
Birrell’s Distributed Reference Listing Revisited

Luc Moreau

School of Electronics and Computer Science, University of Southampton

and

Peter Dickman

Department of Computing Science, University of Glasgow

and

Richard Jones

Computing Laboratory, University of Kent

The Java RMI collector is arguably the most widely used distributed garbage collector. Its dis-
tributed reference listing algorithm was introduced by Birrell et al. in the context of Network
Objects, where the description was informal and heavily biased toward implementation. In this
paper, we formalise this algorithm in an implementation-independent manner, which allows us
to clarify weaknesses of the initial presentation. In particular, we discover cases critical to the
correctness of the algorithm that are not accounted for by Birrell. We use our formalisation to
derive an invariant-based proof of correctness of the algorithm that avoids notoriously difficult
temporal reasoning. Furthermore, we offer a novel graphical representation of the state transition
diagram, which we use to provide intuitive explanations of the algorithm and to investigate its
tolerance to faults in a systematic manner. Finally, we examine how the algorithm may be opti-
mised, either by placing constraints on message channels or by tightening the coupling between
application program and distributed garbage collector.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Memory
management (garbage collection)

General Terms: Algorithms, Verification

Additional Key Words and Phrases: Distributed garbage collection; distributed reference count-
ing/listing; proof of correctness

Authors’ address: Luc Moreau, L.Moreau@ecs.soton.ac.uk, School of Electronics and Computer
Science, University of Southampton, Southampton, SO17 1BJ, UK.
Peter Dickman, pd@dcs.gla.ac.uk, Department of Computing Science, University of Glasgow,
Glasgow, G12 8QQ, UK.
Richard Jones, R.E.Jones@ukc.ac.uk, Computing Laboratory, University of Kent, Canterbury,
Kent, CT2 7NF, UK.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20 ACM 0164-0925/20/0500-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20, Pages 1–53.

2 · Birrell’s Distributed Reference Listing Revisited

1. INTRODUCTION

Modern programming systems have popularised the idea of distributed object-
oriented languages that abstract away from the physical reality of distributed mem-
ory by providing the same invocation interface for local and remote objects. These
abstractions may be part of the language (for example, Emerald [Jul et al. 1988])
or provided through libraries (such as Modula-3’s Network Objects [Birrell et al.
1994a; 1994b; 1995] or Java’s RMI package [Sun Microsystems 1996]). A crucial
component of this abstraction layer is a distributed garbage collector that extends
uniprocessor garbage collection [Jones 1996] in order to reclaim unused objects in
a distributed setting.

In a significant number of distributed languages, among them Java RMI, dis-
tributed garbage collection relies on distributed reference counting or listing algo-
rithms. Intuitively, distributed reference counting counts the number of remote
references to an object, whereas distributed reference listing keeps a list of re-
mote processes holding a reference to the object. Such algorithms provide timely,
low-cost, incremental recovery of garbage objects by determining when the last
reference to an object is discarded or overwritten. Besides their technical appeal,
such algorithms are also popular from an implementation viewpoint because they
can be integrated relatively easily with existing uniprocessor garbage collectors.
The drawback is that distributed reference counting and listing algorithms, in their
basic forms, are unable to collect distributed cyclic data structures. However, this
can be addressed through hybridisation with a more expensive complete1 collector
or partially overcome by inclusion of a limited cycle collector [Rodrigues and Jones
1998; 1996; Lang et al. 1992].

Because of their wide application, distributed reference counting and listing al-
gorithms are an important subject of investigation. In this paper, we provide new
insights into the principles, formalisation, implementation and extension of a crit-
ically important algorithm that is in widespread use in distributed systems. This
distributed reference listing algorithm was initially presented by Birrell, Evers, Nel-
son, Owicki and Wobber, and for short we will refer to it as Birrell’s algorithm.
Through its use in Java, it is arguably the most disseminated and widely used
algorithm in the distributed reference counting and listing family.

Birrell’s reference listing algorithm is built into a Remote Procedure Call (RPC)
layer constructed over a lossy message-passing layer. First presented in DEC SRC
Technical Report 116 [Birrell et al. 1993], an adjunct to the Network Objects Tech-
nical Report 115 [Birrell et al. 1994a], Birrell gives an informal description and an
outline proof of safety and liveness properties of their algorithm. Unfortunately,
the informality of their presentation leaves a number of questions open and the
underspecification of key points of their algorithm provides only limited guidance
to the implementor.

Distributed garbage collection algorithms are difficult to specify or implement
correctly. In this paper, we identify the limitations of the original presentation and
provide a formal description of the algorithm. We represent the distributed system

1A complete collector is one that guarantees to reclaim all garbage eventually. Typically, tracing
collectors are complete whereas reference counting/listing collectors are not.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 3

as an abstract state machine, composed of processes that communicate through
asynchronous message passing, whose behaviour is described by state transitions.
This representation has five advantages. (i) We can describe the behaviour of
the system with a novel, and highly intuitive, graphical representation. (ii) Our
description is independent of implementation technique (such as RPC or stack-
based run-time systems). (iii) In order to address concurrent execution, the
critical sections of the algorithm are made explicit. (iv) It permits us to provide
new, simpler proofs of key properties (safety and liveness) than those based on
(notoriously difficult) temporal reasoning. (v) Finally, we are able to clarify details
of Birrell’s algorithm to ensure that future implementors avoid subtle pitfalls.

Outline of the paper

We motivate our approach in Section 2 by highlighting problematical subtleties in
the original presentation and by showing how the original informal proofs depend
on hard-to-formalise aspects of the implementation. To allow more robust proofs
and simplify the comparison with other algorithms, the bulk of this paper describes
(Section 3) and proves properties (Section 4) of a formalisation of Birrell’s algo-
rithm. We suggest variants and optimisations of the algorithm in Section 5. In
Section 6, we show how our formalisation may be extended to accommodate com-
munication and process failures. We compare related work in Section 7 and identify
directions for further work in Section 8 before concluding in Section 9.

2. OVERVIEW OF BIRRELL’S ALGORITHM

Distributed reference counting and listing algorithms have been developed over
the last twenty years [Jones 1996; Plainfossé and Shapiro 1995; Abdullahi and
Ringwood 1998] and are all variations and extensions, to a greater or lesser extent,
of the original reference counting algorithm proposed by Collins [1960] for single-
threaded Lisp-style languages on uniprocessors.

In this section, we introduce the terminology adopted to describe such algorithms,
present the naive definition of reference counting in a distributed setting and revise
Birrell’s answer to this problem.

2.1 Terminology

Object-based distributed systems compute using a dynamically manipulated graph
of objects and references. From the point of view of the garbage collector, the appli-
cation program simply mutates the object graph. Thus, the program is referred to
as the mutator in memory management literature [Dijkstra et al. 1978]. Whenever
a new instance of an object is created, a reference to it is provided to the creating
process. Such references may be discarded by overwriting the storage containing
them with another reference or the distinguished value null. References may also
be copied, with the copy being placed in another storage slot or passed in a message
to another object. References may be received in messages. A process can send
messages only to objects for which it holds references. Objects continue to exist
until deemed to be garbage by a garbage collection (GC) algorithm, at which point
they may be reclaimed and any references they hold are discarded.

Objects reside in processes, which partition the computational and storage re-
sources. Messages pass between objects and when the source and destination are

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

4 · Birrell’s Distributed Reference Listing Revisited

in different processes they are passed between the processes in point-to-point chan-
nels, which may have certain key properties, such as being fifo or lossy. A message
sent by a process, or scheduled to be sent, and not received by its recipient is said
to be in transit. In a given process, a reference is said to be local if it refers to an
object allocated in the same process; alternatively, a reference is said to be remote
(or global) if it refers to an object allocated in another process. We usually refer to
the owner of a reference as the process that initially allocated the object to which
the reference refers.

In a garbage-collected distributed system, objects are allocated in each process
in a local heap managed by a local garbage collector. The purpose of the garbage
collector is to reclaim heap resources occupied by objects that can no longer af-
fect the computation, i.e. that are dead or garbage. The primary safety guarantee
is that the collector should not reclaim live objects. Most garbage collector im-
plementations define the liveness of an object in terms of its reachability2 from a
set of roots. Roots are distinguished memory locations holding references to heap
objects; in general, roots include processor registers, slots in program stack frames
and global variables. An object in the heap is locally reachable if and only if a
reference to the object is held in a root or in another locally reachable heap object
[Jones 1996].

In a distributed environment, references to objects allocated in one process may
be used by computations running in another process. Using the same ‘liveness
by reachability’ estimate, an object may be live because it is reachable from a live
object in a remote process via a remote reference, even though it may not be locally
reachable. Conversely, the purpose of a distributed garbage collector is to reclaim
space used by objects that are no longer globally reachable. Formally, an object o

is globally reachable if one of the following conditions holds:

(1) o is locally reachable in a process taking part in the computation,

(2) there is a locally reachable object that contains a remote reference to o,

(3) there is a globally reachable object that contains a reference (local or remote)
to o,

(4) there is a message in transit between between processes that contains a reference
to o.

In order to ascertain whether an object is globally reachable in a computation-
ally efficient manner, distributed reference counting or listing algorithms tend to
associate extra state with objects, so that global reachability can be determined
solely on the basis of local information. Distributed reference counting or listing
algorithms are thus responsible for maintaining such state as computation proceeds.
The timeliness and incrementality of these algorithms is achieved by performing key
actions when references are copied or overwritten, and their low cost is achieved by
piggy-backing collector messages onto mutator messages or by completing certain
actions in the background (when the processor would otherwise be idle) in order

2We note, however, that reachability is a conservative estimate of liveness, since objects may
continue to be reachable long after their last use [Röjemo and Runciman 1996; Hirzel et al. 2002;
Shaham et al. 2002].

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 5

to avoid delaying the mutator. A distributed garbage collector must also correctly
handle references contained in messages that are in transit between processes.

Families and variants of algorithms arise from differing choices as to: how much
information is retained and where it is held; which participant in message exchanges
is responsible for the GC-related activity; the degree of, and approach to, fault
tolerance; the precise semantics of remote communications; and the eagerness or
laziness of execution of GC actions.

2.2 Naive Distributed Reference Counting

Reference counting was initially conceived in the context of uniprocessor applica-
tions [Collins 1960]. In a reference counting system, each object is associated with
a reference counter that is incremented every time a new reference to the object
is created, and decremented every time such a reference is discarded. A reference
counter equal to zero indicates that there is no reference to the object and therefore
that the space occupied by the object may be reclaimed safely. A corollary is that
the reference counts of objects that are members of an isolated cyclic data structure
never fall to zero, and hence such cycles cannot be reclaimed purely by reference
counting.

This reference counting technique cannot be extended naively to a distributed
context. Suppose that, as before, a reference counter is associated with each object,
but two collector messages, increment and decrement, are introduced to mark re-
mote processes’ requests to increment and decrement the object’s reference counter
when references to the object are copied or discarded. Unfortunately, this results
in an incorrect algorithm.

The essence of the problem is summarised in Figure 1, in which a reference r to an
object located in process p1 is passed from process p2 to process p3, immediately
followed by process p3 discarding its reference r. A naive extension of reference
counting would send an increment message to request an increment of the counter
for p1 when r is sent to p3, and it would send a decrement message to request the
counter for p1 be decremented when p3 discards its reference r. Unfortunately, a
race condition between increment and decrement messages may cause the counter
for p1 to be decremented before it is incremented, possibly making it zero tem-
porarily. A zero counter would cause the object to be collected in process p1, even
though p2 still holds a live reference r.

Naive reference listing would maintain the set of processes having access to the
reference, instead of maintaining a counter counting the number of references. Here,
an increment message has the effect of adding the process that sent the message to
the set, whereas a decrement message has the effect of removing the process that
sent the message. Naive distributed reference listing suffers from the same problem
as naive distributed reference counting — the set of processes may temporarily
become empty if the decrement message is processed before the increment message.

2.3 Birrell’s Algorithm

Many algorithms have been designed to combat the problem inherent in naive dis-
tributed reference counting, including Weighted Reference Counting [Bevan 1987;
Watson and Watson 1987], Indirect Reference Counting [Piquer 1991], and those
of Lermen and Maurer [1986], Birrell et al. [1993], Moreau and Duprat [2001] and

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

6 · Birrell’s Distributed Reference Listing Revisited

(1) message containing r

p1
p3

p2

an object

(2) increment(r)

(4) decrement(r)

(3) reference r

r

r

r

deleted

Fig. 1. Naive Extension of Reference Counting to a Distributed Context

Dickman [2000]. We discuss some of these in the related work section, but we focus
here on Birrell’s algorithm, which is used in the distributed garbage collector for
Java RMI.

As the rest of the paper focuses on our own presentation of Birrell’s algorithm,
we quote here relevant excerpts3 of the original technical report [Birrell et al. 1993]
and discuss some of the issues raised by this presentation. First, the algorithm is
presented as follows in the absence of failures.

Terminology
[Section 1] A network object is an object that can be shared by processes
in a distributed system. The process that allocated the network object is
called its owner, and the instance of the object at the owner is called the
concrete object. Other processes, known as clients may have references to
the object.
A client cannot directly read or write the data fields of a network object to
which it holds a reference, it can only invoke its methods. A reference in a
client program actually points to a surrogate object, whose methods perform
remote procedure calls to the owner, where the corresponding method of
the concrete object is invoked. There is at most one surrogate for an object
in a process, and all references in the process point to that surrogate.
A network object is marshaled by transmitting its wireRep, which consists
of a unique identifier for the owner process, plus the index of the object at
the owner.
[Section 2] Each process maintains an object table, which maps a wireRep
w(o) to the local instance of the corresponding network object O, if there
is one. For the owner of an object, the table contains a pointer to the
concrete object. A concrete object must be in the table whenever another
process has a surrogate for it.
A dirty set is maintained for each object by its owner. The dirty set contains

3We quote Birrell at length in order to avoid giving our interpretation of his description.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 7

identifiers for all processes that have surrogates for the object. When the
dirty set becomes empty, the object can be removed from its owner’s object
table.

Fig. 2. Object tables at owner and client processes [Birrell et al. 1993]

Serialisation (marshalling)
[Section 2.1] Suppose P marshals [also called serialising] a network object
O to process Q, as an argument or result of remote method invocation. P

may be the owner of O, or it may be a client that has a surrogate for O.
In either case, P sends Q the wireRep w(O). When w(O) arrives, Q looks
it up in its object table to see if there is a corresponding local object.
If Q finds either a surrogate or concrete object, that object is used as the
required argument or result. Note that if a client transmits a remote object
back to its owner, this use of the object table causes the owner to access
the concrete object; no surrogate is created.
If Q does not find an object in the table, there are two possibilities to con-
sider. First, w(O) may be in the table but mapped to a nil reference. In
this case surrogate creation is under way, and the thread doing the unmar-
shaling suspends itself until the surrogate is created or the attempt fails.
Alternatively, w(O) may not be in the table, or it may be there with a null
weak ref indicating that a surrogate existed but had been collected. In this
case, the recipient must create a new surrogate. It first enters w(O) in
the table with a mapping to nil, releases the lock on the table, and then
makes a dirty call [emphasis added] to the owner of the object. Assuming
no communication failure, the owner receives the call and adds Q to O’s
dirty set. When the dirty call returns, Q creates a surrogate for O and
enters it in the object table.

