been developed in house at UKC to
allow simple languages to be prototyped rapidly.

In addition to the core XXL language, additional
constructs are defined for the specification of contracts.
These constructs launch threads for each contract instance,

which in turn process all events for that contract as they
are received.

Within a contract there are definitions for the roles that
the contract uses, and these are then used in defining a
series of clauses that the contract supports. These clauses
can be used to define the permitted sequences of actions
that the contract will allow, together with any temporal
constraints on them. The operators in the core language
mean that these sequences of events can be very complex
and can even be based upon data values detected in the
actions; for example, it might be specified that an agent
should apply a 10% discount for any purchase events with
a value over $1,000,000.

6.2. Reporting events

Events are detected at some suitable point in the
infrastructure close to the point at which the actions being
observed were originated. This is done by inclusion of a
suitable reporting mechanism within the stub code
supporting the interactions, so that no additional
requirements are placed on the application. The actual
reporting can be provided by a separate remote invocation,
but the load placed on the application components can be
minimised by using a lightweight publish and subscribe
mechanism for event distribution. Using a well-established
publish and subscribe mechanism makes it more likely that
the participants will have the necessary level of trust in the
event reporting mechanism, although the actual event
generation will still need to be validated. However, the
looser coupling inherent in a publish and subscribe
channel might aggravate timing problems.

Clock synchronization is an ever-present problem in
distributed systems. Here it manifests itself in the
difficulty of establishing a correct global ordering for
events. If events are time-stamped at source using an
unreliable clock, the order of pairs of events that occur
close together may be inverted, leading to the incorrect
reporting of behavioural violations.

If it is known that the possible clock differences are
bounded and the minimum transit delay between systems
known to be greater than this, it is possible to assume that
at least a causal ordering is maintained. For larger timing
uncertainties, it may be necessary to attempt interpretation
of all the possible orderings of events reported within a
critical timing window, and to select the most plausible.
Even so, frequent timing clashes should be treated as
suspicious.

In the simplest situation, there is a one-to-one
correspondence between contractual actions and events
reported to the monitor. In general, however, there is often
a filtering or summarisation process involved in the event

delivery, reducing low-level events to more abstract ones
at a position near their source, and pruning unwanted
events by discarding them early in the process. Such
facilities are found in modern publish and subscribe event
notification services. However, this is an area where
significant optimisation of the software can be made with
the use of intelligent system probes. A naïve
implementation blindly forwards all information but is
very simple to implement.

Finally, there is, in general, a need for the event
management subsystem to maintain suitable mappings
from the infrastructure components that are reported as the
source of events to the more abstract entities described in
the contract. While it is often possible to initialise this
mapping from observed events (such as interactions with
factory objects), there will be cases where some additional
explicit information, such as the registration of mappings
to support new contract instances, may be needed. In the
current prototype, suitable events are made available
explicitly at the key stages in the lifecycle of the
community roles being checked. We expect the contract
specification to be supported by declarations of the
minimum set of events to be reported by valid participants,
and by the definition of the recognition process to be
applied when identifying high-level events from patterns
of simpler ones.

6.3. Interpreting Actions

In order to determine whether an observed action is
legal, the monitoring tool needs to maintain a model of the
communities that are present in the monitored system.
This model is dynamic in nature and adapts in reaction to
the observed behaviour.

To support a monitoring tool, the observed system must
supply information regarding both the community model
in use and the actions that take place within it. Both of
these requirements can be implemented during contract
agreement by using a reliable message passing system.
However, exactly what information needs to be sent to the
monitor depends on the monitor’s needs for a particular
contract; for example, object lifecycle actions may be
relevant for some contracts and not others. It is assumed
here that the mechanisms described above for ensuring
that sufficient information is generated and forwarded to
the monitor are negotiated in an initial step between the
parties involved.

6.4. Dealing with ambiguity of interpretation

One of the problems in interpreting the event stream is
that there can well be non-deterministic choice, associated

with internal actions in the community behaviour. Since
these cannot be observed, the different possible
behavioural traces can only be distinguished by examining
subsequent actions and it is possible that a considerable
number of actions will need to be checked before
ambiguity can be resolved.

This implies that the monitor may need to carry forward
a number of different possible interpretations, maintaining
the set of ambiguous readings until further observation
allows the ambiguity to be removed. This applies to both
the placement of hidden actions in the trace and the beliefs
about the consequent internal state of the objects involved.
Techniques for doing this in an efficient manner were
described in [1]. They depend on the maintenance of a
branching sequence of incremental changes to the assumed
state of the objects, which is pruned as alternatives prove
incorrect and the changes re-integrated whenever no
further ambiguity remains.

Although these techniques have not yet been
incorporated into the current prototype, there is no
problem in principle in doing so. There are, however,
some issues about the way error reports should be
generated:

a) the reports could be withheld until ambiguity has
been resolved to a sufficient degree for it to be clear
that an error has definitely occurred; this might
involve some considerable number of further steps
taking place after a violation before notification is
given;

b) a provisional report could be made as soon as one
of the possible readings of the observation indicates
a violation, followed by a confirmation or retraction
as the ambiguity is resolved.

In either case, this process depends on the incorrect
behaviour being detectable eventually from the
observations. If a violation of the prescribed behaviour
happens that is observationally equivalent to a different,
valid, sequence, it will go undetected.

