

STUDENT MODELLING BY ADAPTIVE TESTING -
A KNOWLEDGE-BASED APPROACH

A THESIS SUBMITTED TO

THE UNIVERSITY OF KENT AT CANTERBURY

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By

Sophiana Chua Abdullah

June 2003

To my family,

 iii

Abstract

An adaptive test is one in which the number of test items and the order in which the items are

presented are computed during the delivery of the test so as to obtain an accurate estimate of

a student’s knowledge, with a minimum number of test items. This thesis is concerned with

the design and development of computerised adaptive tests for use within educational

settings. Just as, in the same setting, intelligent tutoring systems are designed to emulate

human tutors, adaptive testing systems can be designed to mimic effective informal

examiners. The thesis focuses on the role of adaptive testing in student modelling, and

demonstrates the practicality of constructing such tests using expert emulation.

The thesis makes the case that, for small scale adaptive tests, a construction process based on

the knowledge acquisition technique of expert systems is practical and economical. Several

experiments in knowledge acquisition for the construction of an adaptive test are described,

in particular, experiments to elicit information for the domain knowledge, the student model

and the problem progression strategy. It shows how a description of a particular problem

domain may be captured using traditional techniques that are supported by software

developed in the constraint logic extension to Prolog. It also discusses knowledge acquisition

techniques for determining the sequence in which questions should be asked.

A student modelling architecture called SKATE is presented. This incorporates an adaptive

testing strategy called XP, which was elicited from a human expert. The strategy, XP, is

evaluated using simulations of students. This approach to evaluation facilitates comparisons

between approaches to testing and is potentially useful in tuning adaptive tests.

 iv

Acknowledgements

To the many people ‘behind the scenes’, I thank you all:

To my supervisor, Dr Roger E. Cooley, for his unwavering and unstinting guidance

throughout the PhD course.

To the friends I have made over the years, who in their different ways, have made my stay

away from home a most memorable one, in particular, Sukaina, Florence, Pamela C.,

Claudio, Francisco, Steve, Tom, Andy, Edries, Chris, Justine, Kerry, Sinan, Huda, Haytham,

Birgit, Karen G., Peter, Karen D., Freddie, Ros, Jane, Joseph, Simone, Wuen Hao, Chandra

and Pamela.

To my family who has been a tower of strength, in particular my parents, Dato and Datin

Chua Kong Leng, and my parents-in-law, Pengiran Hassan and Peni Jurof. To my husband,

Pengiran Abdul Wahab, and my children, Ak. Mohammad Hanif, Dk. Hawa Hafizah, Ak.

Mohammad Hazim and Dk. Hawa Hayati, who have all been there for me. To my sisters,

sisters-in-law, and Zenaida for playing the mother figure to my children during the months of

my absence.

To His Majesty’s Government of Brunei, the Ministry of Education and Institut Teknologi

Brunei, my deepest gratitude for the financial support and the opportunity to perform

research.

 v

Table of Contents

Abstract... .. iii
Acknowledgements iv

Chapter 1. Introduction.. ... 1
1.1 Motivation... 1
1.2 Aim of Research ... 4
1.3 Outline of Thesis... 5
1.4 Miscellaneous ... 7

Chapter 2. Student Modelling, Intelligent Tutoring and Adaptive Testing 8
2.1 Introduction... 8
2.2 Intelligent Tutoring Systems... 8

2.2.1 Components of an Intelligent Tutoring System... 13
2.3 Student Modelling and Intelligent Tutoring ... 14
2.4 Modelling Domain-Specific Knowledge .. 16

2.4.1 Scalar Model.. 17
2.4.2 Overlay Model... 17
2.4.3 Differential Model ... 18
2.4.4 Perturbation Model.. 19
2.4.5 Genetic Graph.. 22
2.4.6 Bounded Model ... 22
2.4.7 Constraint-based Model... 23
2.4.8 Machine Learning.. 23
2.4.9 Computerised Adaptive Testing .. 24

2.5 Computerised Adaptive Testing ... 25
2.5.1 Item Response Theory... 28

2.5.1.1 Describing the Domain .. 29
2.5.1.2 The Problem Progression Strategy... 29

2.5.2 Knowledge Space Theory.. 33
2.5.2.1 Describing the Domain .. 34

 vi

2.5.2.2 The Problem Progression Strategy... 36
2.6 Challenges in Student Modelling.. 37
2.7 Dealing with Uncertainty.. 40
2.8 Conclusion .. 41

Chapter 3. Knowledge Acquisition and Representation 44
3.1 Introduction... 44
3.2 Context.. 45

3.2.1 Choosing an Expert ... 45
3.2.2 Type of Students.. 46
3.2.3 Choosing a Domain ... 46
3.2.4 Role of Expert ... 47
3.2.5 The MATT Experiment... 49

3.2.5.1 Aim of Experiment... 49
3.2.5.2 Subjects .. 49
3.2.5.3 Method ... 49
3.2.5.4 Findings.. 50
3.2.5.5 Experiment Summary .. 52

3.3 Conventional Knowledge Acquisition Techniques... 52
3.4 Constraint Logic Programming... 53

3.4.1 Background of Constraint Logic Programming .. 53
3.4.2 Constraint Logic Programming as a Tool for Knowledge Acquisition..... 56

3.5 Domain Knowledge Representation ... 57
3.6 Eliciting the Domain Knowledge.. 58

3.6.1 Categorising Problems... 58
3.6.2 Categorising Responses... 61
3.6.3 Domain Representation in clp(FD).. 62

3.6.3.1 Problem Generation ... 64
3.6.3.2 Evaluating Student Answers .. 65

3.7 Eliciting Other Information... 65
3.7.1 Categorising Problem Solving Skills... 65
3.7.2 Measuring Problem Difficulty... 66

3.8 Conclusion .. 68

 vii

Chapter 4. Initial Experiments: Creating a Student Model and Problem Progression in

Adaptive Testing .. . 69
4.1 Introduction... 69
4.2 The Use of a Student Model ... 70

4.2.1 The DSA Experiment .. 72
4.2.1.1 Aim of Experiment... 72
4.2.1.2 Subjects .. 72
4.2.1.3 Method ... 72
4.2.1.4 Findings.. 73
4.2.1.5 Experiment Summary .. 75

4.3 Contents of the Student Model in SKATE ... 76
4.4 The Progression Problem.. 78
4.5 Direct Elicitation of Test Item Sequencing... 80