Race conditions
[Section 2.1] There is one more wrinkle to be considered in transmitting
a network object. This is the potential race condition between the dirty
call from client Q and a clean call [emphasis added] from a client whose
surrogate has been deleted. If the clean call arrived first, and if it left
O.dirtySet empty, then O might be removed from its owner’s object table

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

8 · Birrell’s Distributed Reference Listing Revisited

and its space reclaimed by the local collector. When the dirty call arrives,
the object is no longer available.
To prevent this scenario, we make sure that O.dirtySet remains non-empty
while O is being transmitted. When the sending process P is O’s owner,
this is accomplished by putting P into O.dirtySet until an acknowledge-
ment from Q indicates that the reference has been received. Since Q sends
the acknowledgement after completing the dirty call, this guarantees that
O’s dirty set remains non-empty, and its memory is not collected. When
P is not the owner of O, it must have a surrogate for O. This surrogate
is kept reachable until Q’s acknowledgement is received. Since a reference
to the surrogate is on the stack during transmission, we simply ensure that
the transmitting procedure not return until acknowledgement from Q is re-
ceived. So long as this surrogate is reachable, the basic collector invariant
guarantees that P is in O.dirtySet and O’s space will not be collected.

[Section 2.2] Collection of surrogates is the responsibility of the client’s local
garbage collector. When the client’s collector determines that a surrogate is
unreachable, the object’s owner must be informed so that the client can be
removed from its dirty set. We have already mentioned how weak refs allow
the distributed a garbage collector to be informed of surrogate collection
so it can take this action. To recap, when the client’s collector determines
that the surrogate is not reachable (except from the weak ref in the client’s
object table), it prepares to reclaim the surrogate’s memory. However, it
first schedules a clean up routing that was registered when the weak ref was
created and replaces the weak ref with a special null value.
When the cleanup routine begins execution, it checks the object table to
see if the entry for this object’s wireRep still has the special null weak ref.
If not, a new surrogate for the objection will have been created (or will be
in the process of being created) and no clean up action is required. But if
the null weak ref is still present, clean up action is necessary. The object
table entry is removed, and the wireRep is put on a queue of objects to be
processed later by a cleaning demon. This demon is responsible for sending
clean calls to the owner.

2.4 Weaknesses

While we recognise that we have only quoted particular excerpts from the orig-
inal presentation of Birrell’s algorithm, we believe that they are sufficient both
to summarise the key ideas of the algorithm and to reveal the limitations of that
presentation.

(1) The discussion of the algorithm is tightly bound to specific communication
assumptions, namely the remote method invocation paradigm.

(2) The algorithm makes strong assumptions about the specific run-time imple-
mentation. Our point is not that Birrell’s implementation is deficient, but that
their description is biased towards a particular implementation or use of the
algorithm. These implementation details are also hard to formalise.
For instance, it is assumed that method invocation will push references to

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 9

its argument objects onto the stack, thereby making them locally reachable
for the duration of the call. Birrell’s presentation also requires that there be
precisely one surrogate in process p for a remote concrete object. Thus, their
algorithm can be thought of as ‘object listing’ rather than reference listing;
the implementation of concrete object O in Figure 2 makes this very plain.
However, this is an implementation decision and not a requirement of reference
listing per se: more generally, one might associate the list of remote processes
with an entry in the object table (of references) rather than the concrete object
itself. Furthermore, Birrell’s presentation makes use of specific GC-related
techniques such as weak references.

(3) From a technical viewpoint, important aspects of the algorithms are underspec-
ified. Consequently, it is left to the implementor to judge how to complete the
algorithm:

(a) Critical sections are generally underspecified.

(b) A race condition is identified in Section 2.1 but a solution is discussed only
for the case of a method invocation, during which a reference on the stack
remains accessible. No solution is presented for a reference returned as part
of an invocation result.

(c) It is unclear how the algorithm should behave when a reference is received
but the cleanup action has been already initiated.

(d) It is unclear how the algorithm would handle parallel sending of references
to the same destination.

(4) The informal proof by Birrell depends on hard to formalise aspects of the im-
plementation. Indeed, the correctness proof of a system that uses the run-time
stack to keep references live during the invocation of a remote procedure re-
quires the formalisation of the run-time system and method calling conventions.
Likewise, the use of GC weak references (as in Figure 2) requires a formal ac-
count of local garbage collection, including reachability and finalisation. A
further problem with this approach is that it brings elements of liveness into
the proof of safety. Birrell’s proof is therefore unconvincing, as none of these
elements have been formalised. In fact, we shall see in the rest of the paper
that they need not be formalised in order to prove the correctness of the al-
gorithm provided the algorithm is specified at a suitable level of abstraction.
Finally, the informal proof of Birrell’s algorithm uses temporal reasoning which
is notoriously difficult to handle.

In summary, the initial presentation of Birrell’s algorithm has shortcomings that
have potentially serious consequences. Implementors must make decisions on how
to extend the algorithm for the cases that are not completely specified: this may
result in incorrect implementations or implementations that cannot inter-operate
properly. It is very difficult to port the algorithm to a different context, such as a
message passing system or a distributed termination mechanism [Tel and Mattern
1993]. For algorithm designers, it is quasi-impossible to compare such an algorithm
with others as its principles are hidden behind its implementation. We address
these issues below in a revisited presentation of the algorithm.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

10 · Birrell’s Distributed Reference Listing Revisited

3. DESCRIPTION OF THE ALGORITHM

In this section, we present a precise and implementation-independent formalisation
of Birrell’s algorithm, accompanied by an informal description of the algorithm. The
formalisation is intuitive since it uses a notation that bears some similarity with
executable pseudo-code, but it is also rigorous and suitable for both manual and
mechanical proofs. By making our formalisation independent of implementation
technique, we do not restrict the implementer’s design decisions (e.g. by requiring
them to use specific mechanisms such as weak references). We also present a novel
graphical representation of the state transition diagram for the algorithm which we
believe substantially improves understanding of the algorithm.

3.1 Design Philosophy

We represent a distributed system — in this case, the distributed reference listing
algorithm — by an abstract machine, identifying a finite set of processes able to
communicate by asynchronous message passing. The behaviour of the distributed
system is described by the transitions that the abstract machine is allowed to per-
form and that modify the internal state of processes and/or communication chan-
nels.

In the past, we have successfully used this formalism to describe a new dis-
tributed reference counting algorithm [Moreau and Duprat 2001] and to specify
the behaviour of a fault-tolerant directory service for mobile agents [Moreau 2001a;
2002]. Our practical experience, reported in the first of these papers, has shown that
the formalism is suitable for mechanical proof derivations, which we have carried
out for these algorithms using the Coq theorem prover [Barras et al. 1997].

The notation allows us to express any form of transitions, but is not prescriptive
about their nature, complexity or granularity. In this paper, we adopt a systematic
coding style, which we summarise as follows.

—A transition involves only one process at a time.

—The input of a message changes only a process’s internal state. Sometimes we
need to express that the receipt of a message is meant to trigger the sending of
another message (for example, when an acknowledgement has to be sent). In such
a case, we use two transitions: the first one receives the input message and stores
some useful information in a to do table; the second transition is in charge of
extracting the information from the to do table and generating a suitable output
message.

—We generate acknowledgement messages explicitly (rather than relying on par-
ticular implementations such as RPC).

Not only does such a coding style make rules simple, but it also brings realism
to the formalisation, as it offers a route to implementation:

—Inputs and outputs are desynchronised.

—The size of critical sections is minimised for each transition of the abstract ma-
chine, which favours proper concurrent execution in the implementation.

—As far as implementation is concerned, outputs can be generated asynchronously
by a background daemon that reacts to changes in the to do tables.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 11

3.2 States and Transitions: a Graphical Representation

Birrell’s algorithm defines a life cycle for objects, which we refine and specify in this
section. An object’s life cycle typically evolves as messages containing references
to this object are processed by the distributed reference listing algorithm. More
precisely, it is the state of the reference held by the client that evolves (reference
received, dirty call acknowledged,. . .). Thus, we first identify the messages that the
algorithm handles, and then continue with a study of a reference’s life cycle.

Messages. We do not make any assumptions of the environment in which the
reference listing algorithm can be embedded. For example, it could be embedded
in a distributed object language (such as Java RMI) or in a distributed termination
detection system. We indicated in the previous section that, whereas Birrell’s
algorithm assumed a communication layer based on remote procedure calls, we
model the algorithm as an asynchronous message passing system. Consequently,
we will express calls as two messages: an outbound message followed by a return
message that carries the call completion acknowledgement (including, possibly, a
result). Birrell’s algorithm supports three different calls, which we in turn express
as the six messages summarised in Figure 3 and described below.

reference copy copy

copy acknowledgement copy ack

dirty call dirty

dirty call acknowledgement dirty ack

clean call clean

clean call acknowledgement clean ack

Fig. 3. Algorithm messages and their formal notation

From the reference listing algorithm’s viewpoint, references can be copied be-
tween processes, which we express by a reference copy message. In practice, one
(or more) copy message(s) could be part of a remote method invocation (whether
as arguments or as a return value) or could be sent alone, depending on the envi-
ronment in which the algorithm is embedded. For the algorithm, it is important
that a reference sender be notified of the receipt of a reference — this is the role of
a copy acknowledgement message. A dirty call message allows a process to register
a new instance of a reference with the reference’s owner; such a call is followed
by a dirty call acknowledgement that informs the sender of the dirty call of the
successful completion of that call. Symmetrically, a clean call message allows a
process to notify the reference’s owner that the reference has been discarded, and
such a message is followed by a clean call acknowledgement that marks the end of
the cleanup operation.

It is important to realise that we present the algorithm in an abstract manner,
that is not muddied by implementation details. It is not a requirement that the
algorithm be implemented as an asynchronous distributed system, although such
a form of modelling is very appropriate for identifying the flow of information in
the system. At a later stage, an implementor may make particular implementation

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

12 · Birrell’s Distributed Reference Listing Revisited

decisions, such as to batch up messages or to piggy-back GC messages onto muta-
tor messages in order to reduce communication costs. We also note that Birrell’s
algorithm makes a further implementation decision by imposing at most one sur-
rogate per object. Our formalisation is about references and not about objects; we
therefore do not impose a similar constraint, but implementors may elect to adopt
it in their specific implementations.

Life cycle. Before an object’s reference is received (in a copy message) by a pro-
cess p for the first time, the reference is unknown and considered to be nonexistent
by p. Such an initial state is marked ⊥ and denotes the reference’s pre-existence4.
When a reference is received by p, the reference moves to a temporary state in which
it is known by p but is not yet usable, since the reference has not been registered
with its owner. Following Birrell’s algorithm, we refer to this state as nil. As soon
as the object’s owner is aware of the existence of the remote reference, and p is
aware that the owner is aware (through a dirty call followed by an acknowledge-
ment), the reference becomes usable, which we indicate by the OK state. As the
reference becomes locally unreachable on p, the reference is scheduled for cleanup.
When the cleanup is triggered, a clean call is initiated and the reference moves
to the state ccit (standing for ‘clean call in transit’), in which the reference is no
longer in use but has not been completely recycled by the process. As soon as a
clean call acknowledgement is received, the space used by the reference is recycled.
This marks the end of the reference’s existence in this process p: its state therefore
reverts to ⊥.

The states and transitions of the state machine can be illustrated by a state tran-
sition diagram. Our graphical representation5 of the state transition diagram for
(our formalisation of) Birrell’s algorithm lays out its states as vertices of a cube,
with cube edges marking permitted transitions (see Figure 4). Our representation
has several advantages. It provides the implementor with an intuitive, yet precise,
description of the algorithm that is independent of implementation technique. It
readily identifies transitions (and their associated states and messages) in a system-
atic fashion. For example, consider the cube’s x-axis to be horizontal, y-axis to be
vertical and z-axis to be into the page. Now, all copy messages lie on edges parallel
to the x-axis, dirty and clean calls to a reference’s owner lie on edges parallel to the
z-axis and acknowledgement messages from a reference’s owner lie parallel to the
y-axis, and so on. The layout makes it easy to determine which state changes might
be possible, simply by considering the edges at each vertex. One outcome has been
that this representation immediately revealed the need for the introduction of a
new state, not present in Birrell’s description, but crucial for correctness.

The sequence of transitions ⊥ → nil → OK → ccit → ⊥ is purely determined
by the process p sending messages to the reference’s owner and receiving acknowl-
edgements from the owner. In addition, other instances of the same reference may
be received by p at any moment during the reference’s life cycle. These cause a
movement along the cube’s edges in three cases: from ⊥ to nil if the reference was

4Webster’s dictionary defines pre-existence as ‘existence in a former state, or previous to something
else’ (Merriam-Webster’s Collegiate Dictionary, Tenth Edition); this captures our concept of the
reference being in an initial state, before its existence is revealed to the receiving process.
5Colour versions of our diagrams are available at http://www.ecs.soton.ac.uk/∼lavm/birrell.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 13

Se
nd

 c
op

y_
ac

k
to

 S
ou

rc
e

di
rt

y_
ac

k
fr

om
 O

w
ne

r

OK Rcv AckRcv AckRcv AckRcv Ack

Send CopySend CopySend CopySend Copy

Unacknowledged copies issued...

nil

⊥

ccitnil

RRAR
Send clean to Owner

3

cl
ea

n_
ac

k
fr

om
 O

w
ne

r
nil

Send dirty to Owner
note the Source
Receive Ref and

note the Source
Receive Ref and

y

x

z

RRAR RRARRRARRRARRRAR

KEY
RRAR: Receive Ref & Ack Receipt to Source

OK

ccit
cl

ea
n_

ac
k

fr
om

 O
w

ne
r

2
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

1

RRAR

RRAR

RRAR

GC: unreachable

Fig. 4. Birrell’s algorithm transitions

unknown by the process p; from an unreachable OK reference to a reference that is
reachable again; and from a ccit state to a new state, in which a clean call is still
in transit, but the reference is ready to be used again, so its deallocation should be
cancelled, which we mark by ccitnil. The latter state was not explicit in Birrell’s
algorithm but is immediately apparent from our layout of the state transition di-
agram. This new state turns out to be crucial in order to ensure the algorithm’s
correctness.

Once registered with its owner, a reference becomes usable (the OK state) and
may be sent to remote processes. The distributed reference listing algorithm must
make sure that the reference remains locally reachable until the acknowledgement
of the copy message is received. We ensure this by the sequence of states OK →
1 → 2 → . . . in the diagram. Every time a reference is sent remotely, the state
changes from i to i + 1; every time the copy of the reference is acknowledged, the
state changes from i to i − 1.

Birrell’s algorithm is distinguished by the number of states in a reference’s life
cycle, their position on the cube and the permitted transitions allowed between
them. For instance, there is no transition from ccitnil to OK because the algorithm
prevents the sending of a dirty message until the clean call acknowledgement mes-
sage has been received. The spatial representation of states in our diagram also
lends itself to a very intuitive explanation of the state of a reference: has a process
p declared that it has a reference? is the owner aware of this? and, is the reference
usable? Figures 5, 6 and 7 illustrate these questions.

In Figure 5, states are partitioned by a vertical slicing of the cube. States on the
‘front’ plane indicate that the process p has not declared possession of a reference
while, in the ‘back’ states, the process has declared possession. In Figure 6, states
are partitioned by a horizontal slicing of the cube. In ‘lower’ states, a process p has
received a reference, but has not received a confirmation from the owner that the

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

14 · Birrell’s Distributed Reference Listing Revisited

ccitnil

⊥

OK

ccit

We have not declared possession of a reference

We have declared possession of a reference

GC: reference not in use

Receive duplicate ref

Receive a Reference

Receive Ack from owner

Send message to owner

Pass copy of ref to another

Receive Ack for copy ref

nil

nil

OK
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Fig. 5. Depth Slicing: has a process announced its possession of a reference?

ccitnil

⊥

OK

ccit

OK

Owner
is a

ware
 th

at
we

hav
e a

 re
fer

en
ce

hav
e a

 re
fer

en
ce

Owner
is

unaw
are

 th
at

we

GC: reference not in use

Receive duplicate ref

Receive a Reference

Receive Ack from owner

Send message to owner

Pass copy of ref to another

Receive Ack for copy ref

nil

nil

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Fig. 6. Horizontal Slicing : does the owner know that a process has a reference?

ccitnil

⊥

Non usab
le

Refe
ren

ce

Poten
tia

lly
 usab

le
Refe

ren
ce

ccit

GC: reference not in use

Receive duplicate ref

Receive a Reference

Receive Ack from owner

Send message to owner

Pass copy of ref to another

Receive Ack for copy ref

nil

nil

OK

OK

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Fig. 7. Vertical Slicing: is a reference usable?