7. The role of contract checking

The creation of flexible and effective contract
monitoring components will increase confidence in
automated business-to-business interactions. Early
adopters are likely to be in repetitive call-off supply
agreements where the structures are simple, but the
ubiquitous exploitation of such facilities will modify the
way business-to-business systems are designed and
supported.

The most likely initial consequence will be the more
general adoption of explicit electronic contracts, both for

commerce but also for a range of infrastructure services,
increasing the prevalence of explicit definition of service
level agreements, for example. A side effect of this will be
the more widespread availability of contract related
performance indicators, such as response times.

On a somewhat longer time-scale, adoption of contract
definition notations and the reuse of common fragments
will encourage some uniformity of style in the expression
of contracts in general. The availability of monitoring, in
particular is likely to lead to a style of expression in which
there is more reliance on the existence of tightly coupled
checking. This is because the general availability of
checking and automated responses will make exception
handling lighter weight and more likely to be used to
remove incidental clutter from the main line of the
contract specification.

8. Conclusions

This paper has presented a model and prototype
infrastructure for the automated checking of business-to-
business contracts. It has introduced a novel modelling
approach to obligations, unifying the treatment of both
permissions and obligations by reifying both, and
describing permit and burden passing in a way analogous
to the established treatment of capabilities.

As a further test of the general approach to monitoring
given in this paper, the authors are currently collaborating
with the group at the DSTC to integrate the prototype
monitoring component into their business contract
infrastructure. This exercise has helped to test the
generality of the approach and identify any unintended
limitations. The final stage of this collaboration is to port
the resultant system onto a SunONE and J2EE
infrastructure at the University of Kent to check its
applicability to a standard commercial e-commerce
environment. A number of the necessary components for
this are already available, because the earlier patterns work
was constructed on an RMI base, and so modifications of
the stub generation mechanism to capture and relay
significant events can be reused.

The final goal in testing the applicability of the
techniques described here must be deployment in a full
commercial environment, but the planning for such a trial
needs to be based on further prototype results.

References

[1] S. Neal, “A Language for the Dynamic Verification of
Design Patterns in Distributed Computing”, PhD Thesis,
University of Kent, 2001.

[2] S. Neal and P.F. Linington., “Tool Support for
Development using Patterns”, in Proc. 5th International
Enterprise Distributed Object Computing Conference,
Seattle, USA, September 2001

[3] ISO/IEC IS 10746-2, Open Distributed Processing
Reference Model – Part 2: Foundations, January 1995

[4] ISO/IEC IS 10746-3, Open Distributed Processing
Reference Model – Part 3: Architecture, January 1995

[5] ISO/IEC CD 15414, Open Distributed Processing –
Enterprise Language, July 1999

[6] Z. Milosevic and A. Bond, “Electronic Commerce on
Internet: What Is Still Missing?”, INET’95.

[7] A. Goodchild, C. Herring and Z. Milosevic, “Business
Contracts for B2B, Proceedings of the CAISE00 Workshop
on Infrastructure for Dynamic Business-to-Business
Service Outsourcing”; June 5-6, 2000

[8] P.F. Linington, Z. Milosevic and K. Raymond, “Policies in
Communities: Extending the ODP Enterprise Viewpoint”,
in Proc. 2nd International Workshop on Enterprise
Distributed Object Computing (EDOC’98), San Diego,
USA, November 1998.

[9] H.M. Levy, “Capability-Based Computer Systems”, Digital
Press 1984.

[10] M. V. Wilkes and R. M. Needham. “The Cambridge CAP
Computer and its Operating System”, North Holland, New
York, 1979.

[11] J. Shapiro, J. Smith and D. Farber. “EROS: A Fast
Capability System”, in 17th ACM Symposium on
Operating System Principles(SOSP'99), Charleston, USA,
December 1999.

[12] P.F. Linington, “An ODP approach to the development of
large middleware systems”, in Proc. DAIS99, June 1999.

[13] Z. Milosevic and R. G. Dromey, “On Expressing and
Monitoring Behaviour in Contracts”, EDOC 2002

[14] N. Dunlop, J. Indulska and K. Raymond, “Dynamic
Conflict Detection in Policy-Based Management Systems”,
EDOC 2002.

[15] A.S. Abrahams, D.M. Eyers and J.M. Bacon, "Mechanical
Consistency Analysis for Business Contracts and Policies".
Proc 5th International Conference on Electronic Commerce
Research (ICECR5), Montreal, Canada, 23-27 October
2002.

[16] J. Cole, J. Derrick, Z. Milosevic and K. Raymond, “Author
Obliged to Submit Paper before 4 July: Policies in an
Enterprise Specification”, Policy Workshop 2000

[17] N. Damianou, N. Dulay, E. Lupu, and M. Sloman.
“Ponder: A Language for Specifying Security and
Management Policies for Distributed Systems. The
Language Specification - Version 2.2”, Research Report
DoC 2000/1, Imperial College of Science Technology and
Medicine, Department of Computing, London, 3 April,
2000.

[18] J. Chomicki, J.Lobo and S.Naqvi, “Conflict Resolution
Using Logic Programming, IEEE TKDE, 15, 1, 244-249,
January 2003.