4.5.1 Manual Querying An Expert ... 80
4.5.1.1 Aim of Experiment... 80
4.5.1.2 Method ... 80
4.5.1.3 Results.. 81
4.5.1.4 Comments .. 82

4.5.2 Computer-aided Elicitation ... 82
4.5.2.1 The Query Procedure ... 82
4.5.2.2 The Delivery Procedure – the BT algorithm.................................. 83
4.5.2.3 Comments .. 84

4.6 Problem Progression based on Problem Solving Skills .. 84
4.6.1 Aim of Experiment .. 84
4.6.2 Method... 85
4.6.3 Example... 85
4.6.4 Comments.. 88

4.7 Conclusion .. 89

 viii

Chapter 5. Design and Implementation 90
5.1 Introduction... 90
5.2 Origins of the Design.. 91
5.3 SKATE – A Student Modelling Architecture... 92
5.4 The Adaptive Testing Strategy ... 93

5.4.1 Parameters of XP... 94
5.5 Domain Knowledge .. 96

5.5.1 Problem Solving Skills .. 96
5.5.2 Problems.. 97

5.5.2.1 One Skill Problems .. 98
5.5.2.2 Two Skills Problems .. 98
5.5.2.3 Three Skills Problems .. 99
5.5.2.4 Four Skills Problems.. 101
5.5.2.5 Five Skills Problems .. 102

5.6 The Student Model.. 102
5.7 Conclusion .. 103

Chapter 6. Experiment and Analysis ... 104
6.1 Introduction... 104
6.2 The Evaluation Strategy.. 105
6.3 Creating Simulated Students... 107

6.3.1 Sam1 Student Type – knows all the skills... 108
6.3.2 Sam2 Student Type – gaps in knowledge.. 108
6.3.3 Sam3 Student Type - malrules .. 108
6.3.4 Sam4 Student Type – lucky guesses.. 109
6.3.5 Sam5 Student Type – careless slips... 109

6.4 Generating Logfiles .. 109
6.5 Running the XP and ST Assessors.. 111
6.6 Comparing XP and ST Assessors ... 114
6.7 Varying the Parameters of XP .. 121
6.8 Running Variations of XP... 122
6.9 Conclusion .. 125

 ix

Chapter 7. Conclusions.. 126
7.1 Summary... 126
7.2 Publications... 129
7.3 Main Contributions ... 129

7.3.1 The Domain Model.. 130
7.3.2 The Student Model .. 132
7.3.3 The Test Delivery Model... 132
7.3.4 Learning... 134

7.4 Further Work... 135

Appendix A. Item Characteristic Curves.. 136
Appendix B. Manual Adaptive Testing.. 138
Appendix C. Clp(fd) Representation of Problem Classes.. 142
Appendix D. Problem Classes of Fraction Additions .. 147
Appendix E. Fixed-Item Test in Fraction Additions .. 149
Appendix F. Diagnosing Student Answers .. 157
Appendix G. Simulated Students ... 161
Appendix H. Set of Fraction Additions Problems... 165
Appendix I. Generated Logfiles .. 167
Appendix J. Running XP Adaptive Test ... 177
Appendix K. Running ST Sequential Test ... 184
Appendix L. Running XP1 Adaptive Test ... 194
Appendix M. Running XP2 Adaptive Test .. 203
Appendix N. Running XP3 Adaptive Test ... 211
Appendix O. Tabulated Results of Different Students.. 219
Appendix P. Summary of Performance of Assessors.. 230
Appendix Q. List of Publications .. 232
Bibliography ... 233

 x

List of Figures

Figure 1. The Architecture of SKATE... 5
Figure 2. ICAI Domains (Kearsley, 1987) ... 10
Figure 3. The 2 Sigma Problem (Bloom, 1984) ... 12
Figure 4. Major Components of an Intelligent Tutoring System ... 13
Figure 5. Overlay Student Model... 17
Figure 6. A Differential Student Model ... 19
Figure 7. A Perturbation Model ... 20
Figure 8. A Flowchart describing an Adaptive Test (Thissen and Mislevy, 1990).............................. 30
Figure 9. Formulas for 1-PL, 2-PL and 3-PL models .. 31
Figure 10. Item Characteristic Curves for 1-PL Model at three levels of difficulty............................. 32
Figure 11. Item Characteristic Curves for 2-PL Model (with difficulty level b=1) 32
Figure 12. Item Characteristic Curves for 3-PL Model.. 33
Figure 13. Illustration of Prerequisite Relationships and the Assessment Algorithm 36
Figure 14. Partitioning an Area of Syllabus ... 47
Figure 15. Classes of Problems.. 60
Figure 16. Types of Possible Responses .. 61
Figure 17. A Problem Class and a corresponding Response Type... 64
Figure 18. A List of Mal Rules .. 75
Figure 19. A Set of Test Items ... 80
Figure 20. Manually Elicited Test Item Sequence as a Binary Tree .. 81
Figure 21. Problem Progression for a Domain of Five Skills .. 85
Figure 22. The Architecture of SKATE with XP testing strategy.. 92
Figure 23. A Fragment of the Interaction History Module .. 103
Figure 24. The Evaluation Strategy.. 107
Figure 25. Sample of a generated logfile ... 110
Figure 26. Running XP on Student sam2e ... 112
Figure 27. Comparing XP and ST – Accuracy of Mastered Skills... 118
Figure 28. Comparing XP and ST – Accuracy of Unmastered Skills .. 118
Figure 29. Comparing XP and ST – Overall Accuracy.. 119
Figure 30. Comparing Assessors – Overall Accuracy.. 122
Figure 31. Comparing Assessors - Accuracy of Mastered Skills ... 124
Figure 32. Comparing Assessors – Accuracy of Unmastered Skills .. 124

 xi

Figure 33. 2-PL Item Characteristic Curves (b=0)... 136
Figure 34. 2-PL Item Characteristic Curves (b=-1) ... 137
Figure 35. 2-PL Item Characteristic Curves (b=0, c=0.2).. 137
Figure 36. Prolog Instantiations of Simulated Students ... 164

 xii

List of Tables

Table 1. Correlating Knowledge Type and Acquisition Technique ... 53
Table 2. Tabulated Results of sam2f after running XP .. 116
Table 3. Tabulated Results of sam2f after running ST... 116
Table 4. Test Questions categorised by Problem Class and Skills ... 158
Table 5. Evaluating Final Answers only .. 159
Table 6. Inspecting Solution Paths and Final Answers ... 160
Table 7. Simulated Students with overlay knowledge ... 162
Table 8. Simulated Students with noisy data ... 163
Table 9. Comparing Five Assessors for Five types of Simulated Students.. 231

 xiii

Chapter 1. Introduction 1

Chapter 1.