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 15

reference has been properly registered. In ‘upper’ states, process p considers that
the owner is aware that p has a reference. In Figure 7, the states on the ‘left’ plane
describe situations in which the reference cannot be used by the process (i.e. pre-
existence or post-cleanup). The states on the ‘right’ describe situations in which a
reference has begun its active existence.

Figure 4 presented a fairly complete summary of Birrell’s algorithm but over-
looked some of its details, such as when should messages be issued, what informa-
tion needs to be shared between states, and so on. In the following section, we
answer all these questions with a complete specification of the algorithm.

3.3 Algorithm Formalisation

In this section, we introduce our specification of Birrell’s algorithm based on the
notion of an abstract machine modelling an asynchronous distributed system, and
the life cycle and transitions described in Section 3.2. First, we define our notation,
inspired by previous formalisations, namely another distributed reference counting
algorithm [Moreau and Duprat 2001] and a distributed directory service for mobile
agents [Moreau 2001a].

3.3.1 Notation. The algorithm is formalised by an abstract machine, whose
state space is shown in Figure 8. In this abstract machine, we model only messages
exchanged by the distributed reference listing algorithm, and we do not model any
form of computation in which it would be used.

A finite number of processes are involved in the algorithm, and we consider a
finite number of remote references. The set of messages is defined by an induc-
tive type, whose constructors are named according to the messages presented in
Section 3.2, namely copy, copy ack, dirty, dirty ack, clean and clean ack. Commu-
nication channels are assumed to be reliable and not to duplicate messages; we do
not make any assumption about message order, and therefore we represent channels
as bags of messages between pairs of processes. We shall relax these assumptions
when discussing fault-tolerance (Section 6).

A series of tables are defined as functions whose first argument is a process. While
the formal notation sees such functions as ‘global’ in the abstract machine, we
expect their implementation to be distributed across each process. A configuration
of the abstract machine consists of a tuple composed of all tables and message
channels.

We assume that each reference r refers to an object that has initially been al-
located and created by a given process, which we refer to as its owner . In our
formalisation, we define a function

owner : R → Process

that maps each reference onto the process that owns the object to which the refer-
ence refers.

We use pseudo-statements such as post, receive or table updates in order to
provide an imperative look to the algorithm. Informally, post(p1, p2, m) inserts a
message m into the channel from process p1 to process p2, and receive(p1, p2, m)
collects the message. Formally, these pseudo-statements act as configuration trans-
formers and are defined as follows.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

16 · Birrell’s Distributed Reference Listing Revisited

P = {p0, p1, . . . , pns} (Set of Processes)
R = {r0, r1, . . . , rno} (Set of Object References)
I = {id0, id1, . . .} (Set of Identifiers)

M = copy : R× I → M (Set of Messages)
| copy ack : R× I → M
| dirty : R → M
| dirty ack : R → M
| clean : R → M
| clean ack : R → M

Dt = P × P × I (Set of Transient Dirty Entries)
Dp = P (Set of Permanent Entries)
B = I × P ×R (Set of Blocked Entries)

RS = {⊥, nil, OK, ccit, ccitnil} (Set of Reference States)

K = P × P → Bag(M) (Set of Channels)
DT t = P ×R → Dt (Set of Transient Dirty Tables)
DT p = P ×R → Dp (Set of Permanent Dirty Tables)
RT = P ×R → RS (Set of Receive Tables)
BT = P ×R → P(B) (Set of Blocked Tables)

CPAT = P → P(B) (Set of Copy Ack Tables)
DAT = P → P(P ×R) (Set of Dirty Ack Tables)
CLAT = P → P(P ×R) (Set of Clean Ack Tables)
DCT = P → R (Set of Dirty Call Tables)
CCT = P → R (Set of Clean Call Tables)

C = DT t ×DT p × RT × BT × CPAT (Set of Configurations)
× DAT × CLAT × DCT × CCT × K

Characteristic variables:

p ∈ P, r ∈ R, m ∈ M, k ∈ K, c ∈ C,

tdirty T ∈ DT t
, pdirty T ∈ DT p

, rec T ∈ RT , blocked T ∈ BT ,

copy ack todo T ∈ CPAT , dirty ack todo T ∈ DAT , clean ack todo T ∈ CLAT ,

dirty call todo T ∈ DCT , clean call todo T ∈ CCT

Initial State:

ci = 〈tdirty Ti, pdirty Ti, rec Ti, blocked Ti, copy ack todo Ti, dirty ack todo Ti,

clean ack todo Ti, dirty call todo Ti, clean call todo Ti, ki〉

ki = p1, p2 → ∅

tdirty Ti, pdirty Ti, rec Ti = p, r → ⊥

blocked Ti = p, r → ∅

copy ack todo Ti = p → ∅

dirty ack todo Ti, clean ack todo Ti = p → ∅

dirty call todo Ti, clean call todo Ti = p → ⊥

Fig. 8. State Space

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 17

—If table T is a component of a configuration 〈. . . , table T, . . .〉, then the expres-
sion table T (a0, . . . , an) := V denotes the configuration 〈. . . , table T ′, . . .〉, where
table T ′(x0, . . . , xn) = table T (x0, . . . , xn) if (x0, . . . , xn) 6= (a0, . . . , an), and
table T ′(a0, . . . , an) = V .

—If k is the set of message channels of a configuration 〈. . . , k〉, then the expression
post(p1, p2, m) denotes the configuration 〈. . . , k′〉, with k′(p1, p2) = k(p1, p2) ⊕
{m}, and k′(pi, pj) = k(pi, pj), ∀(pi, pj) 6= (p1, p2)

6.

—If k is the set of message channels of a configuration 〈. . . , k〉, then the expression
receive(p1, p2, m) denotes the configuration 〈. . . , k′〉, with k′(p1, p2) = k(p1, p2)⊖
{m}, and k′(pi, pj) = k(pi, pj), ∀(pi, pj) 6= (p1, p2).

The abstract machine is characterised by an initial state and a set of transitions.
The initial state appears in Figure 8, and intuitively can be summarised as com-
posed of empty tables and empty message channels. The arrow notation used here
defines the initial state of the tables as functions taking one or two arguments and
returning a result. Thus tdirty Ti takes a P and an R argument and returns ⊥7.
In the initial configuration, the receive table rec Ti maps each process, reference
pair p, r to ⊥. Thus, in a manner similar to physical addresses in a real machine,
references are never ‘created’ although they are initially associated with ⊥.

Rules are the formal way to express permissible transitions of the abstract ma-
chine. They are specified in the next section, using the following syntax:

rule name(v1, v2, . . .) :

condition1(v1, v2, . . .) ∧ condition2(v1, v2, . . .) ∧ . . .

→ {

pseudo statement1;

. . .

pseudo statementn;

}

A rule is identified by its name and is parameterised by a number of variables.
Conditions can appear to the left-hand side of the arrow: these are guards that
must be satisfied in order for the rule to be fireable. The right-hand side denotes
the configuration that is reached after transition: its value is the result of applying
the configuration transformer obtained by composing all the pseudo-statements
to the configuration that satisfied the guard. From a concurrency viewpoint, we
assume that the execution of a rule, i.e. verification of its guards and application
of its pseudo-statements, is performed atomically, meaning that rule execution can
neither be interrupted nor interleaved with the execution of other rules. The design
philosophy of Section 3.1 is intended to minimise the number of operations to be
performed when rules are fired. Consequently, these rules provide a realistic basis
for an implementation design.

6We use the operators ⊕ and ⊖ to denote union and difference on bags.
7Or, in λ-calculus notation, tdirty Ti = λpr.⊥.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

18 · Birrell’s Distributed Reference Listing Revisited

In the presentation of the algorithm, we distinguish the guards of a rule from
assertion statements. Guards are conditions that must be satisfied for a rule to be
fireable. Assertion statements appear as comments in a rule body and indicate that
a given property is proved to hold at that point in the execution. When we want
to provide the reader with better understanding of the condition in which a rule is
fired, we use assertion statements as opposed to guards, otherwise we would have
to prove that the extra guards do not induce deadlocks. Furthermore, assertion
statements can describe a global state of the distributed system, which does not
necessarily have to be computable by the process executing the rule.

3.3.2 Configuration. Let us now examine the content of a configuration of the
abstract machine. It consists of a set of communication channels and a set of tables,
for which we provide some intuitive explanation; their usage will be specified by
the transition rules.

We use dirty- and receive-tables to represent a process’s knowledge about the
references that it has sent and received. Whenever a process p1 sends a reference
to a remote process p2 or receives a dirty call from it, p1 makes an entry in a dirty
table. The dirty tables are the explicit representation of reference listing that the
algorithm achieves. Symmetrically, the receive-table contains all the references that
have been received by and are alive in a process. If a reference r does not exist in a
process p, then rec T (p, r) = ⊥, meaning that the reference r is in its pre-existence
state in process p. The permissible values in a receive-table are the states of the
life cycle (⊥, nil, OK, ccit, ccitnil). The life cycle states 2, 3, . . . of Figure 4 are
not represented explicitly as potential values in the receive tables; instead, they
are encoded in the form of reference listing in the transient dirty table. Note that
this representation neither relies on nor prescribes details of implementation and
hence differs from Birrell’s original account (which assumed, for example, references
would be held on process stacks).

When a reference is received for the first time, the receiver must initiate a dirty
call in order to register the reference with its owner before the reference becomes
usable by the receiver. During that time, deserialisation activities (and associ-
ated remote invocations) must be suspended. Such information is modelled by the
blocked-table.

All ‘outbound’ messages are followed up by an acknowledgement. With our
design rules, we decouple the receiving of a message from the sending of its ac-
knowledgement so as to ensure short and explicit atomic sections during rule ex-
ecution. The corollary is that it is necessary to introduce states internal to each
process that represent those messages remaining to be acknowledged: such states
are encoded by the tables copy ack todo T , dirty ack todo T and clean ack todo T .
Similarly, clean and dirty calls are typically made in response to another event in
the system. Their scheduling is indicated by entries in the clean call todo T and
dirty call todo T tables.

3.3.3 Transition Rules. We now study the algorithm’s transition rules, which
can be found in Figures 9 to 12. For each figure, we first give an overall description
of the rules, which we follow with specific details, cross-referencing lines in the
figures. Notice that some pseudo-statements are annotated with a termination

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 19

measure, denoted by ±x for some integer x; these measures are used in the proof
of the liveness of the algorithm (see Section 4.2).

Rule make copy in Figure 9 models p1 sending a reference to a process p2 (sup-
posed to be different from p1). Such a transition can only occur if the reference is
locally reachable by p1 and if its state in the receive table is OK. The effect is to
add a new entry into the transient dirty table, and to send a copy message in the
channel between p1 and p2.

The receipt of a copy message is modelled by rule receive copy, which is one
of the most complex rules of the algorithm as it has potential implications for
numerous internal tables of a process. This rule can take place only if there is a
copy-message in transit between two processes p1 and p2; its intuitive behaviour is
better explained by referring to Figure 7 in which the reference’s state is shifted to
the ‘right’ of the figure. Once the message has been received by p2 — expressed by
the statement receive(p1, p2, copy(r, id)) — the rule suspends the deserialisation of
the contents of the message for states that need to complete a dirty call. In these
cases, it also schedules such dirty calls, cancels pending clean calls and schedules
copy acknowledgements.

(Note 1). Birrell’s algorithm assumes RPC-style communications that are com-
posed of a method invocation and the associated return of a result. As we rely
on asynchronous message passing, we create a new identifier id for each copy of
a reference, which allows us to identify the matching acknowledgement message,
copy ack. Such identifiers are also able to distinguish multiple messages sent in
parallel between two processes. We note that the identifier id must be new to the
whole distributed system; URI schemes could be used here, incorporating the name
of the process that executes the transition.

(Note 2). Birrell’s algorithm prescribes that a reference sent remotely by a re-
mote method invocation is kept locally reachable on a stack frame. We formalise
this in an implementation technique independent manner: we assume the existence
of a table, defined to be a root of the local collector, which we call the transient
dirty table and denote tdirty T . Any object referred to by an entry in this table
remains locally reachable by the garbage collector. Adopting such a dirty table is
beneficial for a number of reasons:
(1) We need not make a distinction between remote method invocation and return

of a result. Birrell’s algorithm is silent about method returns, which typically
coincide with stack deallocation, although references still have to be kept lo-
cally reachable. In our algorithm definition, we always store a reference in
the transient dirty table before it is communicated remotely, whether it is an
argument or the result of a remote method call.

(2) In Birrell’s algorithm, the dirty set is only present in the memory space of
the reference owner, and is meant to contain the list of processes that sent
dirty calls to the owner. For the owner, we introduce permanent dirty tables
that have a similar role (as discussed in Note 6). Transient dirty tables for all
processes contain information about copy messages sent, which we record as a
triple: the sender, the receiver and the message identifier. We refer to such a
triple as a transient dirty entry, as opposed to permanent dirty entries, to be
introduced later.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

20 · Birrell’s Distributed Reference Listing Revisited

make copy(p1, p2, r) :

p1 6= p2 ∧ rec T (p1, r) = OK

→ {

(Note 1)id := new Identifier;

(Note 2)tdirty T (p1, r) := tdirty T (p1, r) ∪ {〈p1, p2, id〉};

post(p1, p2, copy(r, id));

}

receive copy(p1, p2, r, id) :

copy(r, id) ∈ k(p1, p2)

→ {

//–14receive(p1, p2, copy(r, id));

if rec T (p2, r) = nil ∨ rec T (p2, r) = ccitnil, then

(Note 3)//+2blocked T (p2, r) := blocked T (p2, r) ∪ {〈id, p1, r〉};

elif rec T (p2, r) = ⊥ ∨ rec T (p2, r) = ccit, then

{

(Note 3)//+1if rec T (p2, r) = ⊥, then rec T (p2, r) = nil;

//+1elif rec T (p2, r) = ccit, then rec T (p2, r) = ccitnil;

//+9dirty call todo T (p2) := dirty call todo T (p2) ∪ {r};

//+2blocked T (p2, r) := blocked T (p2, r) ∪ {〈id, p1, r〉};

}

elif rec T (p2, r) = OK, then

{

(Note 4)clean call todo T (p2) := clean call todo T (p2) \ {r};

//+2copy ack todo T (p2) := copy ack todo T (p2) ∪ {〈id, p1, r〉};

}

}

Fig. 9. Copy Processing (a)

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 21

(Note 3). An incoming new reference r is not immediately usable by programs,
since first it has to be properly registered with the reference’s owner through a dirty
call. During this time, the deserialisation thread has to be suspended, which we in-
dicate by an entry in the blocked table, denoted blocked T , identifying the reference,
its sender and the message id. Similarly, the receipt of a reference that is already
known to the process but is not currently usable also suspends the deserialisation
code.

(Note 4). When we formalise the interaction with the local garbage collector, we
shall see that any reference observed to be locally unreachable is scheduled for a
cleanup operation; this is represented by an entry in the clean call todo T table, as
discussed in Note 9. The normal course of action would be to send a clean message
to its owner to clear the owner’s permanent dirty entry for that process. Before
we send such a message, another copy message with this reference could have been
received by this process. In order to avoid successively sending a clean and a dirty
message, we introduce an optimisation that consists of cancelling both messages
and resurrecting the reference. It is safe to do so because the owner still believes
that the reference is live, and no clean message has been scheduled yet. More
importantly, it is efficient to do so, because it avoids blocking the deserialiser for
the duration of the clean and dirty messages and their respective acknowledgements.
Hence, we remove the entry in the clean call todo T .

