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Abstract 
 
Implicit information embedded in semantic web graphs, 
such as topography, clusters, and disconnected 
subgraphs is difficult to extract from text files. 
Visualizations of the graphs can reveal some of these 
features, but existing systems for visualizing metadata 
focus on aspects other than understanding the greater 
structure. In this paper, we present a tool for generating 
visualizations of ontologies and metadata by using a 
modified spring embedder to achieve an automatic 
layout. Through a case study using a mid-sized 
ontology, we show that interesting information about 
the data relationships can be extracted through our 
visualization of the physical graph structure. 
 
1. Introduction 
 

The Semantic Web is based on the idea of creating 
"machine understandable" data that can be used and 
exchanged. Using web languages, such as RDF, 
DAML+OIL, and OWL, it is possible to create 
semantically rich data models. These models are made 
up of triples (subject-predicate-object), where subjects 
and objects are entities, and predicates indicate 
relationships between those entities. Users can define 
their own properties, as well as their own classes. 
Classes in semantic web languages are categories or 
types, similar to how classes work in programming 
languages. Instances of these classes can then be created 
and described with values for related properties. 

Implicit in these models is more information than 
can usually be found in their text representation. Each 
triple forms a graph with two nodes connected by an 
edge. Each instance can have several properties, and that 
graph expands to have many nodes connected to the 
central instance. Finally, when two instances are 
connected via a property, their respective sub-graphs 
become connected. The graphs produced from RDF 
triples contain more information than just which entities 
are related to which. Implicit information, such as the 
underlying structure of a data model or which instances 
are most closely connected is all contained in a graph. 

This information, though, is difficult, if not impossible, 
to extract from a text-based reading of the data. 

Since the Semantic Web is so new and the 
languages themselves are still quickly evolving, much of 
the research in this area has focused on editors, 
applications, tools, and languages. Tools for viewing the 
data have been primarily text based. The few graphical 
visualization tools have focused on other aspects of the 
data and its use. 

In this paper, we present a tool for generating 
graphs of ontologies and instance data on the semantic 
web. Using the properties that relate instances as edges, 
we can apply graph layout algorithms that attempt to 
place related nodes near to each other while keeping all 
other nodes evenly distributed. The resulting graph 
drawings give the user insight into the structure and 
relationships in the data model that are hard to see in 
text. 
 
2. Background and Related Research 
 

One of the most widely seen tools for graph 
visualizations of RDF metadata is IsAViz [2], built on 
AT&T's Graphviz graph visualization software. In 
addition to producing the graphs for the W3C's RDF 
validator, it is a stand alone application for browsing and 
authoring RDF documents. Though the graphs it 
generates are suited to the task, because of their layout, 
they are difficult to use in seeing the overall structure of 
a set of instances. In addition to showing instance data, 
IsAViz shows connections from instances back to their 
originating classes. 

The Protégé ontology editor, produced at Stanford 
University, is one of the more popular open source 
semantic web tools available today. It is easily 
extensible, and has two visualization components. 
OntoViz [10] is an ontology visualizer that, like IsAViz, 
uses Graphviz as its base. It shows classes grouped with 
their properties, and information about those properties, 
and instances grouped with lists of their properties. 
These groups are connected by edges indicating 
relationships between the objects. Jambalaya, another 
Protégé based visualization tool, displays information 



similarly, with instances and classes being grouped with 
their respective properties. Jambalaya adds in a zooming 
feature, allowing users to look at the ontology at several 
levels of detail. Though Jambalaya comes closer to our 
goal of providing a view of the overall structure of 
ontologies, both of these tools are designed to allow the 
user to browse ontologies. Because they use a visual 
structure that lists all of the information related to a 
specific object as nodes, the overall picture is full of 
large boxes, overlapped with edges, obscuring much of 
the associative structure. 

The Spectacle system [1] is designed to present 
instance data to users in a way that aids their navigation 
of search results and ontologies. Each instance is placed 
into a cluster based on its class membership. Instances 
which are members of multiple classes are placed in 
overlapping clusters. These visualizations provide a 
clear and intuitive depiction of the relationships between 
instances and classes, as well as illustrating the 
connections between classes as they overlap.  

In many cases, though, grouping by classes is not 
ideal for understanding the underlying structure of the 
data. For example, in looking at data about people, 
projects, and papers produced by an organization, it is 
not as useful to see people grouped together, projects 
grouped together, and papers grouped together. What is 
more illustrative is to see clusters of people based on 
their interactions: small clusters that group people and 
papers around their respective projects say much more 
about how the organization is structured. Similarly, in an 
ontology, concepts related to each other through the 
domains and ranges of properties, through subclasses, 
and through other semantic connections can be clustered 
according to these properties. These properties in 
instances and classes, which make up the edges in a 
graph on the semantic web, are what we use to determine 
the layout of our graphs. 
 