Introduction

In the context of education, a “test” is usually a series of questions. Typically the sequence

of questions is fixed, but in an adaptive test, the selection of questions is partially determined

by the responses to earlier questions in the sequence. This thesis is concerned with the

design and development of adaptive tests in the context of student modelling within

intelligent tutoring systems. It proposes a strategy for constructing such tests based on expert

emulation.

This chapter presents the motivation and aim of the research and an outline of the thesis.

1.1 Motivation
The last three decades have seen a considerable effort to develop intelligent tutoring systems

which provide tuition that is tailored to the needs of individual students. The individualised

attention such systems offer is made possible through student modelling.

Student modelling is concerned with the task of keeping a record of many aspects of a

student (Greer and McCalla, 1991). Such a record is called a student model (Self, 1974) and

it may include domain-specific information, such as how much and what the student has

learned to date, what misconceptions he or she may have, and what problem solving

Chapter 1. Introduction 2

strategies he or she may possess, and learner-specific characteristics, such as what learning

styles seem to be successful for the student, and what conative and affective dimensions

would impact the student. The task of inferring such information from learner’s behaviour is

a major challenge in student modelling.

In recent years, computerised adaptive testing has gained popularity as a student modelling

technique (for example, (Huang, 1996) (Collins et al., 1996) (Dowling and Kaluscha, 1995)

(Ríos et al., 1999)). Though originally used for tests of competence rather than for diagnostic

purposes, computerised adaptive testing is useful when deep cognitive modelling is not

necessary. This is the case when the aim of an intelligent tutoring system is to present

remedial teaching based on an assessment of the student’s domain-specific knowledge in

terms of what he or she knows. When attempting to infer a student’s knowledge in terms of

aspects such as his or her problem solving strategies and misconceptions, adaptive testing is

not appropriate.

Computerised adaptive testing is characterised by the use of the minimum number of

questions of ‘appropriate’ difficulty, in order to determine, with high accuracy, the level of

performance of the student (Welch and Frick, 1993). It is superior to the conventional fixed-

item pencil-and-paper tests in that it has the effect of reducing test anxiety and the overall

testing time. Though computerised adaptive tests can be both accurate and efficient, they are

not necessarily any easier to construct than other student modelling programs. A review of

literature reveals two major approaches of computerised adaptive testing commonly used in

student modelling. They are the Item Response Theory (Wainer and Mislevy, 1990) and

Knowledge Space Theory (Falmagne et al., 1990). The first approach uses a statistical model

and requires large empirical studies to calibrate its questions against student populations.

This is not feasible for small-scale construction of adaptive tests for use within classrooms.

Also, such tests perform summative assessment and represent a student’s knowledge of a

subject domain as a single proficiency estimate only. The second approach does not require

large empirical studies and has adopted expert emulation in eliciting the problem progression

strategy of adaptive testing. The result of diagnosis takes the form of a ‘knowledge state’

which represents the set of problems or skills that the student has displayed mastery of. This

is more closely related to the diagnostic endeavour of many student modelling systems.

Chapter 1. Introduction 3

The thesis is mainly concerned with tutoring in an environment in which the knowledge state

of a student is the most significant determiner of the form of remedial tutoring. The

motivation behind the research is to examine the feasibility of eliciting the strategies of a

human teacher or tutor for the whole process of adaptive testing, from the construction and

representation of the test syllabus to the problem progression or testing strategy itself. While

expert emulation is common in designing many intelligent tutoring systems (Seidel and Park,

1994), it is not a common practice in the design of adaptive tests. Adaptive testing systems

can be designed to emulate an effective informal examiner. As Wainer (1990) pointed out,

the basic notion of an adaptive test is “to mimic what a wise [human] examiner would do”.

Adaptability is the key attribute of human intelligence (Boy, 1996) and it is this trait which an

effective human tutor possesses that enables him or her to provide one-on-one tutoring and

adapt to the needs of the individually different student. This is what Philip of Macedon’s

son, Alexander, had enjoyed as a royal prerogative: the personal services of a tutor as well-

informed and responsive as Aristotle (Suppes, 1966). Studies have shown that the

knowledge of human tutors is rich and varied (Putnam, 1987) and that human tutoring

provides the most effective method of instruction (Bloom, 1984). Since the study by Bloom

revealed that one-on-one human tutoring is the most successful form of instruction with 2-

sigma learning gains over classroom teaching, designers of intelligent tutoring systems have

replicated this finding with computer tutors where computers generate adaptive forms of

tutoring for individual learners (du Boulay, 2000a). This means that by studying human

tutors, intelligent tutoring systems can be designed and developed to provide individualised

or adaptive instruction (Park, 1996) and to act much like a private tutor by aiming at 2-sigma

learning gains.

The hope underpinning this thesis is that just as human one-on-one tutoring has been proven

to be the most effective form of instruction, human one-on-one testing to assess the state of

knowledge of a student is the most effective form of assessment, and that the testing strategy

is worth capturing. The thesis makes the case that for small scale adaptive tests, a

construction process based on the knowledge acquisition technique of expert systems is

practical and economical. The end result of such emulation is a student modelling tool for

adaptive testing which can be used by human teachers themselves.

Chapter 1. Introduction 4

1.2 Aim of Research
The aim of the research is to develop a strategy for the design and construction of small-scale

adaptive tests based on expert emulation. In one-on-one tutoring, there are three main types

of knowledge which a human tutor needs to achieve effective tutoring (Self, 1974) and these

knowledge components form the building blocks of an intelligent tutoring system (Ohlsson,

1987). Similarly, in one-on-one testing, there are three main types of knowledge which an

informal examiner needs to maintain in order to render effective assessment. This is the

knowledge about what to test (the domain knowledge or testing syllabus), who to test (the

student model) and how to test (the problem progression strategy). The types of knowledge

so gained from a human teacher or tutor can be represented in a student modelling

architecture called SKATE shown in Figure 1.

SKATE, which stands for Student Knowledge assessment by Adaptive Testing and Expert

emulation, represents the adaptive testing strategy of the expert. Its function is to model the

knowledge of the student in a subject domain by adaptive testing and to build a student model

which can be used to guide subsequent remedial help. In Figure 1, the student modeller

orchestrates the test administration while the interface module facilitates communication

between SKATE and the human student.

