

A Coordination Model for Exploratory Multi-View Visualization

Nadia Boukhelifa, Jonathan C. Roberts, Peter J. Rodgers
Computing Laboratory, University of Kent

{n.boukhelifa, j.c.roberts, p.j.rodgers}@kent.ac.uk

Abstract
In this paper, we present a coordination model for

exploratory multi-view visualization. We base our work
on current research in exploratory visualization and
other disciplines. Our model is based on sharing abstract
objects such as the visualization parameters of the
dataflow model to achieve coordinated exploratory tasks
in multiple views. This model describes how current
coordinations in exploratory visualization work and
allows novel coordinations to be constructed.

Keywords: Multiple views, exploratory visualization,
reference model, coordination, coordination objects,
coupling.

1. Introduction

Multiple views are prevalent in many user
interfaces. This is motivated by real-life needs for
simultaneous display of multiform data, rapid
information processing and the necessity to compare and
contrast different aspects of the data. For example,
interactive television allows the viewing of one program
while the user browses additional and related
information. Users are no longer passive. They are often
actively involved in shaping multiple views of data
through interactive exploration.

Multiple views come in different forms. They could
be abstract views that facilitate information processing,
hierarchical and time series views, which describe the
history of exploration or side thumbnail views for
experimentation and quick viewing.

In many of these cases coordinating multiple views
is beneficial. For instance selecting a group of data items
in one view in coordination with the selection of the
same items in another can show new relationships such
as distribution, grouping or subordination within these
items, which might otherwise remain unseen.

However, most coordination realizations in current
visualization systems are last-minute ad-hoc additions.
The coordination rules are informal, which may be
flexible, but the principles would be difficult to export to
other visualizations. Conversely, embedded

coordinations are the result of adopting an underlying
model. For instance the Snap-together conceptual model
for coordination [1] relies on the relational schemata, so
joins between relations are links between visualizations.
While not wrong in itself, this specialization limits the
potential and richness of coordination operations.

Moreover, no visualization reference models
explicitly consider coordination. Even if coordination is
contemplated from the design point of view, it is usually
only regarded as part of the communication protocol and
is generally dealt with within that restricted domain.
There is a need for a flexible model for coordination that
will ensure easy embedding of coordination in such
exploratory environments.

The aim of this work is to first develop a reference
model for coordination that will allow visualization
designers to formally specify existing and novel
coordinations in multiple-view exploratory visualization;
second develop some rudiments of coordination drawing
on the findings of the interdisciplinary study of
coordination and lastly provide some examples of the
model in use. In this paper we present such a model and
formalize aspects of coordination for exploratory
visualization (EV).

This paper is divided into the following sections (2)
Related work. (3) Discussion of the salient features of
coordination in EV. (4) The new model. (5) An extended
example of application. (6) a discussion about the
relationship of the model to current coordinated
visualization systems. Finally, (7) future work and
conclusions.

2. Related work

Coordination is a subject that has been investigated
by many separate disciplines but only recently have
researchers such as Olson et al [2] appreciated the
obvious advantages of interdisciplinary viewpoints.

2.1 Interdisciplinary view of coordination

There are many disciplines that use related ideas that
could be cross-fertilized into coordinated EV. For
example, a translation framework for ontology mappings
of information services, integration and unification of
data, constraints management in concurrent design

2.2 Coordination for EV projects [3], inter-modality in different brain functions,
redundancy for reinforcement of information, time series
and history, middleware provision for cooperative work
and balance and harmony in interior design. For these
files, entities such as objects, events, processes,
functions, agents and ontologies all may be coordinated.

Interactive visualization is important, enabling the
user to change the viewing parameters in one realization.
Certainly the user can subsequently perform the same
operation a number of times in additional views; but
there is an obvious benefit in simultaneously
coordinating the operation for the multiple views.

Each discipline studying coordination has
established its own architectures, models and protocols;
some are based on sharing memory and other resources,
others on managing constraints or propagating data
values or data parameters. Coordination in these fields is
treated in different contexts.

Thus, coordination can be described (as detailed by
Olson et al [2]) as “composing purposeful actions into
larger purposeful wholes”, where “the additional
information processing performed when multiple, and
connected actors pursue goals that a single actor [or
indeed the multiple actors working separately] pursuing
the same goals would not perform”. We emphasize the
point that the whole is greater than the sum of its
components.

Many researchers consider the field of coordination
theory to be the study of the interaction between
processes. For them, coordination is an interoperability
problem because the coordination brings together
heterogeneous and distributed system components.

The essence of exploration in visualization is Visual
Information Seeking (VIS) indeed as Ahlberg and
Shneiderman [8] state: the emphasis is on “rapid
filtering, ... progressive refinement of search parameters,
continuous reformulation of goals and visual scanning to
identify results”. Furthermore, to achieve effective
coordination in exploratory visualization there are many
dependencies between views that need to be managed
appropriately.

The multiple ontologies research, in particular,
provides additional representation formalism defining the
mapping between different ontologies where translation
and other techniques such as approximation are required.
For example, Akahani et al [4] suggest an approximate
ontology translation framework for coordinating
heterogeneous information services. The inter-ontology
mappings of data aim to achieve data integration by
identifying semantically corresponding terms of different
source ontologies [5] where the semantic correspondence
refers to equality or similarity.