Rule do copy ack in Figure 10 is triggered by the presence of an entry in a
copy ack todo T table, which indicates that a copy acknowledgement has been
scheduled. The entry is removed from the table and a copy ack message is posted.
Rule receive copy ack deals with the receipt of a copy ack message.

do copy ack(p1, p2, r, id) :

〈id, p2, r〉 ∈ copy ack todo T (p1)

→ {

//–2copy ack todo T (p1) := copy ack todo T (p1) \ {〈id, p2, r〉};

//+1post(p1, p2, copy ack(r, id));

}

receive copy ack(p1, p2, r, id) :

copy ack(r, id) ∈ k(p1, p2)

→ {

//–1receive(p1, p2, copy ack(r, id));

tdirty T (p2, r) := tdirty T (p2, r) \ {〈p2, p1, id〉};

}

Fig. 10. Copy Processing (b)

Rule do dirty call in Figure 11 initiates the sending of a dirty call that had been
previously scheduled (as indicated by an entry in the dirty call todo T table). The

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

22 · Birrell’s Distributed Reference Listing Revisited

receipt of a dirty call message for a reference r by rule receive dirty call entails the
adding of r to the owner’s permanent dirty table; this means that the sender of the
dirty call possesses reference r. Rule do dirty ack sends a dirty call acknowledge-
ment, handled by rule receive dirty ack (changing the status from a ‘lower’ state to
an ‘upper’ state in Figure 6).

(Note 5). We have not made any assumption of the order in which messages are
delivered. In particular, sending a dirty message when a clean message is already
in transit could result in the dirty message being processed first. The early receipt
of a dirty message would have no effect (as a permanent dirty entry is already
present), but the processing of the delayed clean message would clear the dirty entry,
which would result in an incorrect situation, as the reference may become locally
unreachable by the owner. Consequently, we postpone the sending of dirty messages
when the reference state is ccitnil until we have received an acknowledgement that
the clean message has been processed.

(Note 6). When a dirty message is received by a reference owner, a new entry
is added to its permanent dirty table to indicate that the owner believes that the
message sender owns a live reference. The entry consists of the process identifier
only, and is called a permanent dirty entry ; it should be distinguished from the
entry (sender, receiver, message identifier) in the transient dirty table described
in Note 2. The permanent dirty table must also be defined as a root of the local
collector. We see again here that this algorithm does indeed list references rather
than count them. Even though we use a set notation, in practice the permanent
dirty table does not need to be a set since the algorithm never receives an incoming
dirty message from a process p if there is already an entry for p in the permanent
dirty table.

(Note 7). When a dirty ack message is received, entries in the blocked table
(which contain the source of a copy-message, the reference and an identifier) can
be added to the set of copy ack messages to be sent. It is important that the send-
ing of copy ack is postponed until the dirty ack has been received, otherwise a race
condition reminiscent of naive reference counting may occur: the reference could
become garbage on the sender before its receiver had time to register it properly
with the owner.

(Note 8). Once the reference has been registered with its owner, all deserialisa-
tion threads that were suspended may be resumed.

Figure 12 is concerned with the handling of clean calls and their acknowledge-
ments. Rule finalize describes the action to perform on a reference that is no
longer reachable locally; the algorithm simply schedules a clean call for the refer-
ence. The clean call and its receipt are respectively handled by rules do clean call
and receive clean, the second of which removes the reference from the owner’s per-
manent dirty table: this point marks, for the owner, the end of the reference’s
life. This is followed by a clean acknowledgement do clean ack and its processing
receive clean ack. The latter rule moves an ‘upper’ state in Figure 6 to a ‘lower’
state.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 23

do dirty call(p, r) :

(Note 5)r ∈ dirty call todo T (p) ∧ rec T (p, r) 6= ccitnil

→ {

//–9dirty call todo T (p) := dirty call todo T (p) \ {r};

//+8post(p, owner(r), dirty(r));

}

receive dirty(p1, p2, r) :

p2 = owner(r) ∧ dirty(r) ∈ k(p1, p2)

→ {

//–8receive(p1, p2, dirty(r));

(Note 6)pdirty T (p2, r) := pdirty T (p2, r) ∪ {p1};

//+7dirty ack todo T (p2) := dirty ack todo T (p2) ∪ {〈p1, r〉};

}

do dirty ack(p1, p2, r) :

〈p2, r〉 ∈ dirty ack todo T (p1)

→ {

//–7dirty ack todo T (p1) := dirty ack todo T (p1) \ {〈p2, r〉};

//+6post(p1, p2, dirty ack(r));

}

receive dirty ack(p1, p2, r) :

dirty ack(r) ∈ k(p1, p2)

→ {

//–6receive(p1, p2, dirty ack(r));

(Note 7)//+Xcopy ack todo T (p2) := copy ack todo T (p2) ∪ blocked T (p2, r);

// Deserialisation code to be resumed

(Note 8)// for each entry in blocked T (p2, r)

//–Xblocked T (p2, r) := ∅;

//+5rec T (p2, r) := OK;

}

Fig. 11. Dirty Processing

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

24 · Birrell’s Distributed Reference Listing Revisited

finalize(p, r) :

¬locallyLive(p, r) ∧ rec T (p, r) = OK ∧ p 6= owner(r)

∧ r 6∈ clean call todo T (p)

→ {

(Note 9)clean call todo T (p) := clean call todo T (p) ∪ {r};

}

do clean call(p, r) :

r ∈ clean call todo T (p)

→ {

clean call todo T (p) := clean call todo T (p) \ {r};

(Note 10)//–4rec T (p, r) := ccit; //assert: was rec T (p1, r) = OK

//+3post(p, owner(r), clean(r));

}

receive clean(p1, p2, r) :

p2 = owner(r) ∧ clean(r) ∈ k(p1, p2)

→ {

//–3receive(p1, p2, clean(r));

pdirty T (p2, r) := pdirty T (p2, r) \ {p1};

//+2clean ack todo T (p2) := clean ack todo T (p2) ∪ {〈p1, r〉};

}

do clean ack(p1, p2, r) :

〈p2, r〉 ∈ clean ack todo T (p1)

→ {

//–2clean ack todo T (p1) := clean ack todo T (p1) \ {〈p2, r〉};

//+1post(p1, p2, clean ack(r));

}

receive clean ack(p1, p2, r) :

clean ack(r) ∈ k(p1, p2)

→ {

//–1receive(p1, p2, clean ack(r));

(Note 11)if rec T (p2, r) = ccitnil, then

//–1rec T (p2, r) := nil;

else //assert: rec T (p2, r) = ccit

//–1rec T (p2, r) := ⊥;

}

Fig. 12. Clean Processing
ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 25

(Note 9). Rule finalize defines the interaction with the system in which the ref-
erence listing algorithm is embedded (for example, a local garbage collector). We
maintain asynchrony between the environment and the distributed reference listing
algorithm. Once a reference is detected to be locally unreachable, a flag is set in
the form of an entry in the clean call todo T table. The state of the reference, as
represented by the receive table rec T , is unchanged. This allows the state to revert
before the cleaning sequence is started, as described in Note 4. In order to prevent
the repeated firing of rule finalize, we have added a guard requiring the reference
to be absent from clean call todo T (p).

(Note 10). After a clean call has been scheduled, a clean message is sent to the
owner, and the reference state is changed to ccit, to indicate that a ‘clean call is in
transit’.

(Note 11). A clean call can be received when the reference is in one of two states:
ccit or ccitnil. In the former case, the receiver has no useful reference (see Figure 7)
and so the state of the reference reverts to state ⊥. In the latter case, a new, usable
copy of the reference has been received subsequently and so the state changes to
nil: transition do dirty call is now fireable and a new life cycle is initiated.

This concludes our presentation of Birrell’s algorithm. Our two descriptions,
graphical and formal, are complementary. The graphical presentation exposes the
complete life cycle of references in an intuitive manner, whereas the formal seman-
tics presents, in an unambiguous fashion, the precise states that must be main-
tained by processes taking part in the algorithm. Interestingly, the formal notation
is suitable both for establishing the correctness of the algorithm and as a basis for
an implementation. We now discuss the correctness of the algorithm.

4. PROPERTIES AND PROOFS

The correctness of an algorithm typically has two different facets: safety guaran-
tees that nothing bad can happen and liveness guarantees that something good
will eventually happen. In the specific context of this distributed reference listing
algorithm, such properties can be expressed as follows. Safety guarantees that if a
remote reference to a resource exists, then one of its owner’s dirty tables will contain
an entry (permanent or transient) for the reference, which prevents the resource
from being recycled by the owner. Liveness guarantees that if all references to a
resource are deleted, all its dirty entries (permanent and transient) will eventually
be removed by its owner, thus allowing the resource to be claimed at some later
point by a local garbage collector. The purpose of this section is to establish both
properties.

4.1 Proof of Safety

The proofs that we derive in this paper are based on invariants that we prove to
hold for all configurations of the abstract machine. Given an arbitrary valid config-
uration, the proofs typically proceed by induction on the length of the transitions
that lead to the configuration, and by a case analysis on the kind of transitions.
For the sake of conciseness, we present only those transitions that have an effect

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

26 · Birrell’s Distributed Reference Listing Revisited

on subterms of the property we are trying to establish; the others have no effect on
the property. The base case of the induction also requires us to derive the property
in the initial configuration.

This kind of proof has some advantages. It is systematic and can easily be
encoded in a mechanical theorem prover (as illustrated by other proofs [Moreau and
Duprat 2001; Moreau 2001a; 2002] successfully encoded in Coq by the first author).
It is less prone to error than the kind of temporal reasoning used in Birrell’s proof.
The difficulty of a proof lies in establishing its fine details (such as some of the
mutually exclusive cases we consider in Lemma 3), and their formulation becomes
complicated in a formalism for temporal-based reasoning.

Outline. Two key invariants are established. First, in Invariant 1, we define
a condition in terms of messages in transit and process states that specifies when
a transient dirty entry appears in the dirty table. Second, in Invariant 2, we
derive an equation that links the existence of a permanent dirty entry to messages
in transit and process states. Third, using these lemmas, we establish that suitable
dirty entries are maintained by the algorithm for all types of references found in
the system, which ensures the safety property. 2

First, let us prove some simple properties. In Lemma 1, we show that whenever
a reference is in state ccitnil, a dirty call has been scheduled for the reference.

Lemma 1. For any process p and reference r, if rec T (p, r) = ccitnil, then
r ∈ dirty call todo T (p). 2

Proof. This implication holds in the initial configuration since rec T (p, r) =
⊥. The receive table is set to ccitnil only by transition receive copy, which also
adds an entry to the table dirty call todo T . Entries are only removed from
dirty call todo T by transition do dirty call, which fires only if the receive table
is not in state ccitnil.

Then, in Lemma 2, we show that a reference must be in the OK state for an entry
in clean call todo T to exist.

Lemma 2. For any configuration, for any process p and for any reference r, if
r ∈ clean call todo T (p), then rec T (p, r) = OK. 2

Proof. We proceed by induction on the length of transitions that lead to the
configuration, and by case analysis on the kind of transitions. The property is
initially true since clean call todo T (p) is empty in the initial configuration. Only
three rules modify the table clean call todo T (p).

receive copy(p1, p2, r, id):
This transition removes r from clean call todo T (p) when rec T (p, r) = OK,
which validates the consequent whatever the value of the antecedent.

finalize(p, r):
This can be fired if rec T (p, r) = OK; it adds r to the table clean call todo T (p).
Therefore, Lemma 2 is satisfied.

do clean call(p, r):

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 27

This removes r from the table clean call todo T (p). After transition, the an-
tecedent is false and therefore the Lemma is trivially satisfied.

Invariant 1 is the first major invariant we derive for the algorithm. We show
that a transient entry in a dirty table can be found if and only if we can find
related copy or copy ack messages in transit, or related entries in blocked T or
copy ack todo T tables; these conditions are shown to be mutually exclusive.

Lemma 3 Invariant 1. For any processes p1 and p2, for any reference r, for
any identifier id, and for any configuration, the following equality holds:

〈p1, p2, id〉 ∈ tdirty T (p1, r)

=
∨

copy(r, id) ∈ k(p1, p2)
〈id, p1, r〉 ∈ blocked T (p2, r)
copy ack(r, id) ∈ k(p2, p1)
〈id, p1, r〉 ∈ copy ack todo T (p2).

Additionally, the four terms:

copy(r, id) ∈ k(p1, p2)
〈id, p1, r〉 ∈ blocked T (p2, r)
copy ack(r, id) ∈ k(p2, p1)
〈id, p1, r〉 ∈ copy ack todo T (p2).

are mutually exclusive. 2

Proof. The equality holds in the initial configuration since there is no message
in transit and all tables are empty. We now consider only those transitions that
may have an effect on terms in the equality.

make copy(p1, p2, r):
If id is the new identifier referred to by transition make copy(p1, p2, r), then the
equality holds after the transition, since there is a copy message in the channel
between p1 and p2, and the triple 〈p1, p2, id〉 was added to tdirty T (p1, r). At
this stage, the identifier id is unknown in process p2, and copy(r, id) ∈ k(p1, p2)
is the only term that holds among the four.

receive copy(p1, p2, r, id):
The equality and the mutual exclusivity of terms are preserved by the transi-
tion, since the copy message in the channel between p1 and p2 (as specified in
the rule premise) is replaced by the triple 〈id, p1, r〉 either in blocked T (p2, r) if
rec T (p2, r) 6= OK, or in copy ack todo T (p2) if rec T (p2, r) = OK. The equal-
ity is preserved because tdirty T (p1, r) is unchanged, and the terms remain
mutually exclusive.

do copy ack(p2, p1, r, id):
The equality is preserved by the transition, since the triple 〈id, p1, r〉 in the
copy ack todo T table is replaced by a copy ack(r, id) message in the channel
from p2 to p1.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

28 · Birrell’s Distributed Reference Listing Revisited

receive copy ack(p2, p1, r, id):
The equality is preserved by the transition, since the triple 〈p1, p2, id〉 is removed
from tdirty T (p1, r) when the copy ack is removed from the channel from p2

to p1. We note here that we rely on the fact that the four terms are mutually
exclusive: if there is a copy ack message in transit before transition, then there
is no entry in the blocked T or copy ack todo T tables, nor is there a copy
message in transit.

receive dirty ack(p, p2, r):
The equality is preserved by the transition, since any triple 〈id, p1, r〉 is removed
from blocked T (p2, r) and added to copy ack todo T (p2). The terms remain
mutually exclusive.

The states ccit and ccitnil are related to the presence of clean messages in transit,
as specified in the following Lemma.

Lemma 4. For any processes p1 and p2, for any reference r, with p2 = owner(r),
and for any configuration, the following implication holds:

If clean(r) ∈ k(p1, p2)
∨ 〈p1, r〉 ∈ clean ack todo T (p2)
∨ clean ack(r) ∈ k(p2, p1),

then rec T (p1, r) = ccit ∨ rec T (p1, r) = ccitnil.