The following questions need to be answered:

• Is there an efficient and effective approach of capturing such information?

• Is there an efficient way of representing such information?

In order to answer these questions, the following tasks were identified:

a. to review current student modelling and adaptive testing techniques,

b. to survey the conventional knowledge acquisition techniques,

c. to investigate the potential use of constraint logic programming as a knowledge

acquisition tool,

d. to carry out expert emulation based on the techniques identified in b. and c. above,

e. to incorporate the information and strategies gained from expert emulation in a student

modelling architecture, and,

f. to evaluate the student modelling strategy.

Chapter 1. Introduction 5

These tasks are handled by different parts of the thesis. Task a. is examined in Chapter 2.

Tasks b. and c. are investigated in Chapter 3. Task d. is carried out in Chapters 3 and 4 while

task e. is handled by Chapter 5. Task f. is carried out in Chapter 6.

Domain
Knowledge Student Modeller

Student

Adaptive
Testing
Strategy

Student
Model

Interface
Legend

Database

Human User

Process

Flow of interaction

Figure 1. The Architecture of SKATE

1.3 Outline of Thes
This thesis consists of seven

subsequent six chapters now

Chapter 2 presents a review

and focuses on computerised

describes the intelligent tu

techniques which model dom

with student modelling and

is
 chapters including this introductory one. An overview of the

follows.

of literature on student modelling in intelligent tutoring systems

 adaptive testing as a recent advent in student modelling. It first

toring paradigm and examines the major student modelling

ain-specific knowledge of the student. Challenges associated

 uncertainties are addressed. The chapter further discusses

Chapter 1. Introduction 6

computerised adaptive testing in the light of other testing procedures such as fixed-item

testing and self-adaptive testing. Two major approaches of computerised adaptive testing

which have been influential in student modelling are described along two aspects – the

construction of the domain and the problem progression strategy.

Chapter 3 first lays the foundation for knowledge acquisition by describing the context in

which the research is conducted. It includes a description of a small experiment called

MATT which confirms that the expert teacher performs adaptive testing when assessing a

student’s knowledge in a subject domain on a one-on-one interaction. Knowledge

acquisition techniques are discussed including the potential use of constraint logic

programming in numeric domains. The chapter then discusses the results of knowledge

elicitation in the construction of the domain knowledge which represents the test syllabus.

Other issues like identifying problem solving skills, generating problems, diagnosing student

answers and measuring problem difficulty are discussed. It also shows how Constraint Logic

Programming can be used for knowledge elicitation, knowledge representation, problem

generation and answer evaluation.

Chapter 4 discusses the experiments in creating a student model and a problem progression

strategy in SKATE. It first discusses the usefulness of a student model for adaptive testing

and seeks to determine the contents of such a model. It bases its decision on the findings of

two experiments, such as the remediation strategy of the expert after testing and concludes

with the choice to maintain domain-specific information about the student, in terms of what

is believed to be mastered and a record of successful and unsuccessful attempts at problems.

A clp(FD) representation means that the overlay student model is executable and is useful for

predicting a student’s performance and for generating problems during remediation. The

chapter next presents two distinct strategies for problem progression based on expert

emulation. The first experiment is the development of a computer-aided procedure to

systematically query an expert to extract a test item sequence called BT. The second

experiment describes a knowledge elicitation exercise which captures the expert’s testing

strategy called XP, which is based on his measure of problem difficulty by the number of

skills needed to solve a problem.

Chapter 1. Introduction 7

Chapter 5 describes the SKATE architecture and its knowledge components. It is the

culmination of the elicitation work carried out in the previous three chapters. Fraction

addition is the example domain used throughout the study but the proposed architecture

should be able to support other topics in mathematics. The student modelling component of

SKATE called XP is described.

Chapter 6 describes an evaluation strategy carried out to measure the performance of XP

student modelling strategy. Since the circumstances under which this work was undertaken

precluded classroom testing, simulations of student behaviour are used. The results from the

evaluation are compared with those of a sequential testing strategy, ST. Different versions of

XP are created and evaluated against XP and ST.

Chapter 7 provides a summary and findings of the work achieved so far. It presents the main

contributions of the research and concludes with directions for future work.

1.4 Miscellaneous
The masculine will be used throughout the manuscript to denote both male and female. The

following acronyms are used in the thesis:

• CAI Computer-Assisted Instructional

• ICAI Intelligent Computer-Assisted Instructional

• ITSs Intelligent Tutoring Systems

• CAT Computerised Adaptive Testing

• IRT Item Response Theory

• KST Knowledge Space Theory

• clp(FD) Constraint Logic Programming over Finite Domains

• FIT Fixed-Item Testing

• SAT Self-Adaptive Test

In order to avoid repetition, there will be constant referencing to different parts of the thesis.

For example, the phrase “see Section 2.3” means see Section 2.3 of Chapter 2, where the

integer part denotes the chapter number.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 8

Chapter 2.
Student Modelling, Intelligent Tutoring and

Adaptive Testing

2.1 Introduction
This chapter presents a review of literature on student modelling in intelligent tutoring

systems and focuses on computerised adaptive testing as a recent advent in student

modelling. It first describes the intelligent tutoring paradigm and examines the major student

modelling techniques which model domain-specific knowledge of the student. Challenges

associated with student modelling and uncertainties are addressed. The chapter further

discusses computerised adaptive testing in the light of other testing procedures such as fixed-

item testing and self-adaptive testing. Two major approaches of computerised adaptive

testing which have been influential in student modelling are described along two aspects –

the construction of the domain and the problem progression strategy. The chapter concludes

with a discussion on the implications of the review of these two techniques on the design of

SKATE.

2.2 Intelligent Tutoring Systems
Computers have been used in education for more than three decades (Mandl and Lesgold,

1988). With lowering costs and continual improvements in computer technology, computers

are becoming more affordable and accessible to educational institutions. The widespread use

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 9

of computers in classrooms has been mainly in information processing software applications

such as word processors, spreadsheets and database systems, and to a certain degree in

subject-specific computer-assisted instructional or CAI systems.

The CAI systems of the 1950s were influenced by the behaviourist psychological theories

(Skinner, 1954) and were simple linear programs. These evolved into branching programs in

the 1960s which offered a degree of adaptability to the student. An action of the student may

correspond to a branch point in the program and a branch is selected based on the response of

the student. There may be a script for each branch point, for example, “if question 2

answered correctly, go to question 10, else go to question 3”. Branching programs evolved

into generative programs in the 1970s (Uhr, 1969). These are frame-oriented tutoring

systems and could generate new problems from a combination of different elements in a

database but still, adaptability was limited and often unrelated to the individual student needs.