3. Graph Drawing 
 

Graphs are often used to visualize relationships and 
patterns between entities. Graph drawing methods are 
important in such visualizations for providing automatic 
layout of entities and their relationships. A good layout 
can ease user exploration and make it easier to detect 
patterns in the data. We define a graph G = (N,E), where 
N is the set of node entities and E is the set of directed 
edge relationships, each between a pair of nodes. 

Spring embedding [3,4] is one such graph drawing 
method that is suitable for application to our data. Its 
effect is to distribute nodes in a two dimensional plane 
with some separation, while attempting to keep 
connected nodes reasonably close together. The spring 
embedder graph drawing process considers the graph 
model as a force system that must be simulated. Each 
node in the graph is modeled as a charged particle, 
thereby causing a repulsive force between every pair of 
nodes. Each edge is modeled as a spring that exerts an 
attractive force between the pair of nodes it connects. 
The graph is laid out by repeated iterations of a 
procedure that calculates the repulsive and attractive 
forces acting on all nodes in the graph. At the end of 
each iteration, all nodes are moved according to the 
resultant forces acting on them. 

 
 

 
Figure 1: Spring embedded ontology 

 
 

The force models that we use for the spring 
embedder are based on those of Fruchterman and 
Reingold [4]. This version of the spring embedder is 
effective and widely used. It is also relatively easy to 
implement and requires a minimal set of parameter 
values that can be adjusted to achieve good automatic 
layouts. In this model, the repulsive force acting between 
a pair of nodes is -k2/d and the attractive force due to an 
edge is d2/k, where d is the distance between the two 
nodes and k is a constant. We start our graph drawing 
process by allocating each node to a random location on 
a two dimensional plane and then we begin the iterative 
calculation of these forces and move nodes accordingly. 
This results in a layout where connected nodes are close 
together, yet no pair of nodes are too close to each other 
due to the repulsive forces acting between them.  
 



 
Figure 2: A disconnected graph. 

 
When visualizing ontologies and instances, not all 

graphs we encounter will be connected. With a simple 
spring embedder model, this can cause the layout to 
rapidly expand, as there is nothing to counter the 
repulsive forces acting between each of the largest 
connected subgraphs. We solve this problem by limiting 
the distance over which repulsive forces may act. A pair 
of nodes with separation greater than m does not exert a 
repulsive force. This alteration to the force model 
ensures that we do not end up with an unnecessarily 
sparse graph drawing.  

A simple implementation of the spring embedder 
calculates the repulsive force between every pair of 
nodes and so has a time complexity of O(N2) per 
iteration. In practical terms, this limits the maximum size 
of our drawings to several hundred nodes if we want 
them to be drawn in less than one second on affordable 
hardware. Various optimizations exist to make this 
process quicker, such as preprocessing the initial random 
layout with linear time complexity [5], speeding up the 
calculation of forces between pairs of nodes [6], or 
reducing the number of nodes that are paired [6,7]. 
Multi-level approaches [8,9] provide a heuristic method 
that clusters a graph and lays out the coarsened graph, 
reintroducing the other nodes in uncoarsening steps until 
a final drawing is produced. These can be used to reduce 
the time complexity of each spring embedder iteration to 
O(NlogN) without any significant reduction in its 
effectiveness, making the method suitable for 
application to graphs with tens of thousands of nodes in 
real-time. 

In this implementation, the algorithms work well on 
graphs with up to several hundred nodes. Clustering 
nodes and producing a hierarchical navigation structure 
with an improved implementation of the spring 
embedder would be useful when dealing with larger 
graphs. A common observation worth noting is that the 
spring embedding process as a whole requires a greater 

number of iterations to reach an equilibrium with larger 
graphs, so the overall time complexity is greater than 
that stated for a single iteration. 
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Figure 3: m-limited force model. 

 
 
4. Case Study: Zoological Information 
Management System 
 

The Zoological Information Management System 
(ZIMS) is a project of the International Animal Data 
Information Systems Committee (ADSIC). As they state, 
"Standardized data collection and animal records are 
very important to the zoo and aquarium profession.  
They are critical for basic animal management and for 
achieving our conservation, research, and education 
goals.  Unfortunately, zoological facilities are currently 
struggling with outdated software and inconsistent 
records that hinder our ability to efficiently and 
scientifically manage the animals in our care.  A most 
notable inadequacy of the current system is that it does 
not track the history of group animals, such as fish and 
invertebrates, or environmental conditions to the extent 
necessary for many aquatic collections. In an effort to 
solve this problem, an international, coordinated effort, 
called the Zoological Information Management System 
(ZIMS) Project, is underway to improve how animal 
data is managed." [13] 

Over a series of workshops, the ZIMS project has 
produced an evolving conceptual data model (CDM). 
The CDM is designed to clearly define rules and 
concepts associated with a particular area from a data 
management perspective. This data model contains over 
two hundred concepts and relations. Concepts, also 
called entities, are explicitly described as shown on the 
next page. 