A model for coordination improves understanding,
and allows effective development and qualitative
evaluation of systems that incorporate coordination. The
field of visualization is full of overloaded terms and
suffers from inconsistencies. Moreover, visualizations
often are based on different models. Coordinating
different visualizations requires a mechanism, which
allows interoperability between these differing models.
We need a model for coordination to define, test and
compare coordination strategies.

Ciancarini et al [6] examine a suitable middleware
for coordinating distributed active document-centric
applications. This middleware is a software layer that
abstracts from the heterogeneous characteristics of
different architectures, operating systems, programming
languages and networks in distributed systems. The main
responsibility of the coordination middleware is one of
data communication. Furthermore, middleware
coordination often allows multiple views to occur in
client-server architecture. 2.3 Current EV coordination models

Another approach to coordination is the observation
pattern as an ontology and a formal framework, as
proposed by Viroli et al [7]. They write “in general,
observation occurs when a system o [observer] is
interested in some information made available by a
system s [source]. Typically, ... s is modeling some
portion of the world o is interested in, and providing o
with some knowledge about it, as well as some
mechanisms to access it”. The request-reply strategy of
interaction in this paradigm works as a Model-View-
Controller (MVC) pattern.

There are many visualization systems that utilize
coordination. For example, tools like Xmdvtool [9],
Spotfire [10] implement coincident brushing operations;
others like VIP, LinkWinds [11] and Visage [12] include
coordinated 3D views. Many systems include linked
overview-detail views which is highly utilized in
geovisualization, for example see [13]. This fits with
North and Shneiderman [14] dual selection and
navigation motivation for coordination. However, like
Pattison and Philips [15] we believe in a wider view of
coordination, which potentially may coordinate any
aspect such as data preparation, averaging, clustering,
moving window positions etc. Recently two models have
been proposed: the Snap conceptual model [1] and the
View Coordination Architecture [15].

Although much research on ontology translation has
used informal mapping rules between those ontologies
[4], the interdisciplinary study of coordination presents
ideas that can be used for modeling multi-view
exploratory visualization. There is much communality
between concepts from a variety of fields and a strong
case for transference of ideas.

2.3.1 Snap

The Snap conceptual model takes a data-centric
approach to coordination. Relational database
components are tightly coupled such that an interaction
with one component results in changes to other

components. Snap utilizes the concept of database design
to promote better visual exploration. It provides a
mechanism for constructing coordinations without the
need for programming. In addition, new types of
coordination are introduced such as the compound join
and the multiple alternative joins [1].

Snap’s user interactions are currently limited to
‘select’ and ‘load’, whereas exploratory visualization
supports much more interactions, which could also be
coupled for coordination outside the relational database
scope.

As we shall see, Snap resembles our model in many
ways; for instance its architecture is event-based and
coordination is built from action associations. Snap also
recognizes the need for a middleware party to ensure
coordination operation and for a translation mechanism
when dealing with heterogeneous information sources.
However, our model handles coordination from a more
general viewpoint and takes in consideration exploratory
visualization needs for rich and varied user interactions.
Furthermore, we are interested in modeling
representation-oriented coordinations as well as data-
centric coordinations.

2.3.2 View coordination architecture for IV

Pattison et al [15] present an architecture for the
implementation of generic view coordination in the
Model-View-Controller (MVC) pattern. The proposed
framework separates between the specification and
implementation of mapping between data model to view
model.

Coordination is managed by a new component
(called coordination). Bidirectional coordinations can be
achieved through directional coordination between
presentation components, view model components or
specification components. The more components there
are and the more links exist between them, the more
complex the implementation and debugging becomes,
especially when linking different components [15]. Thus,
to encourage reuse, presentation, content and the
coordination itself should be - as far as possible -
disparate and independent.

Rather than concentrating on the implementation
architecture our work focuses on a layered approach
based on the dataflow model. Like Pattison we use a
MVC fundamental design, however we utilize multiple
components and different facets of coordination.

3. Facets of coordination

From the related work and broadness of the
interdisciplinary viewpoint we see that coordination
conjures some interesting challenges, such as relevance,
design and visual depiction of each coordination as well
as considering what and how to coordinate.

3.1 Coordination challenges & opportunities

First, due to the multiform nature of the multiple
views, actions in one view cannot always be directly

applied to other views. For example, it may be useful to
coincidentally rotate two three-dimensional views, but if
each uses a different mathematical projection then a
translation needs to occur that converts user interactions
in one view to a suitable format for the other. However,
some coordinations that may be possible to achieve, may
in fact not be useful; and yet others may be impossible to
realize. However, at this abstract level it is possible to
rely on the user to make such judgment of the usefulness
of a particular coordination. Indeed, there is the whole
question of how the system is implemented and whether
the coordinations automatically occur or are created by
user requests [16].