The instructional design was hard-wired into the domain content material as simple branches

and loops. There was no inferencing about the student’s learning state. These early systems

could not handle complex student responses and did not explicitly address the issues of how

students learn. The assumption was that if these systems presented information to the

learner, the learner would absorb it (Urban-Lurain, 1996). Although there have been notable

successes, the architecture of CAI systems has been inadequate to provide robust and rich

learning environments (Clancey and Soloway, 1990).

As computer technology became more sophisticated in terms of processing power, storage

facilities, peripheral designs, graphical user interfaces and networking, researchers began to

think about CAI systems which offered more individualised attention to students. They

began to look at other techniques, such as Artificial Intelligence, in the attempt to produce

effective computer tutors which emulate a good private human tutor who “has the ability to

perceive a student’s view and adapt their behaviour accordingly” (Wenger, 1987). This

prompted research in Intelligent Computer-assisted Instructional or ICAI systems in the mid

1970s. This interest coincided with the emergence of expert systems which use Artificial

Intelligence techniques to mimic human experts in fields such as medicine and engineering.

Along the same vein, ICAI systems were developed with the aim to mimic human tutors.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 10

According to the handbook of Artificial Intelligence, ICAI systems represent one of the main

applied fields of Artificial Intelligence (Barr and Feigenbaum, 1981). In 1982, the field

acquired its most popular name, Intelligent Tutoring Systems (or ITSs), when Sleeman and

Brown (1979) published a special issue of the International Journal of Man-Machine Studies

as a book (Sleeman and Brown, 1982). Early examples of ITSs are compiled by Barr and

Feigenbaum (1981) and Polson and Richardson (1988) and include SCHOLAR (Carbonell,

1970), GUIDON (Clancey, 1979) and DEBUGGY (Brown and Burton, 1978). Many other

textbooks, surveys and reviews have been published by key researchers such as Self (1974,

1979, 1988a, 1988b, 1995, 1999a, 1999b), Wenger (1987), Clancey and Soloway (1990),

Anderson (1992) and Shute and Psotka (1996).

The intelligent tutoring paradigm draws its characteristics and strengths from many different

disciplines. The development of such programs lies at the intersection of Computer Science,

Cognitive Psychology and Educational Research; this field is often referred to as Cognitive

Science (Kearsley, 1987) – see Figure 2.

Figure 2. ICAI Domains (Kearsley, 1987)

From the field of education and training, ideas on teaching and learning strategies were

adopted such as one-on-one tutoring, collaborative learning, peer-to-peer interaction and

learning companions. From the field of Artificial Intelligence and Expert Systems,

techniques such as machine learning, fuzzy logic, rule-based inferencing, and Bayesian

network inferencing featured in many intelligent tutoring and student modelling endeavours.

Ideas were also drawn from the field of cognitive psychology. This includes the work of

John Anderson who developed the ACT theory of cognition (Anderson, 1983) and built

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 11

several computer tutors using this theory. Examples include the LISP Tutor (Anderson and

Reiser, 1985) and the Geometry Tutor (Anderson et al., 1985). The ACT theory has evolved

as ACT*, ACT-R and more recently as ACT-R/PM which has the potential of modelling

high-density sensing information such as the tracking of eye movement and speech

recognition (Anderson, 1998b).

The field of intelligent tutoring is relatively young. Since its inception nearly three decades

ago, interest was at its prime in the late 1970s and 1980s. However, interest began to wane

when difficulties in developing effective ITSs, especially in student modelling, were

encountered. While a few ITSs have been deployed into real life settings, many still

remained within research laboratories. Today, the field of ITS is in a state of equilibrium and

is still actively researched, as is evident in the proliferation of current journals and

conferences:

• Journal of Artificial Intelligence in Education (IJAIED)

• International Conference on Intelligent Tutoring Systems (ITS)

• International Conference on Artificial Intelligence in Education (AIED)

• International Conference on User Modeling (UM)

• World Conference on Computers in Education (WCCE)

• International Conference on Computers in Education and International Conference on

Computer Assisted Instruction (ICCE/ICCAI)

Today, ITS research spans across many subfields such as:

• student modelling

• agent-based tutoring systems

• authoring tools

• ontological engineering

• ITS architectures

• distributed learning environments

• instructional design

• web-based education

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 12

Today, the aim of many ITS designers is to design and build computer tutors which can offer

their students nearly the same degree of reasoning as achieved with a human tutor. As

mentioned in Section 1.1, a study conducted by Bloom (1984) revealed that one-on-one

human tutoring is the most successful form of instruction. Bloom found that one-on-one

human tutoring shifted the distribution of achievement scores of students by about two

standard deviations or two sigma learning gains compared with the conventional classroom

teaching. This is shown in Figure 3 where the class average moves from 50th percentile to the

98th percentile. This two standard deviation improvement, or Two Sigma shift, has become a

goal at which designers of ITSs aim (du Boulay, 2000b). To date, no intelligent tutoring

system has attained this goal. For example, with the LISP Tutor (Anderson and Reiser,

1985), studies showed that while the computer tutor was more effective than “learning on

your own”, it was not as effective as a human tutor.

Figure 3. The 2 Sigma Problem (Bloom, 1984)

As mentioned in the previous chapter, there are three types of knowledge used to achieve

effective human tutoring – knowledge of the subject matter, knowledge of teaching strategy

and methods, and knowledge of the student (Self, 1974). In the following subsection, it will

be shown that these three types of knowledge form the building blocks of an ITS.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 13

2.2.1 Components of an Intelligent Tutoring System
There are three important functions of an ITS (McCalla and Greer, 1994). First, an ITS

models the knowledge of the learner in some computationally useful and inspectable way.

Next, based on the student model of the learner, the ITS intervenes in the interaction between

system and learner with the goal of facilitating learning. Finally, the ITS evaluates the

success of its intervention and adjusts its model of the learner, and the loop repeats.