Relationships between concepts are indicated by edges 
in a visual diagram (Figure 4). Symbols on the edges 
indicate the type of relationship. Just looking at the 
CDM diagram in Figure 4 does not convey much 
information about the relationships between entities. 

A user could certainly follow the links along to find 
relationships between entities, but the information is not 
easily visually accessible. Furthermore, there is no way 
to easily identify which groups of entities form closely 
related clusters of information and which are just 
adjacent by chance. 

 
 

Entity Type Description 
Animal 
 
 
 
 
AnimalBusinessTransaction 
TransferPhysical 
 
Animal-Collection 
 
 
 
AnimalEnclosure 

Represents all mammals, reptiles, birds, fish, etc that are managed by a zoo or aquarium 
and includes actual or estimated birth date which may be postdated to capture 
information prior to an animal's birth. All relationships apply to individual animals or on 
a percentage basis for group animals. 
 
Captures all animals that are part of a physical transfer business transaction 
 
 
Captures the historical ownership of animals at a zoo or aquarium and may include a 
localized accession number. Note: Partial ownership of animals may be added later but 
is not currently considered part of core requirements. 
 
Captures which animals were in which enclosure at a given point in time and supports 
multi-species displays and includes datetime. 

Table 1: A sample description taken from the ZIMS CDM. 

Figure 4: The ZIMS Conceptual Data Model showing entities and relations 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The CDM was converted into an OWL representation, 
describing the entities as classes, and the relationships 
between them as properties. This conversion to a 
standardized form, understandable by intelligent web 
agents, is a great step toward improving the way 
zoological information at a wide range of distributed 
centers is coherently managed. The conversion also puts 
the data into a form where it can be visualized by the 
graph drawing system described here. 

Figure 5 shows the same CDM from Figure 4 as a 
spring embedded graph. For visual clarity, the labels have 
been removed from edges and nodes, though in 
application form they can be accessed as tool tips. The 
spring embedded graph reveals several details about the 
general graph structure that are not clear from the CDM 
diagram.  

First, there is a central ring structure, made up of 
connected clusters. These clusters are groups of closely 
interrelated concepts. One example is a collection of 
entities in the CDM describing business transactions. 
Semantically, it makes sense that these terms would be 
connected to one another, but the clustered relationship is 
clear from neither the text of the ontology nor the original 
CDM diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
Long chain like structures also appear extending off 

around the edges of the graph. These show sequentially 
linked concepts, and reveals the presence of potentially 
important indirect relationships between the concepts at 
the start and end of the chain. For example, one of the 
longest of these chains begins with "Animal" and ends 
with "AnimalParentRelationshipBiologic". Again, it is 
intuitive that these two concepts should have some 
semantic relation, and through one intermediate concept 
and a simple string of subclasses, the two are chained 
together in the graph. However, the five steps separating 
the two concepts make it nearly impossible to recognize 
this relationship through text. Though tracing the path 
through the original CDM diagram is not difficult, there 
are no visual clues that would indicate it without close 
inspection. 

By adjusting parameters of the layout algorithm, we 
are able to generate the graph in figure 6 with data points 
grouped more tightly into clusters. Though some of the 
nodes obscure one another, the clustering makes the 
structural features of the ontology all the more obvious. 

  

Figure 5: A spring embedded graph of the OWL version of the ZIMS CDM. This graph displays the 
entities and relations as well as other data associated with each entity. 



 
Figure 6: Spring embedded graph of the ZIMS CDM 

with tight clustering 
 

 
5.  Future Work 
 

The next step in expanding this graph drawing 
system is to make it an effective tool for ontology 
browsing. In its current state, users can mouse over a node 
or edge, and see its URI.  We identify two features which, 
when added to the graph drawing system, will increase its 
power to illustrate the structure of the ontology and to 
provide information about the elements. 

The first is to add in elements of a more traditional 
ontology browser. Brownsauce [11] is one browser which 
shows all of the properties and values associated with a 
given instance, coupled with links to related information. 
Giving the user an option to click a node and see this 
information adds a lot of power to the exploratory 
process. The second improvement is to add a dynamic 
query interface. Dynamic queries allow the user to rapidly 
adjust query parameters and see those changes reflected in 
the visualization in real-time [12]. When viewing instance 
data, for example, users could select specific classes and 
see only instances of those classes reflected in the graph. 
By adding and removing instances in this fashion and 
quickly seeing the results in the graph, patterns about 
which instances are closely grouped, or how instances of 
specific classes are connected become clearer. This in 
itself is powerful and leads the way to integrating a more 
robust query interface to the visualization if it appears to 
be useful. 
 
6. Conclusions 
 

In this paper, we have presented a graph drawing 
system for visualizing ontologies and collections of 
instance data on the semantic web. Related entities are 
drawn close to each other with a directed edge to 

symbolize the relationship, and the system is also capable 
of producing sensible automatic layouts of disconnected 
graphs. Through a case study involving a real, deployed 
ontology, we show how patterns about the underlying 
structure are more easily understood through the graph 
drawing than through text or other types of visual 
displays. 
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