Second, there are design and user-interface
questions that a designer may wish to pose. For example,
if the multiple views represent a visual-history then is it
feasible or relevant to coordinate between past variances
of the exploration? Moreover, is everything coordinated
or are aspects of a few windows coordinated (and if so
who decides on what is coordinated ─ the user or the
system?[17]) For instance, if may be beneficial to only
coordinate views that are classified within the same
group (the notion of Render Groups [18]).

Third, how does the system visually represent and
notify to the user what is currently being coordinated
(e.g. visual methods such as used by the spiral calendar
[19], or by the implicit laying out of modules in Waltz
[18]). Many issues in visualization such as
synchronization, correlation of visual or non-visual
information, occlusion, view explosion and multitasking
could be more approachable through a coordination
model.

3.2 Coordination in use - two examples

In order to develop some rudiments of coordination
in EV we investigate the use of coordination in a current
tool (LinkWinds) and how coordination may be thought
of as analogous to program variables.

LinkWinds uses a data-linking paradigm for
coordination, which is comparable to the spreadsheet
concept where cells are related to each other using a
formula and changing the formula in one cell
recalculates the value of the linked cell [11]. The basic
entities that are coordinated in LinkWinds are objects
shown at the windowing level as either data, control or
display objects. Objects of the same type sit in the same
window making an object view. The general purpose of
coordination is to detect possible relationships in data.

LinkWinds allows one-to-many links; for example a
slider broadcasts messages to all objects it is linked to
when its value is changed. The user performs linking as
well as unlinking interactively. In addition, there exist
some constraints on coordination. For instance, data must
be put into empty windows and messages are passed only
between objects that are already linked. There is also a
message-passing protocol that handles inter and intra
object messages. The effect coordination causes on the
user interface is the emanating flow between linked
objects.

Granularity of links: Program variables may be thought as analogous to
coordination; for example, variables may be used in
multiple places and accessed by reference, they must be
instantiated, and they each have a type (if they are of a
wrong type then they may be cast - either by default or
explicitly). There are also notions of global and local
scope.

Many entities may be connected together via various
links. Granularity determines: the number of entities in
one coordination {2..n}, number of views in one
coordination {1..n}, number of links an entity contributes
to coordination {0..n}.

Initialization:

3.3 The rudiments of coordination Initialization determines who or how the coordination
created. For example, it may be automatic (such as using
a Render Group) or user specific, scheduled in some
fashion etc. Moreover, the user may need to explicitly
connect entity A to B, for every type by (say) connecting
ports from module A to module B; alternatively, the user
may only need to drag and drop the whole module into a
Render Group to instantiate and link everything in
module A to module B.

Taking aspects from this analogy, the LinkWinds
example, aforementioned challenges and other
coordination tools we categorize the rudiments.

Coordination entities:
This details what is actually being coordinated; such as
aspects of the actual window, view, data, record, tuple,
attribute, parameter, process, event, function, graphic or
time.

Updating:

 Coordinated views require that the information is
dynamically up-to-date. However, there may be
conflicting uses especially if, for example, the multiple
views represent a visual history. Commonly, in a
dataflow paradigm, the down stream modules always
reflect the information upstream. However, it may be
prudent that sometimes some views become out-of
synchronization: such that they reflect a previous time in
history. The displays may be updated by various means,
such as eager or greedy update, lazy update, or user
initiated.

Type:
The type of the coordination determines the method by
which the entities are linked. For example, simple
coordination (such as rotation or transformations) may be
implemented using primitive types (float, integer etc)
while others may be more complex data-structures.
Translation (casting) may be required if the entities
utilize different types. The types may also determine
directionality of the links (unidirectional or
bidirectional). For example, IRIS Explorer allows
parameters to be coordinated but the events flow one
way (as it disallows simultaneously connecting the
reverse to inhibit circular event explosions taking place).

Realization (link realization, user control):
How is the expression of coordinated conveyed to the
user? It may be that explicit lines are used (such as the
Spiral Calendar [19]) or via some formal layout
mechanism [18]. Moreover, how does the user control
the information to be linked, do they use direct
manipulation or indirect means via (say) dynamic
sliders?

Chronology (lifetime and scheduling):
How long entities are coordinated is governed by its
lifetime. (This is also known as the persistence of the
coordination.) It may be coordinated permanently, for a
given action, or determined by some scope. Moreover,
the coordination may be synchronous, asynchronous,
reactive, and proactive. For example, it may be useful to
coincidentally rotate the view of a fast and a slow
renderer; one solution is that the time-consuming one
could update at a slower rate by taking every n events
from a coordination event queue, or merely notified at
every n seconds.

4. The Model

The challenge is to develop a model that addresses
the coordination design issues mentioned above without
bias towards a particular data, navigation or
communication paradigm. Effectively, it should be
flexible, adoptable, extensible and foster better visual
exploration.

Scope:
Scope determines both the global/local connection and
the lifetime of the links; a global scope would mean that
any entity (wherever and whatever it is) could be
connected; whereas some links may be restricted to be
only used in a local area (e.g. the user may setup a group
where by simply adding a new member to the group
automatically coordinates it to each of the others in the
group). Commonly known as a Render Group.
Moreover, the scope also may restrict the lifetime.