In order to carry out these functions in a one-on-one interaction with a learner, an ITS must

have a model of instructional content that specifies what to teach, a model of a teaching

strategy that specifies how to teach, and a model of a student that specifies who to teach

(Ohlsson, 1987). These models are similar to the types of knowledge types mentioned earlier

which are necessary for effective human tutoring. Wenger (1987) describes an ITS as a

knowledge communication system which comprises at least four functional interacting

components the domain knowledge model, the pedagogical module, the student model, and

the interface or communication module (Figure 4):

Pedagogical
Module

Student

Student Model

Interface

Domain
Knowledge

Module

Figure 4. Major Components of an Intelligent Tutoring System

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 14

• Domain Knowledge Module

This module contains the knowledge of what to teach. It represents an area of syllabus and

usually requires knowledge engineering in its construction. Domain knowledge is usually

represented as skills, concepts, procedures and problems of the subject domain under study.

• The Pedagogical Module

This component contains the knowledge of how to teach, that is a teaching or tutoring

strategy. It orchestrates the whole tutoring process and deals with issues like which topic to

present, when to present a new topic, when to present a problem, when to review, and when

to offer remedial help.

• Student Model

This component contains the knowledge about who it is teaching. It keeps track of

information that is specific to each individual student, such as his mastery or competence of

the material being taught, and his misconceptions. In effect, it stores the computer tutor’s

beliefs about the student. These information is used by the pedagogical module to tailor its

teaching to the individual needs of the student.

• Interface Module

This module provides a communication mechanism for handling the interactions between the

computer tutor and the student, such as mixed-initiative dialogues.

2.3 Student Modelling and Intelligent Tutoring
Student modelling is a type of user modelling and is specifically relevant to the adaptability

of intelligent tutoring systems where the users are students or learners. One of the earliest

attempts at a student model was by Carbonell (1970) who used a semantic network to

represent domain knowledge. The term ‘student modelling’ stems from CAI research. Early

CAI efforts have attempted to enhance individualised instruction through the use of student

models. In a seminal paper on student modelling, Self (1974) describes generative CAI

systems where problems and comments are not prestored but generated dynamically and this

generation is a function of the student model. He further classifies generative CAI systems

into two categories where knowledge of what is being taught is kept implicit or explicit.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 15

While most generative CAI systems belong to the first category, it is only the second

category which allows the type of knowledge of who is being taught to refer directly to the

type of knowledge of what is being taught, thus allowing the construction of a student model.

Over the years, the term ‘student modelling’ came to be closely associated with ITSs when

increasing efforts by Artificial Intelligence techniques were channelled to tackle the task of

student modelling.

Student models can be classified according to the functions they can perform. Self (1988b)

describes six main functions of student models:

• Corrective

 Feedback intended at repairing a misunderstanding of the student. In this case, the model

must identify a difference between the student’s understanding and the correct knowledge,

and provide this information to other parts of the system.

• Elaborative

 Extending the knowledge of the student. In this case, the model should identify areas

where the student can be introduced to new material, or a refinement of his current

understanding.

• Strategic

 Changing the approach to teaching at a higher level than local tactics. This requires the

student model to provide more general information about the student, such as his success

rate with the current teaching strategy as opposed to a previous teaching strategy.

• Diagnostic

 Analysis of the state of the student. In some sense, all aspects of student modelling are

diagnostic. What is meant here is the explicit use of the student model to refine

information about the student in order to make a decision. If, for example, the tutor

wishes to introduce a new topic, but the student model is unable to indicate whether the

current level of understanding of the student is adequate, the model can be requested to

generate diagnostic examples which can be presented to the student.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 16

• Predictive

 Using the model to anticipate the effect of an action upon the student. This requires the

student model to act as a ‘simulator’ to simulate the behaviour of the student, given a

particular action.

• Evaluative

 Providing an assessment of the level of achievement of the student. This requires the

system to make some aggregation across the information that it has.

Early CAI systems, with their branching mechanisms, in some sense supported corrective

and elaborative functions but lacked strategic, diagnostic or predictive roles, while

Carbonell’s student model fulfilled all the functions given above.

Student models can also be classified by their modes of interpretation: process or state

models (Clancey, 1986). Process models are capable of simulating the process by which the

learner solves a problem and can therefore perform the predictive function of student

modelling. They are also called executable or runnable models. A student model is

executable if its present state can be utilised by a certain interpreter to simulate the behaviour

of the modelled student when he is solving a problem. Executable models are also referred to

as procedural models (Brusilovskiy, 1994) as student knowledge in the student model are

usually represented as procedures, the most common knowledge elements being production

rules. Examples of process models are LISP Tutor (Anderson and Reiser, 1985) and

GUIDON (Clancey, 1979). On the other hand, state models do not have the capability of

simulating and contain only state information. Examples include SOPHIE (Brown et al.,

1975) for troubleshooting electronic circuits, PROUST (Soloway and Johnson, 1984) for

program plan recognition of Pascal programs, and constraint-based models (Ohlsson, 1994).

2.4 Modelling Domain-Specific Knowledge
There are two major types of information which may be contained in a student model: model

of domain-specific knowledge and model of individual, learner-related characteristics.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 17

Learner-related characteristics can be conative such as wants, intentions and/or affective such

as motivation, emotion and anxiety (Self, 1994). Examples include modelling motivation

(Matsubara and Nagamachi, 1996) and modelling learning styles (Bull and Shurville, 1999).

There has been relatively little attention devoted to modelling the learner’s state of such

characteristics beyond domain knowledge and common misconceptions. As such, there is

still a lack of standardised means of classifying these models. On the other hand, there are

established techniques for modelling student knowledge in relation to domain or course

knowledge. The following subsections discuss these techniques.

2.4.1 Scalar Model
The simplest form of a student model is a scalar model, which estimates the level of user

knowledge of the course material by means of a certain integral estimate such a number

ranging from 1 to 5.

2.4.2 Overlay Model
The overlay model is a student model which contains the student’s knowledge as a subset of

the expert or domain knowledge (Figure 5). It works on the basis that students will learn the

domain and gain knowledge through aspiring to become experts. Knowledge is represented

and structured in the same way for both the domain knowledge and the student model, the

difference being in terms of completeness. Knowledge representation techniques include

rule-based representations and semantic networks. During student modelling, diagnosis takes

place by comparing the student’s knowledge with the domain knowledge and the difference

is explained as the student’s lack of skill.

Domain Knowledge

Overlay Student Model

Figure 5. Overlay Student Model

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 18

Examples of overlay models are SCHOLAR (Carbonell, 1970), a geography tutor for South

America, which adopts a semantic network representation, and GUIDON (Clancey, 1979), a

tutor built on MYCIN, a knowledge-based program that provides consultations about

infectious disease diagnosis and therapy.

