
 
 
 

A Coordination Model for Exploratory Multi-View Visualization 
 
 

Nadia Boukhelifa, Jonathan C. Roberts, Peter J. Rodgers  
Computing Laboratory, University of Kent 

{n.boukhelifa, j.c.roberts, p.j.rodgers}@kent.ac.uk 
 
 

Abstract 
In this paper, we present a coordination model for 

exploratory multi-view visualization. We base our work 
on current research in exploratory visualization and 
other disciplines. Our model is based on sharing abstract 
objects such as the visualization parameters of the 
dataflow model to achieve coordinated exploratory tasks 
in multiple views. This model describes how current 
coordinations in exploratory visualization work and 
allows novel coordinations to be constructed. 
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1. Introduction 

Multiple views are prevalent in many user 
interfaces. This is motivated by real-life needs for 
simultaneous display of multiform data, rapid 
information processing and the necessity to compare and 
contrast different aspects of the data. For example, 
interactive television allows the viewing of one program 
while the user browses additional and related 
information. Users are no longer passive. They are often 
actively involved in shaping multiple views of data 
through interactive exploration. 

Multiple views come in different forms. They could 
be abstract views that facilitate information processing, 
hierarchical and time series views, which describe the 
history of exploration or side thumbnail views for 
experimentation and quick viewing. 

In many of these cases coordinating multiple views 
is beneficial. For instance selecting a group of data items 
in one view in coordination with the selection of the 
same items in another can show new relationships such 
as distribution, grouping or subordination within these 
items, which might otherwise remain unseen. 

However, most coordination realizations in current 
visualization systems are last-minute ad-hoc additions. 
The coordination rules are informal, which may be 
flexible, but the principles would be difficult to export to 
other visualizations. Conversely, embedded 

coordinations are the result of adopting an underlying 
model. For instance the Snap-together conceptual model 
for coordination [1] relies on the relational schemata, so 
joins between relations are links between visualizations. 
While not wrong in itself, this specialization limits the 
potential and richness of coordination operations. 

Moreover, no visualization reference models 
explicitly consider coordination. Even if coordination is 
contemplated from the design point of view, it is usually 
only regarded as part of the communication protocol and 
is generally dealt with within that restricted domain. 
There is a need for a flexible model for coordination that 
will ensure easy embedding of coordination in such 
exploratory environments. 

The aim of this work is to first develop a reference 
model for coordination that will allow visualization 
designers to formally specify existing and novel 
coordinations in multiple-view exploratory visualization; 
second develop some rudiments of coordination drawing 
on the findings of the interdisciplinary study of 
coordination and lastly provide some examples of the 
model in use. In this paper we present such a model and 
formalize aspects of coordination for exploratory 
visualization (EV).  

This paper is divided into the following sections (2) 
Related work. (3) Discussion of the salient features of 
coordination in EV. (4) The new model. (5) An extended 
example of application. (6) a discussion about the 
relationship of the model to current coordinated 
visualization systems. Finally, (7) future work and 
conclusions. 

2. Related work 

Coordination is a subject that has been investigated 
by many separate disciplines but only recently have 
researchers such as Olson et al [2] appreciated the 
obvious advantages of interdisciplinary viewpoints. 

2.1 Interdisciplinary view of coordination 

There are many disciplines that use related ideas that 
could be cross-fertilized into coordinated EV. For 
example, a translation framework for ontology mappings 
of information services, integration and unification of 
data, constraints management in concurrent design 



2.2 Coordination for EV projects [3], inter-modality in different brain functions, 
redundancy for reinforcement of information, time series 
and history, middleware provision for cooperative work 
and balance and harmony in interior design. For these 
files, entities such as objects, events, processes, 
functions, agents and ontologies all may be coordinated. 

Interactive visualization is important, enabling the 
user to change the viewing parameters in one realization. 
Certainly the user can subsequently perform the same 
operation a number of times in additional views; but 
there is an obvious benefit in simultaneously 
coordinating the operation for the multiple views. 

Each discipline studying coordination has 
established its own architectures, models and protocols; 
some are based on sharing memory and other resources, 
others on managing constraints or propagating data 
values or data parameters. Coordination in these fields is 
treated in different contexts. 