The model should allow visualization designers to
formally specify existing and novel coordinations in
multiple view exploratory visualization and so facilitate
early testing of the proposed coordination designs before
they are implemented by programmers or constructed
visually by the user.

4.1. Abstract model for coordination

The model we define includes “coordination
objects” that manage combinations of entities (e.g.
parameters) that control aspects of the linked views. A

single coordination object is associated with each
separate coordination in the system. A view is said to be
coordinated if it shares a common coordination object.
All the coordination objects for a visualization system
are held in a “coordination space” as shown in Figure 1.
This is similar to the middleware layer component we
mentioned in the interdisciplinary view on coordination,
Section 2.1.

F
T
b

a
f
l

n
e
a
c
v
s
c
c
g

p
t
r
s
o
f

v
v
a
m
i

actions in view V2. In this case, we have three
parameters in the coordination object.

An advantage of this model is its dynamic nature, as
views may be added and removed without other views
that also access the same coordination object necessarily
having knowledge of this activity. Importantly, views do
not need to know about other views in the coordination.

4.2. A layered approach to coordination

The views themselves are a result of parameter

igure 1. Abstract model for coordination in EV.
his diagram shows two different coordinations
etween two views.

The views that are being coordinated need to define
 translation function (for instance f1 and f2 as shown in
igure 1) from the shared coordination object to the
inked view parameters.

The views must also register to be informed of a
otify event when a coordination object is changed. If an
vent occurs, which might typically be a user initiated
ction in one of the linked views, it alters the
oordination object, which sends a notify to all the linked
iews registered. Registration may depend on a given
cope. Then, those views that were notified of a change
onsequently use the information provided by the
oordination object via their translation function to
enerate the new view.

A single coordination object is considered to be
resent for each type of coordination in the system. So
hat if multiple views define coordination for both co-
otation and brushing, this will be represented by two
eparate coordination objects: a rotation coordination
bject for co-rotation and a selection coordination object
or brushing.

In the previous example, brushing uses the same
isualization parameter for both views, selecting in one
iew results in selecting in another view and the same
pplies to co-rotation. However, a coordination object
ay hold more than one visualization parameter. For

nstance, one action in view V1 may be linked to two

f2,2

Coordination
Object 2

Coordination
Object 1

Coordination Space

View1 View2

f1,2f2,1

f1,1

Notify1,1 Notify2,2
Notify1,2

Notify2,1

Event 1 Event 2

f2,2

Coordination
Object 2

Coordination
Object 1

Coordination Space

View1 View2

f1,2f2,1

f1,1

Notify1,1 Notify2,2
Notify1,2

Notify2,1

Event 1 Event 2

changes to the visualization process; an interaction or
exploration would generate a new view, likewise
viewing the same data by a different display technique
(multiform) would provide a new view. These different
instances may be displayed in different windows,
overlaid into the same window or in fact replace the
current window (replication, overlay, replacement,
respectively [17]).

Often in exploratory visualization, visual correlation
is seen as the focus of coordination, which tends to limit
the techniques to brushing and navigational slaving.
However, coordination may be understood in a wider
context and occur on any variable or data at any level
within the whole visualization process [17].

Consider the dataflow model [20] (which is used in
many systems such AVS, IRIS Explorer, Amira, Data
Explorer DX to describe the whole visualization
process); the data is Enhanced or enriched in some form,
then Mapped into an Abstract Visualization Object
(AVO) that can be Rendered into an image (Figure 2).
Multiple views are generated by splitting the dataflow at
any stage of the pipeline (generating a fan-out). Aspects
of the replicated modules may be readily associated to
engender coordination. In additional to the traditional
dataflow model, aspects may also be coordinated at the
viewport Transform (see Figure 2). Such coordinated
Transform operations might include simultaneously
rotating viewpoints or altering projections. Moreover,
coordination may occur at Window level, for example,
moving or closing windows concurrently. Incidentally,
the same visualization process can also be described
using the data state model as it is equivalent to the
dataflow model [21].

Enhance Map Render Transform

V
Abstract
Visualization
Object

Image
Window

Original
Data Subset

Enhance Map Render Transform

V
Abstract
Visualization
Object

Image
Window

Original
Data Subset

Figure 2. The data flow paradigm

One criticism directed at the data flow metaphor

concerns the granularity of its processes. The dataflow
paradigm describes a coarse model for the visualization
process, for instance the entire graphics field is
encapsulated in one process “rendering” [22]. In
addition, a single process represents the mapping stage,
which is the essence of information visualization

whereby information objects are mapped to visual
objects. Moreover, the map and render stages of the data
flow model are tightly associated in many application
areas (such as ‘information visualization’) and thus
often treated as one process.

Therefore, theoretically any process could be
coordinated with anything (relevant translations applied)
however; this may not be feasible or relevant. We
propose coordination may occur at any process layer
within the dataflow paradigm. However, we note that
coordinations tend to occur within these levels.

4.3. Components of the model

Our model is divided into four components. They
are the basic visualization processes and states, the
coordination space, the events and the translation and
notification functions.