Additionally, the three states:

clean(r) ∈ k(p1, p2)
〈p1, r〉 ∈ clean ack todo T (p2)
clean ack(r) ∈ k(p2, p1)

are mutually exclusive. 2

Proof. The implication holds in the initial configuration since there is no mes-
sage in transit and all tables are empty: the antecedent is false, which trivially
validates the implication. We now consider only those transitions that may have
an effect on terms in the implication.

receive copy(p, p1, r, id):
The implication is preserved by the transition, since it may change the state of
rec T (p1, r) from ccit to ccitnil.

do clean call(p1, r):
The implication holds after the transition, because it adds a clean message be-
tween p1 and p2 (with p2 equal to owner(r)), and sets rec T (p1, r) to ccit.
Before transition, rec T (p1, r) = OK, by Lemma 2. Therefore, the terms
clean(r) ∈ k(p1, p2), 〈p1, r〉 ∈ clean ack todo T (p2) and clean ack(r) ∈ k(p2, p1)
must be false, otherwise rec T (p1, r) would be equal to ccit or ccitnil. Thus,
they remain exclusive.

receive clean call(p1, p2, r):
The implication is preserved by the transition, because it removes a clean mes-
sage between p1 and p2, and sets the clean ack todo T (p2) to 〈p1, r〉.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 29

do clean ack(p2, p1, r):
The implication is preserved by the transition, because it adds a clean ack mes-
sage between p2 and p1, and removes the entry 〈p1, r〉 from clean ack todo T (p2).

receive clean ack(p2, p1, r):
The implication is preserved by the transition, because it removes a clean ack
message between p2 and p1, and sets rec T (p1, r) to nil or ⊥; we rely here on
the mutual exclusivity property of the conditions to show that there is no clean
message in transit, nor clean ack message to be posted.

States nil and ccitnil indicate that some reference has been received and will not
be usable until it has been registered with its owner by a dirty call, as specified by
the following Lemma.

Lemma 5. For any processes p1 and p2, for any reference r with p2 = owner(r),
and for any configuration, the following implications hold:

If r ∈ dirty call todo T (p1), (5.a)
then rec T (p1, r) = nil ∨ rec T (p1, r) = ccitnil.

If dirty(r) ∈ k(p1, p2) (5.b)
∨ 〈p1, r〉 ∈ dirty ack todo T (p2)
∨ dirty ack(r) ∈ k(p2, p1),

then rec T (p1, r) = nil.

Additionally, the following four states:

r ∈ dirty call todo T (p1) (5.c)
dirty(r) ∈ k(p1, p2)
〈p1, r〉 ∈ dirty ack todo T (p2)
dirty ack(r) ∈ k(p2, p1)

are mutually exclusive.

2

Proof. The statements hold in the initial configuration since all tables are
empty and no message is transit.

receive copy(p, p1, r, id) for some p:
The implications are preserved by the transition, because when it adds an entry
in dirty call todo T (p1), it also changes rec T (p1, r) to nil or ccitnil. Addition-
ally, if any of the terms of (5.c) held before transition, then rec T (p1, r) is
equal to nil or ccitnil by (5.a) and (5.b); they do not change value during the
transition. Therefore, they remain mutually exclusive.

do dirty call(p1, r):
The statements are preserved by the transition, because when it removes an
entry from dirty call todo T (p1), it adds a dirty message between p1 and p2.
This may falsify the antecedent of (5.a), which therefore trivially validates the

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

30 · Birrell’s Distributed Reference Listing Revisited

implication; it also preserves the mutual exclusivity of (5.c). As (5.a) is true
before transition, and do dirty call can only fire if rec T (p, r) 6= ccitnil, (5.b) is
also satisfied.

receive dirty ack(p2, p1, r):
The statements (5.a) and (5.b) are valid after the transition. Indeed, if there is
a message dirty ack(r) ∈ k(p2, p1) before transition then, by the mutual exclu-
sivity property, r cannot be in dirty call todo T (p1) and there is no dirty ack
in k(p2, p1). This implies that the antecedents of (5.a) and (5.b) are false,
and therefore they are trivially satisfied after transition; moreover, (5.c) is also
preserved.

do clean call(p1, r):
The statements are preserved by the transition. Indeed, if the rule is fired,
then rec T (p1, r) = OK by Lemma 2. If (5.a) holds before transition, then
r 6∈ dirty call todo T (p), which also remains true after transition do clean call.
Similarly, the antecedent of (5.b) is false before transition and remains false
afterwards. None of states of (5.c) is changed by this transition.

receive clean ack(p2, p1, r):
The statements are preserved by the transition. Indeed, it changes rec T (p1, r)
from ccitnil to nil, which satisfies implication (5.a) and preserves (5.b). It also
changes rec T (p1, r) from OK to ⊥, which means that the antecedents of (5.a)
and (5.b) are false before transition and remain so after transition. None of
states of (5.c) is changed by this transition.

Invariant 2 is the second major invariant that we will use to establish the
algorithm’s correctness. Whilst Invariant 1 focuses on transient entries in dirty
tables, Invariant 2 is concerned with permanent entries.

Informally, Lemma 6 states that if an owner has a permanent dirty entry for a
reference, or a dirty call is scheduled or alternatively in transit, then either the
state of the reference is one of OK, nil or ccitnil, or a clean call has been sent (and
vice-versa).

Lemma 6 Invariant 2. For any processes p1 and p2, for any reference r with
p2 = owner(r), and for any configuration, the following equality holds:

p1 ∈ pdirty T (p2, r) ∨ dirty(r) ∈ k(p1, p2) ∨ r ∈ dirty call todo T (p1)
=

clean(r) ∈ k(p1, p2) ∨ rec T (p1, r) = OK ∨ rec T (p1, r) = nil ∨ rec T (p1, r) = ccitnil

2

Proof. First, we note that dirty(r) ∈ k(p1, p2) and r ∈ dirty call todo T (p1) are
mutually exclusive by Lemma 5.c. The equality holds in the initial configuration
since there is no message in transit and all tables are empty. We now consider the
transitions that may have an effect on terms in the equality.

receive copy(p1, p2, r, id):
The equality is preserved by the transition.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 31

—If rec T (p1, r) = ccit or rec T (p1, r) = ⊥ before transition, then after transi-
tion dirty(r) 6∈ k(p1, p2) and r 6∈ dirty call todo T (p1) by Lemma 5.b. Before
transition, both

dirty(r) ∈ k(p1, p2) ∨ r ∈ dirty call todo T (p1) (1)
and

rec T (p1, r) = OK ∨ rec T (p1, r) = nil ∨ rec T (p1, r) = ccitnil (2)
are false; because r is added to dirty call todo T (p1) and rec T (p1, r) is set
to nil or ccitnil, both become true after transition. The equality is therefore
satisfied.

—If rec T (p1, r) = nil, rec T (p1, r) = ccitnil or rec T (p1, r) = OK, then the
equality is preserved because no term is changed.

do dirty call(p1, r):
The equality is preserved by the transition, since r is removed from the table
dirty call todo T (p1) and a dirty message is added between p1 and owner(r).

receive dirty(p1, p2, r):
The equality is preserved by the transition, since p1 is added to pdirty T (p2, r),
and a dirty message is removed from the link between p1 and p2.

receive dirty ack(p1, p2, r):
The equality is preserved by the transition. Indeed, before transition, there is
a dirty ack between p2 and p1, therefore rec T (p1, r) = nil by Lemma 5.b. After
the transition, rec T (p1, r) is changed to OK, which preserves the equality.

do clean call(p1, r):
The equality is preserved by the transition. Indeed, rec T (p1, r) = OK before
transition, by Lemma 2. After transition, rec T (p1, r) is changed to ccit, but a
clean message is added to the channel between p1 and its owner(r).

receive clean call(p1, p2, r):
The equality is preserved by the transition. After transition, p1 is removed from
pdirty T (p2, r), and the clean message is removed from the channel between p1

and p2. So p1 ∈ pdirty T (p2, r) and clean(r) ∈ k(p1, p2) become false after
transition. Let us examine the remaining two terms:

dirty(r) ∈ k(p1, p2) ∨ r ∈ dirty call todo T (p1) (3)

and

rec T (p1, r) = OK ∨ rec T (p1, r) = nil ∨ rec T (p1, r) = ccitnil. (4)

If there was a clean message between p1 and p2, then by Lemma 4:

rec T (p1, r) = ccit ∨ rec T (p1, r) = ccitnil (5)

Let us analyse the terms in (3):
—If r ∈ dirty call todo T (p1), then rec T (p1, r) = nil ∨ rec T (p1, r) = ccitnil

by Lemma 5.a. Therefore, combined with (5), both (3) and (4) are true.
If r 6∈ dirty call todo T (p1), then rec T (p1, r) 6= ccitnil, by Lemma 1; conse-
quently, rec T (p1, r) = ccit by (5).

—If dirty(r) ∈ k(p1, p2), then rec T (p1, r) = nil by Lemma 5.b, which contra-
dicts the fact that we just derived that it was equal to ccit.
If dirty(r) 6∈ k(p1, p2), then both (3) and (4) are false.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

32 · Birrell’s Distributed Reference Listing Revisited

receive clean ack(p1, p2, r):
rec T (p2, r) is changed from ccitnil to nil, or from ccit to ⊥, leaving the equation
unchanged.

The following lemma links a transient entry in a dirty table to an OK state in
the receive table of that process.

Lemma 7. For any processes p1 and p2, for any reference r, for any identifier
id and for any configuration, the following implication holds:

If 〈p1, p2, id〉 ∈ tdirty T (p1, r),
then rec T (p1, r) = OK.

2

Proof. In the initial configuration, transient dirty tables are empty and the
implication trivially holds. We consider the four rules that add (resp. remove)
entries to (resp. from) transient dirty tables and that modify the content of receive
tables to, or from, OK.

make copy(p1, p2, r):
make copy adds a transient entry 〈p1, p2, id〉, and its guard ensures that the
receive-table is in the OK state.

receive copy ack(p2, p1, r, id):
Rule receive copy ack removes the entry from the transient dirty table, and
therefore trivially satisfies Lemma 7.

receive dirty ack(p1, p2, r):
If Lemma 7 held before transition receive dirty ack, it also holds after transi-
tion since the dirty tables are unchanged and the receive table is set to OK.

do clean call(p1, r):
As the dirty tables are a root for the local GC, rule finalize cannot be fired,
and hence rec T (p1, r) will not be changed by do clean call.

The following lemma establishes a relationship between the presence of a not yet
usable reference and the existence of a process containing an entry in its blocked-
table.

Lemma 8. For any process p1, for any reference r, and for any configuration,
the following implication holds:

If rec T (p1, r) = nil ∨ rec T (p1, r) = ccitnil
and if dirty(r) ∈ k(p1, owner(r)) ∨ r ∈ dirty call todo T (p1),
then there exists p2 and id such that 〈id, p2, r〉 ∈ blocked T (p1, r).

2

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 33

Proof. We observe that dirty(r) ∈ k(p1, owner(r)) and r ∈ dirty call todo T (p1)
are mutually exclusive (Lemma 5.c). The implication holds in the initial configura-
tion since there is no message in transit and all tables are empty. We now consider
the transitions that may have an effect on terms in the implication:

receive copy(p1, p2, r, id):

A new entry 〈id, p2, r〉 is added to blocked T (p1, r).

do dirty call(p1, r):

Transition do dirty call(p1, r) replaces an entry in the table dirty call todo T (p1)
with a dirty call, dirty(r) ∈ k(p1, owner(r)). Therefore, the implication is pre-
served.

receive dirty(p1, p2, r):

Transition receive dirty(p1, p2, r) removes a dirty message between p1 and p2;
therefore, the second antecedent becomes false, which trivially validates the
implication after transition.

receive dirty ack(p2, p1, r):

Transition receive dirty ack(p1, p2, r) clears table blocked T (p1, r), but also
sets rec T (p1, r) to OK, which trivially validates the implication after tran-
sition.

Three kinds of references can be found in the distributed system: usable refer-
ences, references in transit and references not yet usable. We successively establish
the safety property for each of them.

Lemma 9 Safety 1: Usable Reference. For any processes p1 and p2, for
any reference r with p2 = owner(r) and p1 6= p2, and for any configuration, the
following implication holds:

If rec T (p1, r) = OK,

then p1 ∈ pdirty T (p2, r).

2

Proof. We proceed with the following reasoning. This implication holds triv-
ially in the initial configuration since rec T (p1, r) = ⊥. If rec T (p1, r) = OK, then
by Lemma 4, clean(r) 6∈ k(p1, p2). Similarly, by Lemma 5.b, dirty(r) 6∈ k(p1, p2)
and, by Lemma 5.a, r 6∈ dirty call todo T (p1). Consequently, from Lemma 6, we
derive that p1 ∈ pdirty T (p2, r).

Lemma 10 Safety 2: Reference in Transit. For any processes p1, p2, for
any reference r, for any identifier id and for any configuration, the following im-
plication holds:

If copy(r, id) ∈ k(p1, p2),
then p1 ∈ pdirty T (owner(r), r), if p1 6= owner(r)

or 〈owner(r), p2, id〉 ∈ tdirty T (owner(r), r), if p1 = owner(r)

2

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

34 · Birrell’s Distributed Reference Listing Revisited

Proof. We proceed with the following reasoning. This implication holds triv-
ially in the initial configuration since k is empty. If copy(r, id) ∈ k(p1, p2), then
〈p1, p2, id〉 ∈ pdirty T (p1, r) by Lemma 3, which proves the lemma when p1 =
owner(r). Otherwise, p1 6= owner(r) and 〈p1, p2, id〉 ∈ tdirty T (p1, r) implies
that rec T (p1, r) = OK by Lemma 7. Therefore, p1 ∈ pdirty T (owner(r), r) by
Lemma 9.

Lemma 11 Safety 3: Unusable Reference. For any process p1, for any ref-
erence r and for any configuration, the following implication holds:

If rec T (p1, r) = nil ∨ rec T (p1, r) = ccitnil,
then there exists p such that p ∈ pdirty T (owner(r), r)

or there exist p, id such that 〈owner(r), p, id〉 ∈ tdirty T (owner(r), r).

2

Proof. The implication holds in the initial configuration since rec T (p1, r) = ⊥.
Otherwise, if rec T (p1, r) = nil ∨ rec T (p1, r) = ccitnil, then:

p1 ∈ pdirty T (p2, r) ∨ (dirty(r) ∈ k(p1, p2) ∨ r ∈ dirty call todo T (p1))

holds by Lemma 6. One of the two terms is true:

—p1 ∈ pdirty T (p2, r): Only receive dirty adds a permanent entry to pdirty T (p2, r),
and in this case p2 = owner(r). This proves Lemma 11 with p = p1.

—dirty(r) ∈ k(p1, p2) ∨ r ∈ dirty call todo T (p1): Only do dirty call posts dirty
messages and these are always to the owner. Thus, p2 = owner(r). By Lemma
8, there exists p and id such that 〈id, p, r〉 ∈ blocked T (p1, r). By Lemma 3,
〈p, p1, id〉 ∈ tdirty T (p, r) is true. If p = owner(r), Lemma 11 is satisfied.
Otherwise, if 〈p, p1, id〉 ∈ tdirty T (p, r), then rec T (p, r) = OK by Lemma 7.
Therefore, p ∈ pdirty T (owner(r), r) by Lemma 9, which proves Lemma 11.

Finally, we can establish the safety of Birrell’s algorithm. A distributed garbage
collection algorithm is safe if the collector cannot reclaim live objects, i.e. those
to which there exists a remote reference, including any reference contained in copy
messages in transit. For Birrell’s algorithm, the requirement is to ensure that the
entry for a remote reference in the owner’s dirty tables cannot be empty if another
process holds a potentially usable copy of that reference or if there is a message in
transit that contains a copy of that reference.

Definition 12 Birrell’s Safety Requirement. The safety requirement for
Birrell’s algorithm is that for all references r, and for all processes p1 and p2 and
all identifiers id,

If rec T (p1, r) = OK ∨ rec T (p1, r) = nil ∨ rec T (p1, r) = ccitnil
∨ copy(r, id) ∈ k(p1, p2),

then there exists p such that p ∈ pdirty T (owner(r), r)
or there exist p, id such that 〈owner(r), p, id〉 ∈ tdirty T (owner(r), r).