Thus, coordination can be described (as detailed by 
Olson et al [2]) as “composing purposeful actions into 
larger purposeful wholes”, where “the additional 
information processing performed when multiple, and 
connected actors pursue goals that a single actor [or 
indeed the multiple actors working separately] pursuing 
the same goals would not perform”. We emphasize the 
point that the whole is greater than the sum of its 
components. 

Many researchers consider the field of coordination 
theory to be the study of the interaction between 
processes. For them, coordination is an interoperability 
problem because the coordination brings together 
heterogeneous and distributed system components. 

The essence of exploration in visualization is Visual 
Information Seeking (VIS) indeed as Ahlberg and 
Shneiderman [8] state: the emphasis is on “rapid 
filtering, ... progressive refinement of search parameters, 
continuous reformulation of goals and visual scanning to 
identify results”. Furthermore, to achieve effective 
coordination in exploratory visualization there are many 
dependencies between views that need to be managed 
appropriately. 

The multiple ontologies research, in particular, 
provides additional representation formalism defining the 
mapping between different ontologies where translation 
and other techniques such as approximation are required. 
For example, Akahani et al [4] suggest an approximate 
ontology translation framework for coordinating 
heterogeneous information services. The inter-ontology 
mappings of data aim to achieve data integration by 
identifying semantically corresponding terms of different 
source ontologies [5] where the semantic correspondence 
refers to equality or similarity. 

A model for coordination improves understanding, 
and allows effective development and qualitative 
evaluation of systems that incorporate coordination. The 
field of visualization is full of overloaded terms and 
suffers from inconsistencies. Moreover, visualizations 
often are based on different models. Coordinating 
different visualizations requires a mechanism, which 
allows interoperability between these differing models. 
We need a model for coordination to define, test and 
compare coordination strategies. 

Ciancarini et al [6] examine a suitable middleware 
for coordinating distributed active document-centric 
applications. This middleware is a software layer that 
abstracts from the heterogeneous characteristics of 
different architectures, operating systems, programming 
languages and networks in distributed systems. The main 
responsibility of the coordination middleware is one of 
data communication. Furthermore, middleware 
coordination often allows multiple views to occur in 
client-server architecture. 2.3 Current EV coordination models 

Another approach to coordination is the observation 
pattern as an ontology and a formal framework, as 
proposed by Viroli et al [7]. They write “in general, 
observation occurs when a system o [observer] is 
interested in some information made available by a 
system s [source]. Typically, ... s is modeling some 
portion of the world o is interested in, and providing o 
with some knowledge about it, as well as some 
mechanisms to access it”. The request-reply strategy of 
interaction in this paradigm works as a Model-View-
Controller (MVC) pattern. 

There are many visualization systems that utilize 
coordination. For example, tools like Xmdvtool [9], 
Spotfire [10] implement coincident brushing operations; 
others like VIP, LinkWinds [11] and Visage [12] include 
coordinated 3D views. Many systems include linked 
overview-detail views which is highly utilized in 
geovisualization, for example see [13]. This fits with 
North and Shneiderman [14] dual selection and 
navigation motivation for coordination. However, like 
Pattison and Philips [15] we believe in a wider view of 
coordination, which potentially may coordinate any 
aspect such as data preparation, averaging, clustering, 
moving window positions etc. Recently two models have 
been proposed: the Snap conceptual model [1] and the 
View Coordination Architecture [15]. 

Although much research on ontology translation has 
used informal mapping rules between those ontologies 
[4], the interdisciplinary study of coordination presents 
ideas that can be used for modeling multi-view 
exploratory visualization. There is much communality 
between concepts from a variety of fields and a strong 
case for transference of ideas. 

 
2.3.1   Snap 

The Snap conceptual model takes a data-centric 
approach to coordination. Relational database 
components are tightly coupled such that an interaction 
with one component results in changes to other 

  



components. Snap utilizes the concept of database design 
to promote better visual exploration. It provides a 
mechanism for constructing coordinations without the 
need for programming. In addition, new types of 
coordination are introduced such as the compound join 
and the multiple alternative joins [1]. 

Snap’s user interactions are currently limited to 
‘select’ and ‘load’, whereas exploratory visualization 
supports much more interactions, which could also be 
coupled for coordination outside the relational database 
scope. 