4.3.1 Basic visualization processes & states

These are enhance, map, render and transform
processes of the data flow pipeline as explained in
section 4.2. Data is transformed in the data flow
paradigm from the raw data to an image, firstly by
enhancement to produce a derived data set. This is then
mapped onto some geometry described by the Abstract
Visualization Object (AVO). The final data state is the
rendered image. These provide the coordination entities.

4.3.2 Coordination space

Each visualization system has one coordination
space that holds various coordination objects.
Coordination objects connect events and a number of

linked coordinated views. In interactive exploratory
visualization the event is often user initiated in one of the
views.

Enhance Map Render Transform

V1 Subset1

Abstract
Visualization

Object1

Image1Original Data1

V2 Subset2

Abstract
Visualization

Object2

Image2Original Data2

Notify E C Subspace

Subset, Filter,
Enhance

M C Subspace

Mapping
techniques

R C Subspace

Rendering
Algorithms

T C Subspace

GUI Controls

Coordination Space

Event

fE2 fE1
fM2 fM1

fR2 fR1 fT2 fT1

Enhance Map Render Transform

V1 Subset1

Abstract
Visualization

Object1

Image1Original Data1

V2 Subset2

Abstract
Visualization

Object2

Image2Original Data2

Notify E C Subspace

Subset, Filter,
Enhance

M C Subspace

Mapping
techniques

R C Subspace

Rendering
Algorithms

T C Subspace

GUI Controls

Coordination Space

Event

fE2 fE1
fM2 fM1

fR2 fR1 fT2 fT1

Figure 3 Coordination model for exploratory visualization showing subspaces

One view may be associated with many coordination
objects in a coordination space since a view may play
various roles in different coordinations: it might be part
of a focus-and-overview coordination, as well as a
rotation coordination (see granularity, section 3.3).

The abstract parameters in a coordination object
might be simple thresholds, coordinates of mouse clicks,
or more complex notions such as modifications required
to color maps or rendering algorithms (the concept of
type, section 3.3). In the simple cases, the abstract
parameters could easily be the actual parameters used by
a view, such as a bounding box when filtering data in the
Enhance section of the visualization pipeline. Even such
simple parameters are not suitable in a raw form for all
views, as some views may measure screen distances in
different units, or from different origins, so translation
functions may still need to be defined, for example to
convert from measurements in inches to centimeters.

This demonstrates the need for a more neutral
abstract format for storing these abstract parameters in
some cases. Naturally, we might want to store the shared
parameters in the same format as the event-generating
view parameter format. Hence there will be no
translation needed between the coordination space and
that particular view. However, there might be a more
suitable format for storing this parameter that suits more
than one view, which is not the current format of the any
view parameter, hence, in this case, all views would need
to define a non-trivial translation function on the abstract
parameter.

The abstract parameters stored in the coordination
space can be grouped into four varieties of coordination
sub-spaces (see Figure 3) since we describe the
visualization process in terms of four processes: the
enhance shared coordination space, the mapping
coordination space, the rendering coordination space and
the transform coordination space. However, in many
situations the division between these sub-spaces is less
rigid and coordination objects may include various
parameters from each of the coordination sub-spaces.

4.3.3 Events
In this model, abstract parameters held in

coordination objects are changed by events. Events can
be generated by explicit user actions or automatically, by
for example continuous analysis of the input data. Some
user actions, such as selection with a mouse, are
connected to a particular view, whereas others, such as
keystrokes for altering parameters, are not.

Events modify abstract parameters, so they must be
aware of the nature of the format and extent of the
abstract parameters in the coordination objects. Where
events are generated in particular views, the event-
generating view will only be updated in the course of the
event-notify cycle along with the other views.

As events associated with views are usually indirect
in any case, and typically the cycle defined in this model
is fairly immediate, this system seems an elegant manner
of allowing multiple events, generated by any view
linked to the coordination object, to modify the abstract
parameters.

Whilst in this model we do not consider the time lag
to be significant between the occurrence of the event and
the notification event, this model should be adaptable to
more critical real time visualization applications where
large numbers of multiple events are occurring.

There may be many events associated with a
particular coordination object, so allowing the modelling
of various types of coordination. A simple master-slave
relationship, where all the actions are in one view and
which simply reflected in other linked views might have
only one event inputting into the coordination object,
from the master view. On the other hand, where the
coordination allows input from any or all of a group of
similar views, the number of events may be at least the
number of linked views.

4.3.4 Translation & notification functions

A translation function takes the abstract parameters
in the coordination object and converts them to view
parameters which are used in the visualization process to
produce the final image. Each view registered with the
coordination object has one such function. The result of
the translation function at the view level is the
replacement of current view parameters affecting the
operations in the data flow pipeline Often a translation
function might affect only one operation, but it is
perfectly valid for the function to coincidentally affect all
of enhance, map, render and transform. The view

integrator might define the translation function. It is also
possible for a set of default registration methods to link a
coordination object inside the coordination space to a
certain class of views, which would then define a render
group. The coordination object designer would define
these defaults.