This method is incomplete because only the lack of knowledge can be modelled. The main

problem with the overlay model is that it assumes that a student’s knowledge can be merely a

subset of that of an expert, which may not be the case. The domain model is usually

represented in terms of atomic units, that is, a student either knows or does not know a

certain unit. A student’s partial knowledge of a unit cannot be represented. Also, it does not

represent any knowledge or beliefs, such as misconceptions, that the student might have that

differ from those of the expert. There is no possibility of allowing the student (novice) to

have different conceptions of the domain from that of the expert, although there are studies

which have shown otherwise. For example, when categorising problems, novices tend to rely

on surface analogies between problems while experts use deeper functional analogies (Chi et

al., 1981).

2.4.3 Differential Model
The differential model is seen as an improvement to the overlay model. It does not assume

that gaps in student knowledge are all undesirable. It divides the student’s knowledge into

two categories: knowledge that the student should know and knowledge the student could not

be expected to know (see Figure 6).

Examples of systems which use this approach to student modelling are WEST (Burton and

Brown, 1985), an electronic board game to teach arithmetic, and GUIDON2 (Clancey, 1987).

This model still suffers from most of the same difficulties as the standard overlay model as it

still assumes that the student model is essentially a subset of the expert and the student model

remains incomplete.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 19

Domain Knowledge

Expected Student
Knowledge

Overlay Student
Model

Figure 6. A Differential Student Model

2.4.4 Perturbation Model
The perturbation model approach, also called the buggy model and the mal rule model, goes

beyond inferring what the student knows and does not know about a domain by inferring as

well, any faulty knowledge or misconceptions that the student might possess. The

perturbation student model, which represents the student’s correct and faulty knowledge, is

considered a subset of both the domain knowledge and buggy knowledge (see Figure 7).

This approach combines the standard overlay model with a representation of faulty or buggy

knowledge. The domain or expert knowledge is first represented and then augmented with

explicit knowledge of possible misconceptions of the student. This explicit knowledge is

known as buggy knowledge and allows a more sophisticated diagnosis of the student’s state

of knowledge than can be accomplished with a simple overlay model. Subsequent

remediation goes beyond filling in gaps in the student’s knowledge where the tutor must

identify and eliminate the student’s misconceptions as well as adding the correct conceptions

to the understanding of the student.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 20

Domain
Knowledge

Buggy
Knowledge

Perturbation
Student Model

Figure 7. A Perturbation Model

Examples of this approach are DEBUGGY (Brown and Burton, 1978) , a system to evaluate

a learner’s subtraction performance, Leeds Modelling Systems or LMS (Sleeman and Smith,

1981), a system for testing algebra skills, and PROUST (Soloway and Johnson, 1984), a

system for PASCAL programming, and the Geometry Tutor (Anderson et al., 1985).

In the literature on perturbation models, different terms have been used such as bug,

misconception, error and mal rule. These terms are often used interchangeably but are

actually quite distinct from one another. When a student demonstrates a consistent but

incorrect general model, this is called a misconception. A bug, on the other hand, refers to

some structural flaw in a procedure that often manifests itself in faulty behaviour. A

collection of bugs and misconceptions is referred to as buggy knowledge, a bug library or a

bug catalogue.

When the idea of perturbations is applied to rule-based representations, the buggy knowledge

becomes known as buggy rules or mal rules. An example is BUGGY (Brown and Burton,

1978) where a rule-based domain knowledge of multi-column subtraction was developed

together with a rule-based bug library. The bug library was based on a large empirical study

where a set of students’ responses to a mathematics test were collected and analysed. The

correct responses formed the rules in the domain knowledge while the incorrect responses

were represented as mal rules in the bug library. In this way, a student’s current subtraction

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 21

procedure could be explained by either a correct rule or mal rule.

The terms error and bug will now be distinguished. As mentioned earlier, with the

perturbation model approach, there is a set of correct procedures which make up the domain

knowledge and a set of incorrect or faulty procedures which make up the buggy knowledge.

A procedure, when executed, produces a specific behaviour or outcome. If the outcome does

not correspond to that what is expected, the difference between expected behaviour and

observed behaviour is described as an error. A bug, however, is a variant of the procedure

which generates an error. It is possible for the same error to be explained by different bugs.

Another example of a rule-based representation of correct and buggy knowledge is the LISP

Tutor (Anderson and Reiser, 1985) which is based on the model tracing technique (Anderson

et al., 1990). Under the model tracing paradigm, the computer tutor monitors the student in a

step-by-step fashion during problem solving and inferences from single problem solving

steps to single rules. In this way, the tutor can determine if the student is on a correct

solution path or an incorrect one. In the case of the latter, an attempt is made to match the

incorrect solution path against a bug library in order to infer if the student is suffering from a

known misconception. Appropriate feedback is provided accordingly. While model tracing

prevents floundering on the part of the student, it discourages exploratory behaviour.

There are many challenges to the buggy technique. For example, there is the problem of bug

migration (VanLehn, 1982) which is caused by the change of a bug into a different but

related one and this makes the diagnosis of student’s actions even more difficult. Also, the

construction of bug libraries often involves extensive empirical studies including protocol

analysis. The high costs involved could be offset by its portability across student populations

in a similar subject domain. However, Payne and Squibb (1990) questioned the generality of

bug libraries when they conducted a study which showed that the bug library constructed by

Sleeman (1984) and Sleeman (1985) were minimally relevant for the two new student

populations. Some researchers have attempted to avoid collecting bugs through empirical

observations by automating the generation of buggy knowledge (Baffes and Mooney, 1996),

(Lee, 1996); another good example is the Repair Theory (Brown and VanLehn, 1980) which

is a generative theory of bugs, that is, a method of deriving bug libraries directly from correct

procedures. The usefulness of maintaining bug libraries was also questioned by Sleeman et

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 22

al (1989) who conducted a study in the tutoring of algebra and found that reteaching was as

effective as remediating errors.

2.4.5 Genetic Graph
While the first four models described above capture a snapshot of the current knowledge of

the student, the genetic graph (Goldstein, 1982) captures an evolutionary process of the

student’s knowledge over time. It is a type of semantic network which represents the

expert’s conception of the domain.

The nodes of the graph represent the student’s knowledge and the edges represent the

expert’s view of how learning occurs between nodes. A student’s learning behaviour is

shown by a particular learning path in a sequence which corresponds to the genetic graph’s

partial ordering and this learning path forms part of the student model.