As we shall see, Snap resembles our model in many 
ways; for instance its architecture is event-based and 
coordination is built from action associations. Snap also 
recognizes the need for a middleware party to ensure 
coordination operation and for a translation mechanism 
when dealing with heterogeneous information sources. 
However, our model handles coordination from a more 
general viewpoint and takes in consideration exploratory 
visualization needs for rich and varied user interactions. 
Furthermore, we are interested in modeling 
representation-oriented coordinations as well as data-
centric coordinations. 
 
2.3.2   View coordination architecture for IV 

Pattison et al [15] present an architecture for the 
implementation of generic view coordination in the 
Model-View-Controller (MVC) pattern. The proposed 
framework separates between the specification and 
implementation of mapping between data model to view 
model. 

Coordination is managed by a new component 
(called coordination). Bidirectional coordinations can be 
achieved through directional coordination between 
presentation components, view model components or 
specification components. The more components there 
are and the more links exist between them, the more 
complex the implementation and debugging becomes, 
especially when linking different components [15]. Thus, 
to encourage reuse, presentation, content and the 
coordination itself should be - as far as possible - 
disparate and independent.  

Rather than concentrating on the implementation 
architecture our work focuses on a layered approach 
based on the dataflow model. Like Pattison we use a 
MVC fundamental design, however we utilize multiple 
components and different facets of coordination. 

3. Facets of coordination 

From the related work and broadness of the 
interdisciplinary viewpoint we see that coordination 
conjures some interesting challenges, such as relevance, 
design and visual depiction of each coordination as well 
as considering what and how to coordinate. 

3.1 Coordination challenges & opportunities 

First, due to the multiform nature of the multiple 
views, actions in one view cannot always be directly 

applied to other views. For example, it may be useful to 
coincidentally rotate two three-dimensional views, but if 
each uses a different mathematical projection then a 
translation needs to occur that converts user interactions 
in one view to a suitable format for the other. However, 
some coordinations that may be possible to achieve, may 
in fact not be useful; and yet others may be impossible to 
realize. However, at this abstract level it is possible to 
rely on the user to make such judgment of the usefulness 
of a particular coordination. Indeed, there is the whole 
question of how the system is implemented and whether 
the coordinations automatically occur or are created by 
user requests [16]. 

Second, there are design and user-interface 
questions that a designer may wish to pose. For example, 
if the multiple views represent a visual-history then is it 
feasible or relevant to coordinate between past variances 
of the exploration? Moreover, is everything coordinated 
or are aspects of a few windows coordinated (and if so 
who decides on what is coordinated ─ the user or the 
system?[17]) For instance, if may be beneficial to only 
coordinate views that are classified within the same 
group (the notion of Render Groups [18]). 

Third, how does the system visually represent and 
notify to the user what is currently being coordinated 
(e.g. visual methods such as used by the spiral calendar 
[19], or by the implicit laying out of modules in Waltz 
[18]). Many issues in visualization such as 
synchronization, correlation of visual or non-visual 
information, occlusion, view explosion and multitasking 
could be more approachable through a coordination 
model. 

3.2 Coordination in use - two examples 

In order to develop some rudiments of coordination 
in EV we investigate the use of coordination in a current 
tool (LinkWinds) and how coordination may be thought 
of as analogous to program variables. 

LinkWinds uses a data-linking paradigm for 
coordination, which is comparable to the spreadsheet 
concept where cells are related to each other using a 
formula and changing the formula in one cell 
recalculates the value of the linked cell [11]. The basic 
entities that are coordinated in LinkWinds are objects 
shown at the windowing level as either data, control or 
display objects. Objects of the same type sit in the same 
window making an object view. The general purpose of 
coordination is to detect possible relationships in data. 

LinkWinds allows one-to-many links; for example a 
slider broadcasts messages to all objects it is linked to 
when its value is changed. The user performs linking as 
well as unlinking interactively. In addition, there exist 
some constraints on coordination. For instance, data must 
be put into empty windows and messages are passed only 
between objects that are already linked. There is also a 
message-passing protocol that handles inter and intra 
object messages. The effect coordination causes on the 
user interface is the emanating flow between linked 
objects. 

  



Granularity of links: Program variables may be thought as analogous to 
coordination; for example, variables may be used in 
multiple places and accessed by reference, they must be 
instantiated, and they each have a type (if they are of a 
wrong type then they may be cast - either by default or 
explicitly). There are also notions of global and local 
scope. 