As well as defining a translation function, a linked
view must be registered to receive notify events, that
indicate when the coordination object has changed,
indicating that the view’s image needs to be updated. As
there may be concurrent coordination objects defined
over one view parameter, the notify indicates which
coordination object has changed, and so which
translation function must be accessed. The view must
define a notify handler, that is triggered by the notify
event. At its simplest the notify handler merely forces a
regeneration of the image by resending the current data
through the dataflow pipeline. Where temporal issues
exist, for example with time consuming visualizations, so
that perhaps several notify events occur during the
production of one view, then the notify handler in the
view must include a scheduling algorithm to deal with
the queue that develops in the best way for that particular
view, deciding whether to restart the visualization
process or discard some notify events.

4.3.5 Other elements in the coordination object

As mentioned above, it may be desirable to include
some notion of default registration for a render group of
views so that a plug and play approach to linking views
to the coordination object is possible. There are other
possible components in sophisticated coordination
objects. It may be possible to place constraints on both
the type and number of views that can connect to an
object. For instance, if one view wants to register to
coordinate with another specific view over a particular
coordination object, a constraint can be added to that
coordination object as to only give those views
permission for access and change. A further constraint on
linking views might be related to its lifetime, so
restricting linking to limited periods, or timing out views
after a certain amount of time.

5. Using the model to define types of
coordination in EV

Let eve be an exploratory visualization environment
and V1, V2 are views within eve. V1 and V2 are described
by the E.M.R.T composition where each of the
components, Enhance, Map, Render and Transform has a
coordination sub-space associated with it.

CASE I Disconnected Views
V1 and V2 are disconnected if they do not share any
coordination object between them.

CASE II Linked Views
V1 and V2 are connected if they both access at least one
common coordination object.

Two views can be tightly coupled if they have
coordination objects that cover each of the sub-
coordination spaces. In Figure 3, the tightly coupled
views V1 and V2 share all possible coordination sub-
spaces.

Enhance

Data1 AVO 1 Data1
E1 M 1 R 1

T1

Image1V1

Data2 AVO 2 Data2
E2 M 2 R 2

T2

Image2V2

Data3 AVO 3 Data3
E3

M 3 R 3

T3

Image3V3

Data4 AVO 4 Data4
E4 M 4 R 4

T4

Image4V4

f 4
f 3

f 2
Selection
TopLeft : Point
BottomRight : Point

f1

Data1 AVO 1 Subset1
E1 M 1 R 1

T1

Image1V1

Data2 AVO 2 Subset2
E2 M 2 R 2

T2

Image2V2

Data3 AVO 3 Subset3
E3

M 3 R 3

T3

Image3V3

Data4 AVO 4 Subset4
E4 M 4 R 4

T4

Image4V4

f 4
f 3

f 2
Selection
TopLeft : Point
BottomRight : Point

f1

Events

Notify

Notify

5.1 Example (enhancement coordination)

Given two views V1 and V2, a user interacts with V1;
this causes the firing an event, which affects E, M, R or
T of V1. For instance, the event might be an enhancement
to the original data set, such that only values greater than
50 are included in the enhanced data set (Figure 4). If the
user wants this event to play a role in coordination, the
new filtering parameter will be stored in the coordination
object E as default storage. Here is what happens at the
view level and at the coordination space:

CASE I Disconnected views
The enhancement will only affect V1 and the enhanced
data will be mapped then rendered as specified by its
own visualization pipeline.

CASE II Linked views
V2 data set will also be enhanced given that the two
views share the same filtering parameter. In the case of
the identity coordination; no translation needed so both
views use information in the coordination space as it is, a
notify message is sent to both views enhance processes
to use the new filter value. In the case of non-trivial
translation functions, this value gets translated to view
format. If there is no sharing at the remaining stages of
the visualization process, each view will finally render
accordingly.

 V1

 V2

Fi
co

co
sec
vie
4.
vie
R,E
aff

and Render only in a third group of views. In a tightly
coupled coordination we have coordination with the type
EMRT.

5.2 Example (selection coordination)

We illustrate our model using visualizations of
geographical map data. Diagrammatically our
coordination objects and linked views are shown in
Figure 5.

The event handled by the Selection coordination
object is that of the user selecting a rectangular area of a
map, an event that could be generated by any of the
views.

The effect in V1 is to filter the data to show only the
selected rectangle whereas V2 changes the color map to
highlight particular objects, such as road junctions inside
the rectangle. The result in V3 is to modify the rendering
inside the rectangle, increasing the level of detail to show
smaller roads. Finally, the consequence for V4 is to
perform a combination of all these actions, cropping the
data, highlighting certain objects and increasing the level
of detail by altering the rendering.

Filtered Data1

Enhance’

t

Translation Functions

Data set1

Data set2 Filtered Data2

f1 f2

Enhance Coordination
Object

VALUE: double

Even
gure 4 Schematic showing an example for
ordinating an Enhance method.

With this model it is possible to discuss the detail of
ordinations. For example, where only the Enhance
tion of the data flow pipeline is altered in all linked
ws, we have type E coordination as shown in Figure
More complex combinations are possible, such as
ws where multiple operations are altered, giving
,TR coordination, where Render and Translate are

ected in one group of view, Enhance only in a second

Figure 5 Schematic showing selection
coordination.