2

Now, we prove the safety property.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 35

Theorem 13 Safety. Birrell’s algorithm is safe. 2

Proof. A process may hold a potentially usable remote reference r, in which
case the state of that reference is one of OK, nil or ccitnil, or a message containing
the reference may be in transit to the process. In the first case, we proceed by case
analysis of the state of rec T (p1, r), for a process p1 holding a reference r.

—rec T (p1, r) = OK: p1 ∈ pdirty T (p2, r) by Lemma 9 (Usable Reference).

—rec T (p, r) = nil or rec T (p, r) = ccitnil: In these cases, there exists p such
that p ∈ pdirty T (owner(r), r), or there exist p, id such that 〈owner(r), p, id〉 ∈
tdirty T (owner(r), r) by Lemma 11 (Unusable Reference).

The only remaining cases to consider are when rec T (p1, r) is ⊥ or ccit and there
is a message in transit: copy(r, id) ∈ k(p1, p2). Then p1 ∈ pdirty T (owner(r), r) or
〈owner(r), p2, id〉 ∈ tdirty T (owner(r), r) by Lemma 10 (Reference in Transit).

Thus, all live references and all references contained in copy messages in transit
must also be held in their owner’s dirty tables (as transient or permanent entries).
An object cannot be reclaimed by the local garbage collector as long as there is
a reference to it held in the owner’s dirty tables, since these are considered to be
roots for local collections. Thus no object for which there is a live remote reference,
or a reference in transit, can be reclaimed by the local collector. The algorithm is
safe.

4.2 Liveness proof

Liveness guarantees that if all references to an object are deleted, its owner’s dirty
tables will eventually become empty. In order to establish liveness, we adopt the
proof technique used by Moreau and Duprat [2001]. Much of this proof consists
of repetitive case analysis; in the interests of brevity, we give example cases rather
than the complete analysis.

Outline. The liveness is derived by showing that the algorithm can always process
incoming messages and in very precise circumstances generate a finite amount of
transitions. Therefore, assuming fairness of the communication layer, we can show
that when no more transitions can be performed for a given reference, its owner’s
dirty tables are necessarily empty.2

We first show that whenever there is a message in a channel, a transition may be
fired to consume this message.

Lemma 14. Let c be a configuration 〈. . . , k〉 such that k(p1, p2) = {m} ⊕ q,
for some m, p1, p2 and q. Then, there exist a transition t and a configuration
c′ = 〈. . . , k′〉 such that c 7→t c′, with k′(p1, p2) = q. 2

Proof. Proof proceeds by case analysis on the type of the message m known
to be in a channel. For instance, if there is a message dirty ack(r) in a communi-
cation channel k(p1, p2), then transition receive dirty ack(p1, p2, r) can be fired to
consume this message.

Lemma 14 ensures that the algorithm itself does not prevent the processing of
messages.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

36 · Birrell’s Distributed Reference Listing Revisited

Our next step is to prove that the distributed reference listing activity generates
a finite number of transitions. To this end, we need to separate transitions that
are triggered by the application from those that are specific to the reference listing
algorithm. The transition make copy is initiated only by the application, which is
external to this algorithm; likewise, transition finalize is triggered by a local garbage
collector after the application has released all references to an object. Thus, we are
required to show that the length of a sequence of transitions that does not include
transitions make copy or finalize is necessarily finite.

For this purpose, we introduce a new measure, called a termination measure, that
gives an indication of how far the abstract machine is from completing its transitions
related to distributed reference listing. The termination measure is defined in terms
of a configuration of the machine as follows.

Definition 15 Termination Measure. The termination measure of a config-
uration c, 〈tdirty T, pdirty T, rec T, blocked T, copy ack todo T, dirty ack todo T,

clean ack todo T, dirty call todo T, clean call todo T, k〉, is defined as:

termination measure(c)

= tab measure

+
∑

pi∈P

∑

pj∈P

∑

m∈k(pi,pj)

msg measure(m)

+
∑

p∈P

∑

r∈R

rt measure(rec T (p, r))

with

tab measure = 9 |dirty call todo T | + 7 |dirty ack todo T |

+ 2 |copy ack todo T | + 2 |clean ack todo T |

+ 2 |blocked T |

and

msg measure(copy) = 14
msg measure(dirty) = 8

msg measure(dirty ack) = 6
msg measure(clean) = 3

msg measure(copy ack) = 1
msg measure(clean ack) = 1

rt measure(OK) = 5
rt measure(ccitnil) = 2

rt measure(ccit) = 1
rt measure(nil) = 1
rt measure(⊥) = 0

2

Intuitively, the processing of a message can update a table, which in turn may
trigger the creation of new messages. The termination measure of a configuration
accounts for messages, the sizes of tables and the states of references. The values
for the component measures are chosen such that the termination measure of a
configuration is always greater than that of any successor configuration; pseudo-
statements in Figures 9 to 12 are annotated with the change in termination measure
they cause. This is formalised by the following lemma.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 37

Lemma 16. For any configurations c and c′ and for any transition t, such that
c 7→t c′, where t 6= make copy(p1, p2, r) and t 6= finalize(p, r), the following in-
equality holds:

0 ≤ termination measure(c′) < termination measure(c).

2

Proof. First, we note that the termination measure of a configuration is always
positive or null. Second, the proof proceeds by an analysis of the different possi-
ble cases for transition t. We consider here the transition receive dirty ack. We
compute the termination measure of the configuration after transition:

(1) a dirty ack is consumed, hence the measure is decreased by 6;

(2) the increase of the measure due to copy ack todo T is exactly compensated by
the decrease of the measure due to blocked T ;

(3) setting rec T (p2, r) to OK increases the measure by 5.

As a result, after transition, the measure is decreased by 1, which proves the lemma.
Similar reasoning shows that the other transitions also cause the termination mea-
sure to decrease strictly.

Knowing that the termination measure is non-negative, and having proved that
it decreases for every transition other than make copy and finalize8, we can derive
the following termination Lemma.

Lemma 17 Termination. For any configuration, all transition paths that do
not involve make copy or finalize transitions terminate. 2

Proof. Let us define a successor relation on the set of configurations; c2 is a
successor of c1 if c2 is obtained from c1 by a transition that differs from make copy

or finalize. Using the termination measure (Definition 15) and the fact that it
decreases (Lemma 16), we can establish that the successor relation is well-founded.
Therefore, we can derive that, for any configuration c0, there exists a successor
configuration ck that does not have a successor; ck is a fixed point of the successor
relation, which concludes the proof.

All the necessary lemmas are in place to prove liveness, specified as follows.

Definition 18 Birrell’s Liveness Requirement. The liveness requirement
for Birrell’s algorithm is that if all references r to an object are deleted, its owner’s
dirty tables will eventually become empty.

If ∀p 6= owner(r), if rec T (p, r) = OK, then r ∈ clean ack todo T (p)
and if no further make copy(p1, p2, r) transition is fired
and if no copy(r) is in transit,
then pdirty T (owner(r), r) and tdirty T (owner(r), r) become empty

after a finite number of transitions.

2

8Note that we do not require a measure for clean call todo T since the only transition that adds
entries to it is finalize which is not enabled.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

38 · Birrell’s Distributed Reference Listing Revisited

Before we can show that Birrell’s algorithm satisfies the liveness requirement, we
require two straightforward lemmas. First, we show that there can only be an entry
in blocked T (p2, r) if there is a dirty or a dirty ack message in transit, or an entry
in dirty call todo T or dirty ack todo T (indicating that one of these messages has
been scheduled for transmission).

Lemma 19. For any processes p1 and p2, any reference r, any identifier id and
for any configuration, the following equality holds:

〈id, p1, r〉 ∈ blocked T (p2, r)

=
∨

r ∈ dirty call todo T (p2)
dirty(r, id) ∈ k(p2, p1)
〈p2, r〉 ∈ dirty ack todo T (p1)
dirty ack(r) ∈ k(p1, p2)

2

Proof. The proof follows by case analysis of the transitions in the same fashion
as that of Lemma 5 and is omitted here. We also note that these four cases are
mutually exclusive.

Second, we show that if the state of a reference is nil, then the reference is blocked.

Lemma 20. For any process p1, any reference r and for any configuration,

If rec T (p1, r) = nil,
then 〈id, p2, r〉 ∈ blocked T (p1, r) for some id, p2.

2

Proof. The proof follows trivially by case analysis of transitions receive copy,
receive dirty ack and receive clean ack.

Theorem 21 Liveness. Birrell’s algorithm satisfies the liveness requirement.
2

Proof. We assume that no further finalize or make copy transitions related to
a given reference r can be fired. By further assuming fairness [Manna and Pnuelli
1991] of message delivery, all transitions pertaining to r will eventually be executed.
Consequently, by Lemma 17, there exists a configuration of the abstract machine
that cannot fire any further transition pertaining to r. This configuration cannot
contain an entry for r in any to do table, for otherwise new r-related transitions
would be fireable; likewise, this configuration cannot contain any r-related mes-
sage. Therefore, the algorithm terminates in a finite number of steps for transitions
related reference r.

We now show that pdirty T (Owner(r), r) and tdirty T (owner(r), r) are empty
on termination. 〈p1, p2, id〉 ∈ tdirty T (p1, r) and 〈id, p1, r〉 ∈ blocked T (p2, r), are
equivalent by Lemma 3. But since the to do tables are empty and there are no
messages in transit, blocked T (p2, r) is empty by Lemma 19, and hence there is no
transient entry in tdirty T (p1, r). By Lemma 6, p2 ∈ pdirty T (p1, r) if and only if
the state of r in process p2 is one of OK, nil or ccitnil. However, rec T (p2, r) can
neither be OK (by the premise of Definition 18), nor nil (by Lemma 20) nor ccitnil (by

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 39

Lemma 1 since the dirty call todo T -tables are empty). Therefore, pdirty T (p1, r)
cannot contain a permanent entry. Since neither dirty table contains an entry
relating to r, the liveness of the algorithm is proved.

5. VARIANTS AND DISCUSSION

Changing the network hypothesis to fifo channels can dramatically simplify the
algorithm, while still preserving the approach of dirty and clean calls. Additionally,
optimisations are possible when the sender or the receiver of a reference is also its
owner. We study such variants of the algorithm in this section, and discuss their
implications in terms of performance.

5.1 FIFO Channels

Changing the communication hypothesis to reliable fifo channels not only simpli-
fies the algorithm, but also improves its performance. In this section, we summarise
this algorithm variant.

By adopting fifo channels, message order is preserved. Consequently, clean
messages are guaranteed not to overtake dirty messages already in transit between
the same pair of processes. Therefore, there is no need to wait until a dirty ack
message is received before making a reference usable and potentially recyclable: as
soon as a reference is received, it becomes usable and a dirty message should then be
scheduled. This means that deserialisation does not have to be blocking, and that
garbage collection activity does not force synchronisation points with the mutator
activity.

A dirty ack is still needed, however, to determine when a copy ack message must
be sent; otherwise, a premature copy ack could entail a race condition typical of
naive distributed reference counting. On the other hand, clean ack messages have
now become obsolete: they were only needed to mark the transition of receive tables
from ccitnil to nil. As a result, only two states are required for receive tables: OK and
⊥, marking a usable and an unusable reference, respectively. Finally, whereas we
used to have two separate tables for clean and dirty calls scheduled for transmission,
now we must use a single queue of calls to do, as their order must be preserved.
We remark that, in this optimisation, the fifo property on channels is required for
dirty and clean messages between any process and the reference’s owner. Mutator
messages do not have to be ordered.

5.2 Owner Optimisations

Our presentation, like Birrell’s, focuses on triangular protocols, where a reference
sender, the reference receiver and the owner are three different processes. Some
optimisation can take place when the sender or the receiver is also the owner.

5.2.1 Sender is also Owner. When the sender of a reference is also its owner,
there is no point in creating a transient dirty entry only to be replaced by a per-
manent dirty entry, through two successive dirty and copy ack messages. Instead,
during a make copy transition, the owner could directly create an entry in its per-
manent dirty table. When a process receives a reference from its owner, it no longer
needs to make a dirty call and to send a copy ack message.

This change potentially introduces race conditions. The owner could send a

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

40 · Birrell’s Distributed Reference Listing Revisited

reference to a process p, and therefore create a permanent dirty entry for p. While
the copy message is in transit, a third party process could send the same reference
to p, which would then make a dirty call and, if the reference became no longer
reachable on p, could immediately make a clean call. The clean call could remove
the permanent dirty entry for p before the copy message reached p. To avoid such
a race condition, messages need to be ordered, ensuring that the dirty ack message
does not overtake the copy message in transit from the owner.

5.2.2 Receiver is also Owner. In this case, there is no need for the sender to
create a transient dirty entry for the reference, because we know that the reference
is locally reachable by the owner, since the owner contains a permanent dirty entry
for the sender. However, race conditions are again possible if message ordering
is not introduced. If the sender sends a reference to its owner, does not create a
transient dirty entry, recycles the reference immediately and sends a clean message
immediately, we need to ensure that the clean message cannot overtake the copy
message.

Thus, for both of these ‘owner optimisations’, and unlike the fifo channel opti-
misation introduced above, we require ordering of application messages and some
distributed reference listing messages.

5.3 Discussion

The application in which the algorithm is used would typically dictate the net-
work conditions that are permissible. In an RPC-style environment, where remote
method calls cannot be ordered, our first algorithm specification appears to be
the only solution. It has the major drawback that the mutator’s activity must be
suspended during deserialisation by the reference listing algorithm.

By maintaining the order of clean and dirty messages, the algorithm variant of
Section 5.1 potentially improves the performance of the overall application, because
it does not force synchronisation points between the reference listing activity and
the application.

The variant of Section 5.2, however, introduces quite stringent constraints on
communication channels, sometimes forcing the interleaving of reference listing mes-
sages with application messages. It can, however, substantially reduce the traffic
to and from a reference owner.

6. FAULT TOLERANCE

So far our discussion of Birrell’s algorithm has been restricted to fault-free processes
and communications. This is not a realistic model of a distributed world. Birrell’s
algorithm tolerates communication and process failures through a combination of
failure detection, timeouts and message numbering. In this section, we first outline
Birrell’s approach [1993], discuss the limitation of that presentation, and then make
use of our graphical representation to map failure detection and associated remedial
actions, in order to provide new insights into Birrell’s algorithm. Birrell writes:

[Section 2] To deal with [calls being delivered out of order], a sequence

number is attached to each clean or dirty call. The sequence number must
increase with each new operation from the client. (Some authors use the
term ‘timestamp’ to refer to this sort of sequence number.) Let seqno(O, P)

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 41

be the largest sequence number seen at O’s owner on a clean or dirty call
for object O from process P . An incoming operation will be performed only
if its sequence number exceeds this value; otherwise it has no effect.

Communication failures
[Section 2.3] When a dirty call fails, no surrogate is created. It would not
be safe to create one, because the object’s owner may not have received
the dirty call. However, it is also possible that the owner did receive the
dirty call, so the object and a sequence number for the clean call are added
to the cleanup demon’s queue. Note that this may cause an unnecessary
clean call, but that does no harm. The effect of a clean call is to remove
the client from the object’s dirty set; if it is not in the set, the clean call is
a no-op.

When a clean call fails, the cleanup demon merely leaves the request on its
queue, keeping the same sequence number. The clean call will be repeated
until it succeeds, or until the owner’s termination is detected.

Process termination
[Section 2.4] [Birrell’s] collector detects termination by having each process
periodically ping the clients that have surrogates for its objects. If the ping
is not acknowledged after sufficient time, the client is assumed to have died,
and is removed from all dirty sets at that owner.

This presentation suffers from some weaknesses, similar to those we discussed in
Section 2.4. More specifically:

(1) As before, the presentation depends on specific implementation techniques:

(a) It relies on an RPC-based communication layer, in which the process re-
ceiving a procedure call has little opportunity to take action when a failure
occurs during the return of a result; it is, for example, difficult for such a
process to retry sending the result as the connection initiated by the caller
has probably been lost.