Many entities may be connected together via various 
links. Granularity determines: the number of entities in 
one coordination {2..n}, number of views in one 
coordination {1..n}, number of links an entity contributes 
to coordination {0..n}. 
 
Initialization: 

3.3 The rudiments of coordination Initialization determines who or how the coordination 
created. For example, it may be automatic (such as using 
a Render Group) or user specific, scheduled in some 
fashion etc. Moreover, the user may need to explicitly 
connect entity A to B, for every type by (say) connecting 
ports from module A to module B; alternatively, the user 
may only need to drag and drop the whole module into a 
Render Group to instantiate and link everything in 
module A to module B. 

Taking aspects from this analogy, the LinkWinds 
example, aforementioned challenges and other 
coordination tools we categorize the rudiments. 

 
Coordination entities: 
This details what is actually being coordinated; such as 
aspects of the actual window, view, data, record, tuple, 
attribute, parameter, process, event, function, graphic or 
time. 

 
Updating: 

 Coordinated views require that the information is 
dynamically up-to-date. However, there may be 
conflicting uses especially if, for example, the multiple 
views represent a visual history. Commonly, in a 
dataflow paradigm, the down stream modules always 
reflect the information upstream. However, it may be 
prudent that sometimes some views become out-of 
synchronization: such that they reflect a previous time in 
history. The displays may be updated by various means, 
such as eager or greedy update, lazy update, or user 
initiated. 

Type: 
The type of the coordination determines the method by 
which the entities are linked. For example, simple 
coordination (such as rotation or transformations) may be 
implemented using primitive types (float, integer etc) 
while others may be more complex data-structures. 
Translation (casting) may be required if the entities 
utilize different types. The types may also determine 
directionality of the links (unidirectional or 
bidirectional). For example, IRIS Explorer allows 
parameters to be coordinated but the events flow one 
way (as it disallows simultaneously connecting the 
reverse to inhibit circular event explosions taking place). 

 
Realization (link realization, user control): 
How is the expression of coordinated conveyed to the 
user? It may be that explicit lines are used (such as the 
Spiral Calendar [19]) or via some formal layout 
mechanism [18]. Moreover, how does the user control 
the information to be linked, do they use direct 
manipulation or indirect means via (say) dynamic 
sliders? 

 
Chronology (lifetime and scheduling): 
How long entities are coordinated is governed by its 
lifetime. (This is also known as the persistence of the 
coordination.) It may be coordinated permanently, for a 
given action, or determined by some scope. Moreover, 
the coordination may be synchronous, asynchronous, 
reactive, and proactive. For example, it may be useful to 
coincidentally rotate the view of a fast and a slow 
renderer; one solution is that the time-consuming one 
could update at a slower rate by taking every n events 
from a coordination event queue, or merely notified at 
every n seconds. 

4. The Model 

The challenge is to develop a model that addresses 
the coordination design issues mentioned above without 
bias towards a particular data, navigation or 
communication paradigm. Effectively, it should be 
flexible, adoptable, extensible and foster better visual 
exploration. 

 
Scope: 
Scope determines both the global/local connection and 
the lifetime of the links; a global scope would mean that 
any entity (wherever and whatever it is) could be 
connected; whereas some links may be restricted to be 
only used in a local area (e.g. the user may setup a group 
where by simply adding a new member to the group 
automatically coordinates it to each of the others in the 
group). Commonly known as a Render Group. 
Moreover, the scope also may restrict the lifetime. 

The model should allow visualization designers to 
formally specify existing and novel coordinations in 
multiple view exploratory visualization and so facilitate 
early testing of the proposed coordination designs before 
they are implemented by programmers or constructed 
visually by the user. 

4.1. Abstract model for coordination  

The model we define includes “coordination 
objects” that manage combinations of entities (e.g. 
parameters) that control aspects of the linked views. A 

 
 
 

  



single coordination object is associated with each 
separate coordination in the system. A view is said to be 
coordinated if it shares a common coordination object. 
All the coordination objects for a visualization system 
are held in a “coordination space” as shown in Figure 1. 
This is similar to the middleware layer component we 
mentioned in the interdisciplinary view on coordination, 
Section 2.1. 
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actions in view V2. In this case, we have three 
parameters in the coordination object.  