Furthermore, f1 is a simple identity function, as the

Selection object holds parameters indicating which area
of the map to crop, which is the information required by
the Enhance flow of V1. f2 is slightly more complex, as it
is alters part of the color mapping, so this function
indicates that a subsection of the color map will be
replaced by the mapping indicating selection. f3 will pass
the selection area to the renderer of V3, with a flag
indicating the desired level of detail. f4 combines all the

effects of f1, f2, and f3 in V4. This type of coordination is
then E,M,R,EMR.

6. Discussion

Our model fits well with current visualization
systems that implement coordination. For instance,
Amira is a modular and object oriented software system
for scientific visualization. It allows the simultaneous
display of multiple data sets in different views or in a
common view. Amira’s components are modules and
data objects, each of which has a set of parameters,
which can be modified using a parameter editor in an
interaction area of the application. Views are coordinated
if they share some parameters displayed to the user in the
object pool view. The user specifies which views to
coordinate.

Similarly, IRIS Explorer users interactively create
their application by linking modules; each module has
some associated set of parameters, which describe its
behavior. The control panel editor creates, modifies, and
links module control panels and a parameter function
editor creates relationships between parameters in linked
modules [23]. The parameter value in the downstream
module is then expressed as a function (P-Func) of the
upstream parameter values (the translation function in
our model).

Moreover, the authors of this paper developed a
visualization system using Java in which coordination is
implemented in the Object Oriented paradigm [24]. The
system displays web search results in multiform views,
where each search results returned by the search engine
is mapped to a glyph. There is an interface Class for
these abstract objects (glyphs), which acts as the
middleware layer that facilitates coordination between
glyphs. Glyphs which implement this interface share data
and methods and hence can be coordinated over these
parameters. In this application, users discover
coordination in the midst of exploration.

Many visualization systems such as IRIS Explorer,
AVS and Amira provide capabilities for user-oriented
design; users could choose modules, edit parameters and
link components. This facilitates coordination design.
We note that these systems use the dataflow model to
build applications for scientific visualization.

7. Future work & conclusions

In this paper we described how coordination objects
in exploratory visualization are built from simple user
interactions. Our model handles any combination of data
sets and any number of linked views. The issues
involved in coordinating different data sets and
visualization methods are dealt with at the translation
function stage, where abstract parameters are converted
to meaningful parameters in the particular view.

Interactions are variations on the basic visualization
functions: enhance, map, render and transform. If a view
interaction is to play a role in coordination, it changes the

coordination space, which is then reflected upon the
linked views that use that space.

Our model is based on sharing objects (parameters)
that control the rendered view and not the sharing of the
data that is being visualized. Indeed, a view parameter
can be part of more than one coordination object.

We notify all linked views upon change. Hence, we
use the eager notify mechanism for our model (but not
necessarily an eager update). However, we do not allow
channels for storage and we are not concerned with
establishing a protocol for notification in this paper.

Coordination as described by this paper is the
mechanism through which views interact together to
achieve purposeful goals that could not otherwise be
achieved efficiently by these individual views working
uncooperatively. Our model borrows ideas from recent
research in visualization and other disciplines

Our future work includes implementing an example
system that closely maps to the model and so
demonstrates the flexibility, novelty of possible
coordinations and practicality of the approach.

More research is required in the area of coordination
design to provide rules and guidelines. In addition,
comparative studies regarding users ability to work with
independent compared to working with cooperative
multiple views are still under-investigated. For example,
how many coordinated events can one user keep track of
during visual exploration? (Some work has been done,
such as by North and Shneiderman [25]). Moreover,
further research is required in the area of multitasking for
multi-view exploratory visualization.

Moreover, new types of coordination can be
introduced. We could have default coordinations based
on default system or user settings. Furthermore, we can
have recommended types of coordination if the system
learns about user interactions, goals and existing
coordinations.

There exist various commercial visualization
environments, which implement coordination based on
sharing parameters between visualization modules. We
aim to enrich the shared coordination space to include
not just the visualization parameters but abstract objects
such as constraints, complex methods and time.

Acknowledgements

This work has been supported by EPSRC (grant
reference: GR/R59502/01). CVEV Project homepage
http://www.cvev.org

References

[1]. C. North, N. Conklin, K. Indukuri and V. Saini,
“Visualization Schemas and a Web-based Architecture
for Custom Multiple-view Visualization of Multiple-
Table Databases”, Information Visualization Journal,
Palgrave, pp 211-228, December 2002.

[2]. G. M. Olson, T. W. Malone, J. B. Smith, “Coordination
Theory and Collaboration Technology”, Lawrence
Erlbaum Assoc. 2001.

[3]. L. Gupta, J. F. Chionglo, M. S. Fox, “A Constraint Based
Model of Coordination in Concurrent Design Projects”,
Project Coordination Workshop of the IEEE Fifth
Workshops on Enabling Technologies: Infrastructure for
Collaborative enterprises (WET ICE 96), 1996

[4]. Jun-ichi Akahani, Kaoru Hiramatsu, Kiyoshi Kogure,
“Coordinating Heterogeneous Information Services
Based on Approximate Ontology Translation”,
Challenges in Open Agent Systems, at AAMAS'02 2002.