(b) The detection of process failures is driven by the owner pinging client pro-
cesses. This is not the only approach, however: for instance, Java RMI
relies on a mechanism of leases that clients must renew regularly, failing
which they are deemed dead by the owner.

(c) The failure handling mechanism is bound to the wireRep representation,
and in particular, it uses the wireRep uniqueness to detect processes con-
sidered to be dead.

(2) Birrell does not specify the global properties that the algorithm must preserve.
It is particularly hard to identify such properties without any knowledge of the
application, and therefore it seems difficult to find a generic solution at the
middleware level.

(3) Different methods of communication and different failure detectors can result
in different algorithmic solutions, and therefore should be made explicit as
parameters to the algorithm.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

42 · Birrell’s Distributed Reference Listing Revisited

(4) Sections 2.3 and 2.4 of Birrell’s algorithm discuss how a client should behave
when communications with the owner fail and how the owner should react to
an apparently dead client, respectively. These sections are presented indepen-
dently, but it is likely that, in the presence of communication failures, both
would be applicable at the same time; therefore, their interaction needs to be
discussed.

Against this background, we believe that fault tolerance deserves a complete
study that is beyond the scope of this article. Indeed, following our investigation, we
estimate that a minimum of nine new rules would be necessary to formalise Birrell’s
approach, and their proof of correctness would require substantial reworking and
extension of the current proof. Instead, our contribution is to shed some light on
Birrell’s approach through our graphical notation. This allows us to: (i) identify
precisely when failures can be detected; (ii) define the states that are reached
after failures have been detected; (iii) illustrate how remedial actions attempt to
recover the system; and (iv) show which cases must be added to Birrell’s algorithm
to avoid deadlocks.

Figure 13 depicts two nested cubes: the inner one maps the transitions and states
of the algorithm in the absence of failures (as in Figure 4), whereas the outer cube
identifies states after failures have been detected. By convention, the states reached
after detecting a failure are overlined; for clarity, the states 1, 2,. . . of Figure 4
that describe the sending of references have been omitted. All failure detection
transitions move from a vertex of the inner cube to a vertex of the outer one (and
vice-versa for failure-handling transitions).

The outer cube follows the same intuitive interpretation as that of Figures 5, 6
and 7. Horizontal slicing brings useful insights to failure detection. When com-
municating with the owner, the absence of acknowledgement can be detected, but
the process cannot decide whether the owner has received the message. Therefore,
the upper failure states (marked with a subscript u) identify states in which the
owner (still) believes that the receiver has a reference, as opposed to the lower fail-
ure states (marked with a subscript l) in which the owner does not know that the
receiver holds a reference.

In the failure-free life cycle, a process announces its possession of a reference by
sending a dirty message to the reference’s owner; this action results in the system
moving from the state ⊥ to the state nil. From this state, in the absence of failure,
we would expect the receipt of a dirty ack message from the owner. Alternatively,
the process could observe a failure to deliver the dirty message, or could conclude
after a timeout that the dirty acknowledgement message has not been delivered.
These two conditions result in a transition to some state in the outer cube. Using
the intuition of horizontal slicing from Figure 6 (upper and lower slices), two states
need to be be considered: in the first one, nilu, the owner has received the dirty
message, whereas in the second, nill, the owner has not received a dirty message.
If the cause of the transition is that no dirty ack message has been received, the
client is unable to decide in which state the owner is; therefore, from a client’s
perspective, there are two non-deterministic transitions to nilu and nill.

A similar failure detection occurs in states ccit and ccitnil, in which the client
process can detect the failure to deliver a clean message, or alternatively that a

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 43

Fig. 13. Failure Detection and Handling, according to Birrell. Note that, for clarity, the transition
labels of the inner cube have been omitted and its orientation has been changed from that of
Figure 4.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

44 · Birrell’s Distributed Reference Listing Revisited

clean ack message has not been received before the timeout. From ccit and ccitnil,
we find non-deterministic transitions to ccitu and ccitl, and to ccitnilu and ccitnill,
respectively.

Our notation also helps us to explain what remedial actions should be performed
to recover from failures. For the states ccitu, ccitl, ccitnilu and ccitnill, the solution is
to re-attempt the sending of a clean message, bringing the system back to the inner
cube. As noted by Birrell, a failure may have been detected, but the clean message
may have been successfully processed by the owner: additional clean messages are
harmless.

The remedial actions for the states nilu and nill are more interesting: the client
process must send a clean message to clean up a potential permanent dirty entry
in the owner process. Such clean calls are flagged as strong clean calls in Birrell’s
algorithm to ensure that the dirty call that was thought to have failed is indeed
cancelled no matter when it arrives. From a client’s perspective, the reference is
still potentially usable, even though it is not known whether it has been registered
with the owner yet; hence, the remedial action leads to the ccitnil state.

Finally, at any stage of a reference life cycle, a new copy message containing the
same reference may be received by the process: it needs to be handled, otherwise
the algorithm would lead to a deadlock. Receiving such a message in ccitu and ccitl
makes the reference potentially usable, which is exactly the meaning of ccitnilu and
ccitnill, towards which we have introduced new ‘receive reference’ transitions. For
all the other states of the outer cube, receiving a copy does not change the state of
the system.

Our mapping of failure detection and remedial actions to the graphical notation
brings new insights into the algorithm:

(1) Birrell’s algorithm did not have a ccitnil state. We introduced this state in order
to prove the correctness of the algorithm in the absence of failures. Figure 13
shows the pivotal role of this state in the handling of failures.

(2) A crucial consideration when designing an algorithm is to prevent the creation
of deadlocks: our graphical notation helped us identify what action to take in
the presence of incoming copy messages, resulting in new transitions ccitu →
ccitnilu and ccitl → ccitnill.

(3) Our presentation of the algorithm focuses on the client’s perspective, for which
we identified the presence of non-determinism when failures are detected. This
non-determinism reflects the client’s inability to decide whether the owner has
processed a message or not. After mapping the remedial actions to the graphical
notation, we observe that, from a client’s perspective, the upper states can be
merged with their corresponding lower states, since the remedial actions are
identical. However, it remains important to distinguish these states, because
the owner is itself capable of deciding whether it has processed a message or
not.

(4) Similarly to Birrell’s algorithm, our presentation has focused only on the han-
dling of failures for dirty and clean messages. Failures of copy ack messages
should also be handled because their processing affects the transient entries in
dirty tables.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 45

(5) Remedial actions attempt to bring the system back to states in the inner cube,
but they can fail themselves. Our graphical notation shows that their failure
would be handled in a similar manner, but this could result in infinite loops.
The algorithm would have to use a timeout to perform a transition to a state,
which we have not represented in our pictures, in which the process (or com-
munication) is believed to be dead (or irremediably broken).

By using the graphical notations, we have identified six transitions to the outer
cube, six transitions to handle failures (or three if the upper and lower states are
collapsed), and two supplementary cases to handle incoming copy messages. If we
were to formalise these transitions, a minimum of nine new rules would have to
be added to our algorithm, and most of the other rules would have to be revisited
in order to support message sequencing. The proof would have to be completely
revised as some of the key invariants would no longer hold in the new system. For
instance, the terms of Lemma 4 would no longer be mutually exclusive, because
several identical clean messages could be in transit due to slow communication,
timeouts and resending by the client. Finally, the key problem with formalising
and proving the correctness of the fault-tolerant version of the algorithm is to
specify the overall properties that need to be preserved. This study is beyond the
scope of the current paper.

7. RELATED WORK

In this section, we start by comparing Birrell’s algorithm with other techniques for
distributed garbage collection before discussing other formalisms and proof tech-
niques.

7.1 Reference Counting Algorithms for Garbage Collection

Distributed reference counting or listing algorithms are direct: they immediately
(subject to batching of messages) identify those objects for which there are no longer
global references. Consequently, reference counting scales well to large networks.
A further advantage is that it is comparatively straightforward to implement. De-
signers of distributed reference counting algorithms face challenges of safety and
efficiency: (i) to avoid race conditions between messages between reference own-
ers, senders and receivers that may cause objects to be reclaimed prematurely (de-
scribed in Section 2.2); (ii) to ensure that garbage objects are eventually reclaimed
(liveness); and (iii) to minimise the number of messages that must be exchanged.
Birrell’s is one of many solutions to address the first problem.

The earliest algorithm, from Lermen and Maurer [1986], used a system of ac-
knowledgements to prevent decrement (dec) messages from overtaking increment
(inc) messages. The sender of a reference must also notify the reference’s owner,
who will then send an acknowledgement (ack) to the receiver. By waiting un-
til the count of receipts of references and the count of their acknowledgements is
equal, a receiving process can delay sending decrement messages until it knows that
the increment has been received. Lermen and Maurer’s algorithm is illustrated in
Figure 14(b). Birrell’s algorithm improves on Lermen and Maurer in the context
of RPC as it performs fewer RPC calls when copying a reference (however, more
messages are sent). Unlike Lermen and Maurer, it is the receiver rather than the

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

46 · Birrell’s Distributed Reference Listing Revisited

(a) Birrell

(b) Lermen and Maurer (c) Moreau

(d) Indirect RC (e) SSP-chains

(f) Mancini-Shrivastava (g) Weighted RC

Fig. 14. Simplified message exchanges in distributed reference counting protocols

sender that initiates the exchange of reference counting messages.
In a fashion similar to that of Birrell, Moreau’s algorithm [2001b; 2001] requires

the receiver of a reference to send an inc dec message to the owner, which in
turn sends a dec message to the reference sender (and, thus, the inc dec does
not require an acknowledgement). The algorithm is illustrated in Figure 14(c). To
reduce synchronisation between mutator and distributed memory manager, Moreau
requires point-to-point fifo ordering of messages, which has inspired the optimisa-
tion that we discussed in Section 5.1.

The triangular protocols used by these algorithms are necessary to avoid race
conditions between reference counting messages that might lead to premature dele-
tion of objects. Indirect Reference Counting (IRC) [Piquer 1991] and Weighted
Reference Counting (WRC) [Bevan 1987; Watson and Watson 1987; Foster 1989;

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 47

Dickman 1992] can avoid such races by sending only decrement messages.
Piquer’s IRC instead maintains a diffusion tree that represents the path along

which distributed references have been propagated for the first time between pro-
cesses. Each process increments a counter for a reference whenever it copies the
reference to another process; when a reference is deleted, the remote process sends
a decrement message back to the reference’s parent in the diffusion tree where the
counter is decremented (see Figure 14(d)). The disadvantages of this technique are
that a process may have to preserve a locally unreachable zombie reference simply
because it is required by a third process, and that diffusion tree algorithms are
vulnerable to the failure of a process holding a parent node of the tree.

Moreau’s [2001b; 2001] and Dickman’s [2000] algorithms show how zombies can
be removed by reorganising the diffusion tree by re-parenting child nodes, either
with the root node (Moreau) or arbitrarily (Dickman). Indeed, IRC can be seen as a
special case of Moreau’s algorithm. The idea of short-cutting chains of pointers was
introduced by Shapiro, Gruber and Plainfossé [1990], and subsequently by Shapiro,
Dickman, and Plainfossé [1992; 1992; 1995], with SSP (scion/stub pair) chains (see
Figure 14(e)). Like Birrell, their description of SSP chains is focused on implemen-
tation and would benefit from an implementation-independent description.

Mancini and Shrivastava [1991] address fault tolerance in diffusion trees through a
sender-initiated triangular protocol that requires the sender to notify the owner, and
wait for an acknowledgement, before posting a reference (see Figure 14(f)). As with
Birrell, this introduces synchronisation between the mutator and the distributed
memory manager.

WRC (Figure 14(g)) associates a weight with each object and with each remote
reference. Initially, the weight of the first remote reference to an object is equal to
the weight of the object. When the reference is copied, its weight is divided (equally)
between the two copies, thereby maintaining the invariant that the weight of an
object is equal to the sum of the weights of the references that point to it. In order
to divide a reference of weight one, either an indirection can be introduced, which
behaves as an IRC zombie (‘message’ 2b), or a message can be sent to the owner
requesting more weight (message 2a) [Corporaal et al. 1990]. The ‘send more weight’
solution is reminiscent of dirty messages but sender rather than receiver initiated.

Although reference counting is only able to reclaim acyclic data structures, it may
be combined with tracing techniques to provide a complete distributed collector.
The strategy of such hybrid collectors is to combine the efficiency and immediacy
of reference counting with less frequent traces, possibly restricted to a subset of the
reference graph. Examples include the partial tracing techniques of Rodrigues and
Jones [1996; 1998], Jones and Lins [1993; 1993] and Lang, Queinnec and Piquer
[1992], timestamp propagation from Le Fessant, Piumarta, and Shapiro [1998], and
Maheshwari and Liskov’s back-tracing algorithm [1997].

7.2 Comparison with Other Formalisations

Garbage collection algorithms, particularly those with any aspect of concurrency,
whether mutator-collector or collector-collector, are notoriously challenging. For
example, Dijkstra described concurrent garbage collection ‘as one of the more chal-
lenging — and hopefully instructive — problems’ in parallel programming. In con-
sequence, most effort at formalisation and proof of garbage collection algorithms

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

48 · Birrell’s Distributed Reference Listing Revisited

has been directed at concurrent GC algorithms, and in particular at Dijkstra, Lam-
port, Martin, Scholten, and Steffens’s tricolour marking scheme [1978]. The only
formalisation of a distributed garbage collection algorithm of which we are aware
is that of the first author [Moreau and Duprat 2001].

Fine-grained concurrent implementations have several traps for the unwary, of
which possibly the best-known was that discovered in Dijkstra’s algorithm by
Woodger and Stenning [Stenning 1976]. In describing his proof of the algorithm,
Gries reported that he had ‘seen five purported solutions to this problem, either in
print or ready to be submitted for publication’ [Gries 1977]. Ramesh and Mehndi-
ratta [1983] formalised the proof of termination and absence of live-lock by using
Owicki and Lamport’s proof procedure [1982]. The algorithm has also been for-
malised by Jackson [1998], who used a labelled transition system and proved its
correctness using an embedding of linear temporal logic in PVS, and by Goguen,
Brooksby and Burstall [1998], based on a graph-theoretic representation of mem-
ory and related operations. Other algorithms and proofs can be found in Kung
and Song [1977], Francez [1978] and Müller [1976]. Ben-Ari’s algorithms [1982;
1984] were based on Dijkstra’s but intended to have much simpler proofs of cor-
rectness. Nevertheless, Ben-Ari’s algorithm was also susceptible to the Woodger
scenario [van de Snepscheut 1987; Pixley 1988; Russinoff 1994]; both van de Snep-
scheut [1987] and Pixley [1988] use invariant techniques for their proofs. Gonthier
and Doligez [1994; 1996] use a sugared version of the Temporal Logic of Actions
[Lamport 1991] to formalise and prove correct a multi-processor concurrent garbage
collector for Caml-light.

Birrell’s original account of the algorithm sketched a proof of correctness based on
temporal reasoning. However, in this paper, we use a notation previously employed
to formalise other algorithms for distributed reference counting [Moreau and Duprat
2001] and a directory service for mobile agents [Moreau 2001a; 2002]. Our formali-
sation denotes an abstract machine whose transitions describe how the distributed
system is able to evolve. Correctness proofs are established through an invariant
technique, showing that a property is true in the initial configuration of the ma-
chine, and remains true for every possible transition. This style of proof mechanises
straightforwardly, using the Coq theorem prover [Moreau and Duprat 2001; Moreau
2001a; 2002], and avoids the complications of temporal reasoning. Russinoff [1994]
has mechanised a proof of Ben-Ari’s algorithm, using the Boyer-Moore prover; his
proof system was based on the Manna-Pnueli model of concurrency. As we found in
this work, Russinoff also found it necessary to identify implicit assumptions made
by the algorithm designer and to discard implementation-dependencies. Havelund
and Shankar [1997] use refinement techniques in their mechanised safety proof.