An advantage of this model is its dynamic nature, as 
views may be added and removed without other views 
that also access the same coordination object necessarily 
having knowledge of this activity. Importantly, views do 
not need to know about other views in the coordination. 

4.2. A layered approach to coordination 

The views themselves are a result of parameter 

 

igure 1. Abstract model for coordination in EV. 
his diagram shows two different coordinations 
etween two views. 

The views that are being coordinated need to define 
 translation function (for instance f1 and f2 as shown in 
igure 1) from the shared coordination object to the 
inked view parameters.  

The views must also register to be informed of a 
otify event when a coordination object is changed. If an 
vent occurs, which might typically be a user initiated 
ction in one of the linked views, it alters the 
oordination object, which sends a notify to all the linked 
iews registered. Registration may depend on a given 
cope. Then, those views that were notified of a change 
onsequently use the information provided by the 
oordination object via their translation function to 
enerate the new view. 

A single coordination object is considered to be 
resent for each type of coordination in the system. So 
hat if multiple views define coordination for both co-
otation and brushing, this will be represented by two 
eparate coordination objects: a rotation coordination 
bject for co-rotation and a selection coordination object 
or brushing. 

In the previous example, brushing uses the same 
isualization parameter for both views, selecting in one 
iew results in selecting in another view and the same 
pplies to co-rotation. However, a coordination object 
ay hold more than one visualization parameter. For 

nstance, one action in view V1 may be linked to two 
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changes to the visualization process; an interaction or 
exploration would generate a new view, likewise 
viewing the same data by a different display technique 
(multiform) would provide a new view. These different 
instances may be displayed in different windows, 
overlaid into the same window or in fact replace the 
current window (replication, overlay, replacement, 
respectively [17]).  

Often in exploratory visualization, visual correlation 
is seen as the focus of coordination, which tends to limit 
the techniques to brushing and navigational slaving. 
However, coordination may be understood in a wider 
context and occur on any variable or data at any level 
within the whole visualization process [17].  

Consider the dataflow model [20] (which is used in 
many systems such AVS, IRIS Explorer, Amira, Data 
Explorer DX to describe the whole visualization 
process); the data is Enhanced or enriched in some form, 
then Mapped into an Abstract Visualization Object 
(AVO) that can be Rendered into an image (Figure 2). 
Multiple views are generated by splitting the dataflow at 
any stage of the pipeline (generating a fan-out). Aspects 
of the replicated modules may be readily associated to 
engender coordination. In additional to the traditional 
dataflow model, aspects may also be coordinated at the 
viewport Transform (see Figure 2). Such coordinated 
Transform operations might include simultaneously 
rotating viewpoints or altering projections. Moreover, 
coordination may occur at Window level, for example, 
moving or closing windows concurrently. Incidentally, 
the same visualization process can also be described 
using the data state model as it is equivalent to the 
dataflow model [21]. 
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Figure 2. The data flow paradigm 

 
One criticism directed at the data flow metaphor 

concerns the granularity of its processes. The dataflow 
paradigm describes a coarse model for the visualization 
process, for instance the entire graphics field is 
encapsulated in one process “rendering” [22]. In 
addition, a single process represents the mapping stage, 
which is the essence of information visualization 

 



whereby information objects are mapped to visual 
objects. Moreover, the map and render stages of the data 
flow model are tightly associated in many application 
areas  (such as ‘information visualization’) and thus 
often treated as one process. 

Therefore, theoretically any process could be 
coordinated with anything (relevant translations applied) 
however; this may not be feasible or relevant. We 
propose coordination may occur at any process layer 
within the dataflow paradigm. However, we note that 
coordinations tend to occur within these levels. 
 

4.3. Components of the model 

Our model is divided into four components. They 
are the basic visualization processes and states, the 
coordination space, the events and the translation and 
notification functions. 

 
4.3.1 Basic visualization processes & states 

These are enhance, map, render and transform 
processes of the data flow pipeline as explained in 
section 4.2. Data is transformed in the data flow 
paradigm from the raw data to an image, firstly by 
enhancement to produce a derived data set. This is then 
mapped onto some geometry described by the Abstract 
Visualization Object (AVO). The final data state is the 
rendered image. These provide the coordination entities. 

