Colour merging for the visualization of biomolecular sequence data
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Abstract tures in the body are made out of various kinds of pro-
tein molecules, and other kinds of proteins are involved
This paper introduces a novel technique for the visual- in carrying energy around the body and in communicat-
ization of data at various levels of detail. This is based ing chemical signals between organs. The set of protein
on a colour-based representation of the data, where “high molecules encompasses many complex, diverse chemical
level” views of the data are obtained by merging colours to- structures—yet at the same time the basic structure of pro-
gether to obtain a summary-colour which represents a num-tein molecules has a basic simplicity. Whilst proteins are
ber of data-points. This is applied to the problem of visual- complex three-dimensional structures, they are made from a
izing biomolecular sequence data and picking out features “one-dimensional” molecule which is folded many times to
in such data at various scales. produce a complex three-dimensional structure. The mean-
ing of one-dimensionahere is that the molecule is con-
structed of a linear strand of basic units, with no branching.
There are twenty of these basic units: they are known as
amino acids

In recent rs th iencetgbinformaticsh me t The order of these amino acids are specified by DNA
ecent years Ihe science ormaticsnas come o jecules in the nucleus of the cell. DNA is another lin-

prominence. _Th|s_|s driven by the easy accessibility of large ear chain molecule, however there are only four basic units
amounts of biological data, e.g. through the human genome. .
) . . S in DNA (usually abbreviated to C,A,T and G). The process
project. One way to cope with the complexity of bioinfor- . . S .
. N S . ! . __of protein production from DNA is in two parts. Firstly
matic data is via visualization techniques. This paper gives : .
a brief introduction to the main problems in bioinformatics strands of a DNA-like molecule called RNA are copied
. main problen . ' from the DNA strand (transcription), and these are carried
surveys the role of visualization in bioinformatics and then

. . . to a molecular machine in the cell called a ribosome, which
introduces a new method for the visualization of DNA and . . .

. ) .. translates these into protein strands. The order of amino
protein sequences based on merging colours. Applications

X A X .-acids along the protein strand is specified by the order of the
are described in finding features of protein sequences and N ases on the DNA strand. Three bases on the DNA strand
public understanding of science. |

code for one amino acid on the protein strand, according to
the code given in figure 1 (the amino acids all have three-
2. A quick trip through bioinformatics letter abbreviations).
When this reaches the DNA triple which codes $top

In recent years vast amount of information about bio- the process stops and releases the protein strand. Interac-
logical systems has been obtained by varisaguencing tions between the components of the strand cause it to fold
projects which extract the core information content from up into a complex three dimensional structure (an exam-
DNA and proteins found in an organism. Understanding the ple is given in figure 2). Understanding the relationship be-
role of DNA and proteins in the functioning, development tween the sequence of amino acids and the final structure is
and evolution of organisms is the core concern of modernone of the most complex open questions in bioinformatics.
molecular biology. A geneis the DNA which encodes for one protein molecule.

Proteinsare the molecules which play the largest role In order to understand these DNA and protein structures
in the functioning of the body. Many of the struc- alarge amount of information has been measured about var-

1. Introduction
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way of visualizing these is by using stereopsis pictures [5],
similar to the system used to give the illusion of depth in
random-dot stereograms.

Another aspect is the display of predicted relationships
between various organisms. The difference between DNA
sequences can be used to predict the order in which species

, i . L will have branched off from each other over evolutionary
ious organisms. Much of this information is in the form of e presenting this data in an intuitive way is an interest-

sequencesA DNA or protein sequence is an ordered list of ing challenge, which draws heavily on work in graph draw-
the basic units which make up a particular gene. Sequencinqng [4].

project_s are one of the main sources of infgrmatio_n in _bioin- Perhaps the greatest challenge in bioinformatics visual-
formatics; the most yvell knqwn sequencing project 1s the iz ation is the display of superficially simple sequence data.
Human Genome Project, which sequenced the DNA in hu- 1,6 oevious examples in the section have concerned struc-
mans. Another kind of information which feeds into bioin- tures which have a natural structure to be visualized; in se-

formatics pf)r01e0t§ 'S wgforma(?;nn about fh% 3)—<d|me3i|fonal guence display visual information has to be put in to em-
structure of proteins, obtained for example by X-ray diffrac- phasize appropriate features.