8. FURTHER WORK

In this paper, we have used a systematic notation to formally specify a version of
Birrell’s algorithm without fault tolerance and we have proved that the formalisa-
tion provides the required safety and liveness guarantees. In Section 6, we used
our graphical notation to identify precisely where failures may occur and must be
handled and showed the remedial actions that would be necessary. We intend to
formalise this fault-tolerant version and prove its correctness. We remarked in Sec-

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 49

tion 3 that our formal notation bears some similarity with executable pseudo-code.
A further development of this work will automatically generate executable code
from our formal description. While we do not necessarily expect the code output
to be optimal, it would nevertheless serve as a reference version for more efficient
implementations.

Finally, we hope to use our graphical and formal notations to describe other
algorithms in the distributed reference counting family. Initial experiments show
that the notation can capture these algorithms [Lermen and Maurer 1986; Moreau
and Duprat 2001] and that, again, three dimensions are required. We intend to
explore this further and believe that such an exercise would be instructive, not
least because it would make more explicit the similarities and differences of the
algorithms.

9. CONCLUSION

Using a systematic notation, we have formally specified Birrell’s distributed refer-
ence listing algorithm. This specification also led to a graphical representation of the
state transition diagram and an intuitive explanation of the reference life cycle. Our
specification is independent of any implementation technique, and hence makes the
algorithm reusable in other contexts, not necessarily tied to distributed garbage col-
lection (such as distributed termination detection [Tel and Mattern 1993]). Specif-
ically, it neither assumes a remote procedure call communication mechanism nor
does it assume the use of stacks. Critical sections are made explicit in our algorithm
through our rules, whose execution is assumed to be atomic.

Our formalisation also clarifies issues in Birrell’s original account of the algorithm,
namely that references passed as a result of a remote method invocation also need
to be kept reachable (in our algorithm, using the dirty tables), and that attention
should be paid to race conditions that may occur when a fresh copy of a reference
is received while it is in the process of being cleaned. Thus, our algorithm differs
from Birrell’s in the following ways:

(1) We make systematic and uniform use of transient dirty tables for both owners
and non-owners in order to record the fact that a reference has been sent to a
remote process.

(2) We introduce an extra state ccitnil to allow a process that has already sent
a clean call for a reference, but has not yet received an acknowledgement, to
handle an incoming copy of that reference.

We have proved the correctness of the implementation by deriving a set of invari-
ants: proofs in such a style are easier to establish than temporal-based reasoning
and can naturally lead to their mechanisation using a theorem prover.

Our graphical notation also brings new insight into the fault tolerance of Birrell’s
algorithm. In particular, it is readily apparent precisely where failure can be de-
tected, which new states must be introduced and how recovery may be attempted.
Once again, this shows the pivotal role of our new state, ccitnil. A final benefit
of our work is that use of a common notation to describe algorithms can help, in
the longer term, to compare such algorithms in a more systematic, if not formal,
manner.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

50 · Birrell’s Distributed Reference Listing Revisited

Acknowledgement

This research is funded in part by the UK EPSRC Memory Management Network
(reference GR/R57140), to whom we are most grateful. We also thank the anony-
mous referees for their useful feedback which has improved this paper significantly.

REFERENCES

Abdullahi, S. E. and Ringwood, G. A. 1998. Garbage collecting the Internet: a survey of
distributed garbage collection. ACM Computing Surveys 30, 3 (Sept.), 330–373.

Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J., Giménez, E., Herbelin, H.,
Huet, G., Muñoz, C., Murthy, C., Parent, C., Paulin, C., Säıbi, A., and Werner, B. 1997.
The Coq Proof Assistant Reference Manual – Version V6.1. Tech. Rep. 0203, INRIA. August.

Ben-Ari, M. 1982. On-the-fly garbage collection: New algorithms inspired by program proofs.
In Automata, languages and programming. Ninth colloquium, M. Nielsen and E. M. Schmidt,
Eds. Springer-Verlag, Aarhus, Denmark, 14–22.

Ben-Ari, M. 1984. Algorithms for on-the-fly garbage collection. ACM Transactions on Program-
ming Languages and Systems 6, 3 (July), 333–344.

Bevan, D. I. 1987. Distributed garbage collection using reference counting. See de Bakker et al.
[1987], 176–187.

Birrell, A., Evers, D., Nelson, G., Owicki, S., and Wobber, E. 1993. Distributed Garbage
Collection for Network Objects. Tech. Rep. 116, Digital Systems Research Center, 130 Lytton
Avenue, Palo Alto, CA 94301. Dec.

Birrell, A., Nelson, G., Owicki, S., and Wobber, E. 1994a. Network Objects. Tech. Rep.
115, Digital Systems Research Center. Feb.

Birrell, A., Nelson, G., Owicki, S., and Wobber, E. 1994b. Network objects. In Proceedings
of the Fourteenth ACM Symposium on Operating Systems Principles. ACM Press, Asheville,
NC, 217–230.

Birrell, A., Nelson, G., Owicki, S., and Wobber, E. 1995. Network objects. Software Practice
and Experience 25, 4 (Dec.), 87–130.

Collins, G. E. 1960. A Method for Overlapping and Erasure of Lists. Commun. ACM 3, 12
(Dec.), 655–657.

Corporaal, H., Veldman, T., and van de Goor, A. J. 1990. Efficient, reference weight-based
garbage collection method for distributed systems. In PARBASE-90: International Conference
on Databases, Parallel Architectures, and Their Applications. IEEE Press, Miami Beach, 463–
465.

de Bakker, J. W., Nijman, L., and Treleaven, P. C., Eds. 1987. PARLE’87 Parallel Architec-
tures and Languages Europe. Lecture Notes in Computer Science, vol. 258/259. Springer-Verlag,
Eindhoven, The Netherlands.

Dickman, P. 1992. Optimising Weighted Reference Counts for Scalable Fault-Tolerant Dis-
tributed Object-Support Systems.

Dickman, P. 2000. Diffusion Tree Redirection for Indirect Reference Counting. In Proceed-
ings of the Second International Symposium on Memory Management, T. Hosking, Ed. ACM,
Minneapolis, MN.

Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S., and Steffens, E. F. M.

1978. On-the-fly garbage collection: An exercise in cooperation. Commun. ACM 21, 11 (Nov.),
966–975.

Doligez, D. and Gonthier, G. 1994. Portable, unobtrusive garbage collection for multiprocessor
systems. In Conference Record of the Twenty-first Annual ACM Symposium on Principles of
Programming Languages. ACM SIGPLAN Notices. ACM Press, Portland, OR.

Foster, I. 1989. A Multicomputer Garbage Collector for a Single-Assignment Language. Intl J.
of Parallel Programming 18, 3, 181–203.

Francez, N. 1978. An application of a method for analysis of cyclic programs. ACM Transactions
on Software Engineering 4, 5 (Sept.), 371–377.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 51

Goguen, H., Brooksby, R., and Burstall, R. 1998. An Abstract Formulation of Memory
Management. Available from http://www.dcs.ed.ac.uk/~hhg/.

Gonthier, G. 1996. Verifying the safety of a practical concurrent garbage collector. In Computer
Aided Verification CAV’96, R. Alur and T. Henzinger, Eds. Lecture Notes in Computer Science.
Springer-Verlag, New Brunswick, NJ.

Gries, D. 1977. An exercise in proving parallel programs correct. Communications of the
ACM 20, 12 (Dec.), 921–930.

Havelund, K. and Shankar, N. 1997. A mechanized refinement proof for a garbage collector.
Available from http://www.cs.auc.dk/~havelund/.

Hirzel, M., Diwan, A., and Henkel, J. 2002. On the usefulness of type and liveness for
garbage collection and leak detection. ACM Transactions on Programming Languages and
Systems 24, 6 (Nov.), 593–624.

Jackson, P. 1998. Verifying a garbage collection algorithm. In Proceedings of 11th Interna-
tional Conference on Theorem Proving in Higher Order Logics TPHOLs’98. Lecture Notes in
Computer Science, vol. 1479. Springer-Verlag, Canberra, 225–244.

Jones, R. E. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory Manage-
ment. Wiley, Chichester. With a chapter on Distributed Garbage Collection by R. Lins.

Jones, R. E. and Lins, R. D. 1993. Cyclic weighted reference counting without delay. In
PARLE’93 Parallel Architectures and Languages Europe, A. Bode, M. Reeve, and G. Wolf,
Eds. Lecture Notes in Computer Science, vol. 694. Springer-Verlag, Munich, 712–515.

Jul, E., Levy, H., Hutchinson, N., and Black, A. 1988. Fine-grained mobility in the Emerald
system. ACM Transactions on Computer Systems 6, 1 (Jan.), 109–133.

Kung, H. T. and Song, S. W. 1977. An efficient parallel garbage collection system and its
correctness proof. In IEEE Symposium on Foundations of Computer Science. IEEE Press,
120–131.

Lamport, L. 1991. The temporal logic of actions. Research Report 79, DEC Systems Research
Center, Palo Alto, CA.

Lang, B., Quenniac, C., and Piquer, J. 1992. Garbage collecting the world. In Conference
Record of the Nineteenth Annual ACM Symposium on Principles of Programming Languages.
ACM SIGPLAN Notices. ACM Press, Albuquerque, NM, 39–50.

Le Fessant, F., Piumarta, I., and Shapiro, M. 1998. An implementation for complete asyn-
chronous distributed garbage collection. In Proceedings of SIGPLAN’98 Conference on Pro-

gramming Languages Design and Implementation. ACM SIGPLAN Notices. ACM Press, Mon-
treal, 152–161.

Lermen, C.-W. and Maurer, D. 1986. A protocol for distributed reference counting. In Con-
ference Record of the 1986 ACM Symposium on Lisp and Functional Programming. ACM
SIGPLAN Notices. ACM Press, Cambridge, MA, 343–350.

Lins, R. D. and Jones, R. E. 1993. Cyclic weighted reference counting. In Procedings of WP
& DP’93 Workshop on Parallel and Distributed Processing, K. Boyanov, Ed. North Holland,
Sofia, Bulgaria, 369–382. Also Computing Laboratory Technical Report 95, University of Kent,
December 1991.

Maheshwari, U. and Liskov, B. 1997. Collecting cyclic distributed garbage by back tracing.

In Proceedings of PODC’97 Principles of Distributed Computing. ACM Press, Santa Barbara,
CA, 239–248.

Mancini, L. V. and Shrivastava, S. K. 1991. Fault-tolerant reference counting for garbage
collection in distributed systems. Computer Journal 34, 6 (Dec.), 503–513.

Manna, Z. and Pnuelli, M. 1991. Temporal Logic or Reactive and Concurrent Systems: Speci-
fication. Springer.

Moreau, L. 2001a. Distributed Directory Service and Message Router for Mobile Agents. Science
of Computer Programming 39, 2–3, 249–272.

Moreau, L. 2001b. Tree Rerooting in Distributed Garbage Collection: Implementation and
Performance Evaluation. Higher-Order and Symbolic Computation 14, 4 (Dec.), 357–386.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

52 · Birrell’s Distributed Reference Listing Revisited

Moreau, L. 2002. A Fault-Tolerant Directory Service for Mobile Agents based on Forwarding
Pointers. In The 17th ACM Symposium on Applied Computing (SAC’2002) — Track on
Agents, Interactions, Mobility and Systems. ACM, Madrid, Spain, 93–100.

Moreau, L. and Duprat, J. 2001. A Construction of Distributed Reference Counting. Acta
Informatica 37, 563–595.

Müller, K. A. G. 1976. On the feasibility of concurrent garbage collection. Ph.D. thesis, Tech.
Hogeschool Delft.

Owicki, S. and Lamport, L. 1982. Proving liveness properties of concurrent programs. ACM

Transactions on Programming Languages and Systems 4, 3 (July), 455–495.

Piquer, J. M. 1991. Indirect reference counting: A distributed garbage collection algorithm. In
PARLE’91 Parallel Architectures and Languages Europe, Aarts et al., Eds. Lecture Notes in
Computer Science, vol. 505. Springer-Verlag, Eindhoven, The Netherlands.

Pixley, C. 1988. An incremental garbage collection algorithm for multi-mutator systems. Dis-
tributed Computing 3, 1, 41–50.

Plainfossé, D. and Shapiro, M. 1995. A survey of distributed garbage collection techniques.
In Proceedings of International Workshop on Memory Management, H. Baker, Ed. Lecture
Notes in Computer Science, vol. 986. Springer-Verlag, ILOG, Gentilly, France, and INRIA, Le
Chesnay, France.

Ramesh, S. and Mehndiratta, S. L. 1983. The liveness property of on-the-fly garbage collector
— a proof. Information Processing Letters 17, 4 (Nov.), 189–195.

Rodrigues, H. C. C. D. and Jones, R. E. 1996. A cyclic distributed garbage collector for Network
Objects. In Tenth International Workshop on Distributed Algorithms WDAG’96, O. Babaoglu
and K. Marzullo, Eds. Lecture Notes in Computer Science, vol. 1151. Springer-Verlag, Bologna,

123–140.

Rodrigues, H. C. C. D. and Jones, R. E. 1998. Cyclic distributed garbage collection with
group merger. In Proceedings of 12th European Conference on Object-Oriented Programming,
ECOOP98, E. Jul, Ed. Lecture Notes in Computer Science, vol. 1445. Springer-Verlag, Brussels,
249–273. Also UKC Technical report 17–97, December 1997.

Röjemo, N. and Runciman, C. 1996. Lag, drag, void, and use: heap profiling and space-efficient
compilation revisited. In Proceedings of First International Conference on Functional Pro-
gramming. ACM Press, Philadelphia, PA, 34–41.

Russinoff, D. M. 1994. A mechanically verified incremental garbage collector. Formal Aspects
of Computing 6, 359–390.

Shaham, R., Kolodner, E., and Sagiv, M. 2002. Estimating the impact of liveness information
on space consumption in Java. In ISMM’02 Proceedings of the Third International Symposium
on Memory Management, D. Detlefs, Ed. ACM SIGPLAN Notices. ACM Press, Berlin, 64–75.

Shapiro, M., Dickman, P., and Plainfossé, D. 1992. Robust, distributed references and acyclic
garbage collection. In Symposium on Principles of Distributed Computing. ACM Press, Van-

couver, Canada, 135–146. Superseded by [?].

Shapiro, M., Dickman, P., and Plainfossé, D. 1992. SSP Chains: Robust, Distributed
References Supporting Acyclic Garbage Collection. Rapport de Recherche 1799, INRIA-
Rocquencourt. Nov.

Shapiro, M., Gruber, O., and Plainfoss, D. 1990. A garbage detection protocol for a realistic
distributed object-support system. Rapport de Recherche 1320, Inria-Rocquencourt. Nov.

Stenning, V. 1976. On-the-fly garbage collection. Unpublished notes, cited by [Gries 1977].

Sun Microsystems 1996. Java Remote Method Invocation Specification. Sun Microsystems.
http://java.sun.com/products/jdk/rmi/.

Tel, G. and Mattern, F. 1993. The Derivation of Distributed Termination Detection Algorithms
from Garbage Collection Schemes. ACM Trans. Program. Lang. Syst. 15, 1 (Jan.), 1–35.

van de Snepscheut, J. 1987. Algorithms for on-the-fly garbage collection revisited. Information
Processing Letters 24, 4 (Mar.), 211–216.

Watson, P. and Watson, I. 1987. An efficient garbage collection scheme for parallel computer
architectures. See de Bakker et al. [1987], 432–443.

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

Luc Moreau, Peter Dickman and Richard Jones · 53

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Programming Languages and Systems, Vol. , No. , 20.