 
4.3.2 Coordination space 

Each visualization system has one coordination 
space that holds various coordination objects. 
Coordination objects connect events and a number of 

linked coordinated views. In interactive exploratory 
visualization the event is often user initiated in one of the 
views. 
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Figure 3 Coordination model for exploratory visualization showing subspaces 

 

One view may be associated with many coordination 
objects in a coordination space since a view may play 
various roles in different coordinations: it might be part 
of a focus-and-overview coordination, as well as a 
rotation coordination (see granularity, section 3.3). 

The abstract parameters in a coordination object 
might be simple thresholds, coordinates of mouse clicks, 
or more complex notions such as modifications required 
to color maps or rendering algorithms (the concept of 
type, section 3.3). In the simple cases, the abstract 
parameters could easily be the actual parameters used by 
a view, such as a bounding box when filtering data in the 
Enhance section of the visualization pipeline. Even such 
simple parameters are not suitable in a raw form for all 
views, as some views may measure screen distances in 
different units, or from different origins, so translation 
functions may still need to be defined, for example to 
convert from measurements in inches to centimeters. 

This demonstrates the need for a more neutral 
abstract format for storing these abstract parameters in 
some cases. Naturally, we might want to store the shared 
parameters in the same format as the event-generating 
view parameter format. Hence there will be no 
translation needed between the coordination space and 
that particular view. However, there might be a more 
suitable format for storing this parameter that suits more 
than one view, which is not the current format of the any 
view parameter, hence, in this case, all views would need 
to define a non-trivial translation function on the abstract 
parameter. 

  



The abstract parameters stored in the coordination 
space can be grouped into four varieties of coordination 
sub-spaces (see Figure 3) since we describe the 
visualization process in terms of four processes: the 
enhance shared coordination space, the mapping 
coordination space, the rendering coordination space and 
the transform coordination space. However, in many 
situations the division between these sub-spaces is less 
rigid and coordination objects may include various 
parameters from each of the coordination sub-spaces. 

 
 

4.3.3 Events  
In this model, abstract parameters held in 

coordination objects are changed by events. Events can 
be generated by explicit user actions or automatically, by 
for example continuous analysis of the input data. Some 
user actions, such as selection with a mouse, are 
connected to a particular view, whereas others, such as 
keystrokes for altering parameters, are not. 

Events modify abstract parameters, so they must be 
aware of the nature of the format and extent of the 
abstract parameters in the coordination objects. Where 
events are generated in particular views, the event-
generating view will only be updated in the course of the 
event-notify cycle along with the other views. 

As events associated with views are usually indirect 
in any case, and typically the cycle defined in this model 
is fairly immediate, this system seems an elegant manner 
of allowing multiple events, generated by any view 
linked to the coordination object, to modify the abstract 
parameters. 

Whilst in this model we do not consider the time lag 
to be significant between the occurrence of the event and 
the notification event, this model should be adaptable to 
more critical real time visualization applications where 
large numbers of multiple events are occurring. 

There may be many events associated with a 
particular coordination object, so allowing the modelling 
of various types of coordination. A simple master-slave 
relationship, where all the actions are in one view and 
which simply reflected in other linked views might have 
only one event inputting into the coordination object, 
from the master view. On the other hand, where the 
coordination allows input from any or all of a group of 
similar views, the number of events may be at least the 
number of linked views. 

 
4.3.4 Translation & notification functions 

A translation function takes the abstract parameters 
in the coordination object and converts them to view 
parameters which are used in the visualization process to 
produce the final image. Each view registered with the 
coordination object has one such function. The result of 
the translation function at the view level is the 
replacement of current view parameters affecting the 
operations in the data flow pipeline Often a translation 
function might affect only one operation, but it is 
perfectly valid for the function to coincidentally affect all 
of enhance, map, render and transform. The view 

integrator might define the translation function. It is also 
possible for a set of default registration methods to link a 
coordination object inside the coordination space to a 
certain class of views, which would then define a render 
group. The coordination object designer would define 
these defaults. 