tion or NMR spectroscopy. Databases of these various kinds One feature of sequences which can be highlighted us-

g{ocijri‘toi’mlgtisctsndard file-formats, are a major resource foring visualization techniques is similarity between similar

regions along a chromosome. For exampleNfapVizpro-

A number of questions can be approached using bioin-9ram [9] allows the user to select regions along a DNA
formatic data. One of the most important classes of ques-Strand and dynamically creates graphs to show which parts
tions concerns the relationships between DNA sequencedf the strand have some similarity to that region.
or protein sequences. If we put two protein sequences side- One method which is commonly used in the display of
by-side, can we identify regions of similarity? If so, do protein sequences is to break the set of twenty amino acids
these indicate a common history for these two proteins, orinto a number of subsets so that substitution of one amino
is it more likely that the two converged to a similar struc- acid for another is more likely within the subsets than be-
ture due to the need to provide similar function? Given a tween subsets. A number of chemical properties of the
number of seemingly related DNA sequences, can we deter2Mino acids can be used to create such a set, as can statis-
mine the probability that they have a common ancestor, andtical analysis of proteins which are slightly different from
determine the likely order of branching? Given a protein €ach other in sequence but known to belong to the same
structure, can we determine qualitatively different regions lineage. Over evolutionary time mutations will sometimes
within the strand which could map to different functional Cause a change in the DNA which leads to a change in the
domains in the final folded structure? Given a DNA or pro- Protein; however changes which make radical differences
tein sequence and a corresponding 3-dimensional proteirf© the structure of the protein are less likely to be preserved
structure, can we relate features of the sequence to featureBY Natural selection, as such changes are likely to disrupt

of the structure, or predict the structure from the sequences3he functioning of the organism. Therefore the most likely
substitutions are between amino acids with similar chemi-

Detailed introductions to bioinformatics can be found in cal characteristics; a hydrophobic amino acid will probably
a number of books and web tutorials [1, 2, 6]. substitute for another hydrophobic one, for example. These

Figure 1. DNA to amino acid coding.



Figure 2. An illustration of a folded protein, created by the swiss-pdb viewer program.

substitution-subsets can each be given a colour in a visual-
ization, as illustrated in figure 3.
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However much of this work simply presents small scale Time Elapsed: 1016.45 secs
details, and there is little attempt to provide a “higher level”
view which visualizes structural features spanning a number
of positions in the sequence. Trying to pick out mid-scale
features from these kinds of visualizations is like looking
closely at a picture printed in a newspaper, where you see
lots of dots and find it difficult to see the details of the pic-
ture. The aim of out current work is to provide visualiza-
tions which enable us to pick out such mid-range features.

Figure 3. Using colour to overlay substitution-
subsets onto a number of related sequences.
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Figure 5. The mapping from polarity to RGB

Figure 4. A line-graph representation of a colour values.

chemical property of a protein sequence.

4. Colour and visualization _ _ _
take and colours. A view of the information can then be cre-

ated where each item in the set is displayed by displaying a
piece of that colour. Then to “zoom out” to a coarser scale

view of that information, we blend the colours together us-

ing some kind of averaging process in colour space.

Clearly colour is an important aspect of visualization
[3, 13]. Colour can be used to highlight features in a com-
plex data set, and to give an illusion of distance, e.g. text
in some colours seems “closer” than text in others. Colour
can be used to label discrete entities by assigning differ-

ent colours to different data items or different types of data’play of bioinformatic sequence data in this fashion. The
and it can be used to label continuous data by assigning val . ! : : :
y gning sequence data is read in using the standard FASTA file

ues on some continuum through colour space to values ofaf t 161, This data is displaved “b de”
continuous variable. People have a natural affinity to colour ormat [6]. IS data 1S displayed as a ‘bar-code: across
the screen. Initially each of the basic units in the se-

(though colour-blindness of various sorts is common), and uence (bases for DNA sequences, amino acids for protein
colour can be used to add another dimension to a visualiza-J q ’ P

tion which can be readily perceived orthogonally to other sequences) are allocated a thin rectangle. For protems a
ways of representing data number of different features of the sequence can be illus-

The work below extends this use of colour in a new trated. In the default view each of the amino acids is as-

o i . igned a a discrete colour, chosen by picking twenty colours
way. Individual items from a sequence of data are aSSIgnEd\!?videly scattered around the RGB colour space. This can be

colours, however we make use of merging colours together ) :
to get a higher level view of a parts of a sequence. chgnged to dlsplgy one of & number of ch§m|cal _charac-
teristics of the amino acids, for example their polarity and
hydrophobicity: an example of the scale used is illustrated
5. Using colour merging to visualize sequences in figure 6. These “bar-codes” can be stacked on top of an-
other to compare different properties of the same sequence,
We have been investigating how theergingof colours or to compare several sequences for similarity (figure 5).
can be used as a visualization technique in bioinformatics.
By merging we mean the combining of colours representing  The user can then adjust the resolution of the image by
various pieces of information into a single colour, as in paint choosing a “merge value’. Starting from the beginning,
mixing or the merging which occurs when several coloured the sequence is divided into blocks of length These are
lights are shone on the same area. then replaced by a single merged colour. This new colour
This colour merging would seem to have potential as a is calculated by regarding the colours as points in an RGB
visualization technique. The core idea is that a mapping colour-space, and taking the centroid of those points to get
is established between values which items in a data set cam new point which is then interpreted as a colour.