[5]. H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G.
Schuster, H. Neumann, S. Hübner, “Ontology-Based
Integration of Information – A Survey of Existing
Approaches”, Proceedings of the Workshop Ontologies
and Information Sharing, IJCAI, pp. 108-117, 2002.

[6]. P. Ciancarini, R. Tolksdorf, F. Zambonelli,
"Coordination Middleware for XML-Centric
Applications", Proceedings of the 16th ACM Symposium
on Applied Computing, Madrid, March 2002

[7]. M. Viroli, G. Moro, and A. Omicini. “On Observation as
a coordination paradigm: an ontology and a formal
framework”. In ACM Symposium on Applied
Computing, Proceedings of 16th International
Conference (SAC01), pp 166-175, Las Vegas (NV),
USA, March 2001.

[8]. C. Ahlberg, B. Shneiderman, “Visual Information
Seeking: Tight Coupling of Dynamic Filters with
Starfield Display”, CHI’94, pp 313-317.

[9]. Matthew Ward. “XmdvTool: Integrating multiple
methods for visualizing multivariate data”. In
Proceedings Visualization ’94, pp 326-333. IEEE
Computer Society Press. 1994.

[10]. C. Ahlberg. “Spotfire: An information Exploration
Environment”. SIGMOD Record. 24(4): 25-29,
December 1996.

[11]. A. Jacobson, A. Berkin, M. Orton, “LinkWinds:
Interactive Scientific Data Analysis and Visualization”,
Communications of the ACM 37, pp. 43-52, April 1994.

[12]. S. F. Roth, et al 1996. Visage: “A user interface
environment for exploring information”. In Proceedings
Information Visualization, pp 3-12. San Francisco, IEEE.

[13]. G. L. Andrienko and N. V. Andrienko. “Interactive Maps
for Visual Data Exploration”. International Journal of
Geographical Information Science, 13(4): 355-374. 1999.

[14]. C. North and B. Shneiderman. “A Taxonomy of Multiple
Window Coordinations”. University of Maryland
Computer Science Dept. Technical Report #CS-TR-
3854. 1997

[15]. T. Pattison, M. Philips, “View Coordination Architecture
for Information Visualization”, Australian Symposium
on Information Visualisation, (invis.au). ACS volume 9,
pp 165-171, 2001.

[16]. J. C. Roberts. “On Encouraging Coupled Views for
Visualization Exploration”. Visual Data Exploration and
Analysis VI, Proceedings of SPIE, volume 3643, pages
14-24. January 1999.

[17]. J. C. Roberts, “Issues of Dataflow and View Presentation
in Multiple View Visualization”, In CISST Annual
Conference, CSREA Press, pp 177-183, 2001.

[18]. J. C. Roberts. “Waltz - an exploratory visualization tool
for volume data, using multiform abstract displays”,
Visual Data Exploration and Analysis V, SPIE, volume
3298, pp 112-122. 1998.

[19]. J. Mackinlay, G. Robertson, R. DeLine, “Developing
Calendar Visualizers for the Information Visualizer”.
Proceedings of UIST'94, ACM Symposium on User
Interface Software and Technology, pp 109-118, 1994.

[20]. R. Haber, and D. McNabb, “Visualization idioms: A
conceptual model for scientific visualization systems”. In
Nielson, G., Shriver, B., and Rosenblum, L., editors,
Visualization in Scientific Computing. IEEE Computer
Society Press, pp 74-93. 1990.

[21]. E. H. Chi, “A Taxonomy of Visualization Techniques
using the Data State Reference Model”, Proceedings of
InfoVis, IEEE Computer Society. pp 69-76. 2000.

[22]. A. M. Duclos, M. Grave, “Reference Models and Formal
Specifications for Scientific Visualization”, Scientific
Visualization Advanced Software Techniques, Ellis
Horwood Workshops, pp 3-14, 1993.

[23]. J. Walton, “Data Visualization with IRIS Explorer
What's New?” Tech. Rep. TR10/96 (NP3070),
Numerical Algorithms Group Ltd., 1996.

[24]. J. C. Roberts, N. Boukhelifa and P. Rodgers, “Multiform
Glyph Based Search Result Visualization”. Proceeding
Information Visualization, IEEE, pp 549-554. July 2002.

[25]. C. North, B. Shneiderman. “Snap-Together
Visualization: can users construct and operate
coordinated visualizations?” International Journal of
Human-Computer Studies 53(5), pp715-739. Academic
Press. 2000.

	Introduction
	Related work
	2.1 Interdisciplinary view of coordination
	2.2 Coordination for EV
	2.3 Current EV coordination models
	2.3.1 Snap
	2.3.2 View coordination architecture for IV

	Facets of coordination
	3.1 Coordination challenges & opportunities
	3.2 Coordination in use - two examples
	3.3 The rudiments of coordination

	The Model
	4.1. Abstract model for coordination

	4.2. A layered approach to coordination
	4.3. Components of the model

	Using the model to define types of coordination in EV
	5.2 Example (selection coordination)

	Discussion
	Future work & conclusions
	Acknowledgements
	References