As well as defining a translation function, a linked 
view must be registered to receive notify events, that 
indicate when the coordination object has changed, 
indicating that the view’s image needs to be updated. As 
there may be concurrent coordination objects defined 
over one view parameter, the notify indicates which 
coordination object has changed, and so which 
translation function must be accessed. The view must 
define a notify handler, that is triggered by the notify 
event. At its simplest the notify handler merely forces a 
regeneration of the image by resending the current data 
through the dataflow pipeline. Where temporal issues 
exist, for example with time consuming visualizations, so 
that perhaps several notify events occur during the 
production of one view, then the notify handler in the 
view must include a scheduling algorithm to deal with 
the queue that develops in the best way for that particular 
view, deciding whether to restart the visualization 
process or discard some notify events. 
 
4.3.5 Other elements in the coordination object 

As mentioned above, it may be desirable to include 
some notion of default registration for a render group of 
views so that a plug and play approach to linking views 
to the coordination object is possible. There are other 
possible components in sophisticated coordination 
objects. It may be possible to place constraints on both 
the type and number of views that can connect to an 
object. For instance, if one view wants to register to 
coordinate with another specific view over a particular 
coordination object, a constraint can be added to that 
coordination object as to only give those views 
permission for access and change. A further constraint on 
linking views might be related to its lifetime, so 
restricting linking to limited periods, or timing out views 
after a certain amount of time. 

5. Using the model to define types of 
coordination in EV 

Let eve be an exploratory visualization environment 
and V1, V2 are views within eve. V1 and V2 are described 
by the E.M.R.T composition where each of the 
components, Enhance, Map, Render and Transform has a 
coordination sub-space associated with it. 
 
CASE I  Disconnected Views 
V1 and V2 are disconnected if they do not share any 
coordination object between them.  
 
CASE II  Linked Views 
V1 and V2 are connected if they both access at least one 
common coordination object. 
 

  



Two views can be tightly coupled if they have 
coordination objects that cover each of the sub-
coordination spaces. In Figure 3, the tightly coupled 
views V1 and V2 share all possible coordination sub-
spaces. 
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5.1 Example (enhancement coordination) 

Given two views V1 and V2, a user interacts with V1; 
this causes the firing an event, which affects E, M, R or 
T of V1. For instance, the event might be an enhancement 
to the original data set, such that only values greater than 
50 are included in the enhanced data set (Figure 4). If the 
user wants this event to play a role in coordination, the 
new filtering parameter will be stored in the coordination 
object E as default storage. Here is what happens at the 
view level and at the coordination space: 
 
CASE I   Disconnected views 
The enhancement will only affect V1 and the enhanced 
data will be mapped then rendered as specified by its 
own visualization pipeline. 
 
CASE II  Linked views  
V2 data set will also be enhanced given that the two 
views share the same filtering parameter. In the case of 
the identity coordination; no translation needed so both 
views use information in the coordination space as it is, a 
notify message is sent to both views enhance processes 
to use the new filter value. In the case of non-trivial 
translation functions, this value gets translated to view 
format.  If there is no sharing at the remaining stages of 
the visualization process, each view will finally render 
accordingly. 
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and Render only in a third group of views. In a tightly 
coupled coordination we have coordination with the type 
EMRT. 

5.2 Example (selection coordination) 

We illustrate our model using visualizations of 
geographical map data. Diagrammatically our 
coordination objects and linked views are shown in 
Figure 5.  

The event handled by the Selection coordination 
object is that of the user selecting a rectangular area of a 
map, an event that could be generated by any of the 
views.  

The effect in V1 is to filter the data to show only the 
selected rectangle whereas V2 changes the color map to 
highlight particular objects, such as road junctions inside 
the rectangle. The result in V3 is to modify the rendering 
inside the rectangle, increasing the level of detail to show 
smaller roads. Finally, the consequence for V4 is to 
perform a combination of all these actions, cropping the 
data, highlighting certain objects and increasing the level 
of detail by altering the rendering. 
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With this model it is possible to discuss the detail of 
ordinations. For example, where only the Enhance 
tion of the data flow pipeline is altered in all linked 
ws, we have type E coordination as shown in Figure 
More complex combinations are possible, such as 
ws where multiple operations are altered, giving 
,TR coordination, where Render and Translate are 

ected in one  group of view, Enhance only in a second 

 

 

Figure 5 Schematic showing selection 
coordination. 