An application has been created which allows the dis-
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Figure 6. The interface to the application.

characteristic which proved to have most distinctive pat-
terns for this protein wakydrophobicity which is repre-
sented in the program using a scale which represents highly
hydrophobic regions as blue colours through to red colours
for contrasting hydrophilic regions. The size of the merge
group was varied from 3 to 15, and regions of high contrast
noted; in particular a number of red-blue boundaries were
identified (at various scales) which indicate a large change
Figure 7. The structure of the  rhodopsintrans- in the character of the protein at that point (figure 8). Itis
membrane protein. notable that some regions are more visible at certain merge
values, which demonstrates the usefulness of being able to
adjust the merge resolution.

6. Applications 1: Features of sequences Table 1 indicates the location of these regions, whilst
table 2 presents a comparison of the consensus prediction

from the visualization compared with actual known val-
We can see two main areas of applications for this work. yes from experimental data. The visualization was broadly
The first is as an exploratory tool to allow bioinformatics successful at identifying the transmembrane regions of
researchers to pick out areas of sequences which have dishodopsin, and would have enabled an expert (who would
tinctive features contrasted with neighbouring regions. know that Sharp hydroph|||c/hydrophob|c regions are in-
As a case study consider the protdiodopsin which is dicative of transmembrane domains) to identify the protein
amolecule which plays a partin processing light which falls family to which this belongs. Some of the transmembrane
on the retina of the eye. This istansmembrangrotein, regions (1,5 and 6) were highlighted across all four merge
which winds in and out of a cellular membrane, as illus- |evels, and it was these which compared most strongly with
trated in figure 7. An interesting question is to work out the real data. Regions 2,3 and 7 showed a fair correla-
which parts of the protein sequence form the (seven) trans-tion between predicted and actual values, highlighted across
membrane regions. three merging levels. Region 4 was poorly highlighted, be-
The protein sequence for rhodopsin was loaded into theing weakly identified at one merge level. It is unlikely that
program and a number of characteristics examined. thethis would have been easily identified without some knowl-
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Figure 8. Merged sequences at different merge values.

edge of the number of transmembrane regions in advanceportant too.
Also, at merge levels 3 and 7, a spurious region was iden-  An interesting challenge would be to calculate a set of
tified between residue numbers 190-196. Nonetheless théour base colours in an appropriate colour space so that
overall results are promising. the results of this merging process produce a set of colours

In current work on these kinds of proteins, transmem- so that each amino acid is represented by a set of similar
brane regions are identified by looking at data on a numbercolours.
of hydrophobic scales: each brings a little more confidence
to the interpretation of where the transmembrane regions
are located. A similar situation exists with the current ap-
plication; higher confidence can be put in data which shows
similar highlights across eangeof merge values. We have presented a snapshot of current work in
progress on developing a novel visualization algorithm and
an application in bioinformatics. A number of important
challenges remain, such as making a rational choice for
the colours rather than just using arbitrary information
o ] o colour maps, and testing the system with bioinformatics ex-
A second area of application for these ideas is in pub- yerts who are not familiar with the details of how the system
lic understanding of science. The ideas of genetic, protein,, g ks.
biol_ogy and bioinformatics' are difficult to expllain due_to A full colour version of the paper is available from
their abstract nature. The idea o_f coIOL_Jr merging provides the author's web sitéttp://www.cs.kent.ac.uk/
an analogy between a process with which many of the gen'people/staff/cgj/
eral public are familiar (e.g. through mixing paints) and one
with which they are not familiar (molecular biology).

In particular the process of taking triplets of DNA bases References
and converting them into amino acids (as in figure 1) has a
nice analogy with merging colours. A small number of base [1] T. Attwood and D. Parry-Smith.Introduction to Bioinfor-
colours can be mixed in different combinations to produce matics Addison Wesley Longman, 1999.
different colours. Providing the proportions are different, [2] A. Brazma, H. Parkinson, T. Schlitt, and M. Shojatalab. A
then the order of the three chosen base colours will be im- quick introduction to elements of biology—cells, molecules,

8. Future work

7. Applications 2: An intuitive understanding
of protein translation via colour merging



Merge Value Location of red/blue boundary regions (residue number)
3 55-60| 94-97 | 136-139 190-192| 271-276| 292-294
226-228 305-324
7 8-14 | 99-105| 134-1407? 190-196| 260-266| 316-322
57-63 218-224
12 49-60 156-1687?| 217-228| 265-276
15 46-60| 92-105| 127-140 211-225| 256-270

Table 1. The predicted values for the location of the rhodopsin transmembrane regions, determined
by red/blue boundaries at various scales in the hydrophobicity bar-code. A ? next to a number
indicates a weak match.

Transmembrane region number 1 2 3 4 5 6 7
Actual location 37-61| 74-98 | 114-133| 153-176 | 203-230| 253-276| 285-309
Consensus from visualization | 46-63| 92-105| 127-140| 157-1687| 211-228| 256-276| 292-324

Table 2. Comparison of predicted and actual positions of the transmembrane regions in rhodopsin.
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