 
Furthermore, f1 is a simple identity function, as the 

Selection object holds parameters indicating which area 
of the map to crop, which is the information required by 
the Enhance flow of V1. f2 is slightly more complex, as it 
is alters part of the color mapping, so this function 
indicates that a subsection of the color map will be 
replaced by the mapping indicating selection. f3 will pass 
the selection area to the renderer of V3, with a flag 
indicating the desired level of detail. f4 combines all the 



effects of f1, f2, and f3 in V4. This type of coordination is 
then E,M,R,EMR. 

6. Discussion 

Our model fits well with current visualization 
systems that implement coordination. For instance, 
Amira is a modular and object oriented software system 
for scientific visualization. It allows the simultaneous 
display of multiple data sets in different views or in a 
common view. Amira’s components are modules and 
data objects, each of which has a set of parameters, 
which can be modified using a parameter editor in an 
interaction area of the application. Views are coordinated 
if they share some parameters displayed to the user in the 
object pool view. The user specifies which views to 
coordinate. 

Similarly, IRIS Explorer users interactively create 
their application by linking modules; each module has 
some associated set of parameters, which describe its 
behavior. The control panel editor creates, modifies, and 
links module control panels and a parameter function 
editor creates relationships between parameters in linked 
modules [23]. The parameter value in the downstream 
module is then expressed as a function (P-Func) of the 
upstream parameter values (the translation function in 
our model). 

Moreover, the authors of this paper developed a 
visualization system using Java in which coordination is 
implemented in the Object Oriented paradigm [24]. The 
system displays web search results in multiform views, 
where each search results returned by the search engine 
is mapped to a glyph. There is an interface Class for 
these abstract objects (glyphs), which acts as the 
middleware layer that facilitates coordination between 
glyphs. Glyphs which implement this interface share data 
and methods and hence can be coordinated over these 
parameters. In this application, users discover 
coordination in the midst of exploration. 

Many visualization systems such as IRIS Explorer, 
AVS and Amira provide capabilities for user-oriented 
design; users could choose modules, edit parameters and 
link components. This facilitates coordination design. 
We note that these systems use the dataflow model to 
build applications for scientific visualization. 

7. Future work & conclusions  

In this paper we described how coordination objects 
in exploratory visualization are built from simple user 
interactions. Our model handles any combination of data 
sets and any number of linked views. The issues 
involved in coordinating different data sets and 
visualization methods are dealt with at the translation 
function stage, where abstract parameters are converted 
to meaningful parameters in the particular view.  

Interactions are variations on the basic visualization 
functions: enhance, map, render and transform. If a view 
interaction is to play a role in coordination, it changes the 

coordination space, which is then reflected upon the 
linked views that use that space. 

Our model is based on sharing objects (parameters) 
that control the rendered view and not the sharing of the 
data that is being visualized. Indeed, a view parameter 
can be part of more than one coordination object. 

We notify all linked views upon change. Hence, we 
use the eager notify mechanism for our model (but not 
necessarily an eager update). However, we do not allow 
channels for storage and we are not concerned with 
establishing a protocol for notification in this paper. 

Coordination as described by this paper is the 
mechanism through which views interact together to 
achieve purposeful goals that could not otherwise be 
achieved efficiently by these individual views working 
uncooperatively. Our model borrows ideas from recent 
research in visualization and other disciplines 

Our future work includes implementing an example 
system that closely maps to the model and so 
demonstrates the flexibility, novelty of possible 
coordinations and practicality of the approach. 

More research is required in the area of coordination 
design to provide rules and guidelines. In addition, 
comparative studies regarding users ability to work with 
independent compared to working with cooperative 
multiple views are still under-investigated. For example, 
how many coordinated events can one user keep track of 
during visual exploration? (Some work has been done, 
such as by North and Shneiderman [25]). Moreover, 
further research is required in the area of multitasking for 
multi-view exploratory visualization. 

Moreover, new types of coordination can be 
introduced. We could have default coordinations based 
on default system or user settings.  Furthermore, we can 
have recommended types of coordination if the system 
learns about user interactions, goals and existing 
coordinations. 

There exist various commercial visualization 
environments, which implement coordination based on 
sharing parameters between visualization modules. We 
aim to enrich the shared coordination space to include 
not just the visualization parameters but abstract objects 
such as constraints, complex methods and time. 
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