Here, student modelling is still an overlay technique where the student model is a subset of

the domain knowledge. The main difference between the standard overlay technique and the

genetic graph is that the latter is not only concerned with maintaining what the student knows

but also how his knowledge is acquired over time. This is represented by the student’s

learning path which evolves as he progresses in his learning.

2.4.6 Bounded Model
A bounded model (Elsom-Cook, 1988) can be considered a variation of an overlay model.

This technique moves away from representing knowledge to working in terms of beliefs

about the student’s knowledge. The idea is that, rather than attempting to build an exact

student model, the student’s knowledge is represented by fuzzy bounds. By observing

student behaviour, the system maintains a confidence interval around the lower and upper

bounds of the student’s knowledge. Standard machine learning techniques are used. The

lower and upper bounds are obtained through inductive reasoning. Then, on the basis of the

system’s domain knowledge, deductive reasoning is used to generate predictions and

problems are generated to test these predictions. Bounded models can be more tractable to

build than exact models but subsequent remediation is less precise.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 23

2.4.7 Constraint-based Model
A constraint-based model (Ohlsson, 1994) features as being computationally simple. It does

not require large empirical studies for constructing a bug library, nor a runnable expert model

or an ideal student model. No computationally expensive inference algorithm is required –

simple pattern matching is used. The domain knowledge is elicited through task analysis and

is represented as a set of constraints that capture the central concepts of the domain. The

student model is the set of constraints which he violates. These violated constraints become

candidates for concepts which the student does not know and is used to guide remediation or

feedback. An example of this approach is the SQL Tutor (Mitrovic, 1998) which elicited

from an expert around five hundred constraints.

Constraint-based modelling does not prescribe a particular tutorial strategy. It ignores the

student’s problem solving strategy and is thus able to monitor free exploration and to

recognise creative and novel solutions as correct. Ohlsson (1994) coined the term radical

strategy variability which claims that a student has several strategies at each moment in time,

and he may switch between them on a problem-by-problem basis. In the face of such

inconsistencies or contradictory behaviour observed in student solutions, constraint-based

modelling approach fared the best in tackling this problem while the bug library and machine

learning techniques fared the worst.

2.4.8 Machine Learning
Machine learning is a technique of Artificial Intelligence which develops computational

theories of learning processes and builds machines which learn. Gilmore and Self (1988)

examined the potential of machine learning for building student models. A bottom-up

approach is adopted which first identifies a solution path that leads to the final answer and

then machine learning is applied to perform reconstructive diagnosis in order to construct a

procedure that generates that path. While this technique does not require empirical research

to construct a bug library, the computational complexity involved can even be higher than

that of the bug library technique.

Examples include the Tutor of Logically Aided Construction or TALC Geometric Tutor

(Desmoulins and van Labeke, 1996) which uses machine learning techniques to check the

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 24

correctness of student construction with respect to a teacher’s specification and the

Automated Cognitive Modeler or ACM (Langley and Ohlsson, 1984) which tries to model

behaviour & uses machine learning to construct a student model off-line. ACM employs a

bottom-up approach which invents a student model by searching the space of possible

models, identifying a solution path that explains the performance and constructing a

procedure that generates that path; the second step is done by ID3 machine learning method.

2.4.9 Computerised Adaptive Testing
Computerised adaptive testing or CAT (Wainer, 1990) is a recent arrival into the scene of

student modelling. With its roots in psychometric measurement, CAT is characterised by the

efficiency and accuracy at inferring a student’s knowledge in a domain with the minimum

number of problems. The student is presented with problems of appropriate difficulty. This

has the advantage of reducing test anxiety, sustaining the motivation of students during

testing, and more importantly, of reducing the overall testing time. An interesting analogy

between measurement within a tutoring system and psychometric measurement was made by

Frederiksen and White (1990).

Two major techniques of computerised adaptive testing have been particularly influential in

their application in student modelling. They are the Item Response Theory or IRT (Wainer

and Mislevy, 1990) and the Knowledge Space Theory or KST (Falmagne et al., 1990).

These are discussed in more detail in Sections 2.5.1 and 2.5.2. CAT can be viewed as an

overlay technique. In the approach based on the two major techniques mentioned above, the

domain knowledge is represented as a problem domain which contains problems or classes of

problems for a particular area of syllabus. For example, in the KST approach, the domain

may be represented by a directed graph of nodes where each node represents a problem or a

class of problems and the edges represent the relationship between the nodes. The student

model is a subset of the graph and represents the student’s knowledge as a particular path on

the graph. Other works have represented the domain knowledge to include not only

problems or classes or problems but also concepts and skills. Examples include granularity

hierarchies (Collins et al., 1996) and curriculum hierarchies (Huang, 1996).

The following section is devoted to discussing adaptive testing in detail.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 25

2.5 Computerised Adaptive Testing
Traditional fixed-length, pencil-and-paper fixed-item testing, or FIT for short, remains the

predominant testing strategy in educational and training settings. FIT involves the

administration of a fixed set of questions to a student population. An examinee1 is expected

to answer all questions within a fixed period of time. There is a predefined ordering of

questions but an examinee does not need to answer in that order; he may skip questions and

return to them later. As this type of testing has to reach out to examinees of all capabilities

within a population, therefore, there may be relatively few questions which are of the

appropriate difficulty for any one examinee. Questions may be too difficult for the weak

examinee, or too easy for a good examinee. As a consequence, large numbers of questions

may be needed to obtain an acceptable degree of precision. Also, questions are arranged in

order of difficulty. This may work well for a less proficient examinee as he will be able to

answer the earlier questions which are easier before reaching the more difficult ones. For a

good examinee, however, he would have to wade through the easier ones before reaching the

more challenging questions. In both cases, there is a possibility of extraneous noise such as

guesswork and careless slips. For the less proficient student, anxiety may set in when he

attempts to tackle the more difficult questions and he may attempt to solve them through

guessing. For a more proficient student, boredom may set in when he wades through the easy

questions and this wastes time and may increase the possibility of noise mainly caused by

careless errors or slips.

For the same purposes, a useful variation would be for all examinees to take tests that are

individually suited to their own abilities. With the advent of more powerful and affordable

desktop computers in the 1980s, it became possible to implement computerised adaptive

testing, or CAT for short, in educational and training settings. The strength of CAT lies in

having to ask only enough questions in order to assess a student in a subject domain and in its

ability to rank all examinees on the same continuum even when the examinees do not share

any test items in common. CAT is defined as a sequential form of individual testing in which

successive items in the test are selected based on an algorithm which adapts the test to the

specific characteristics of each examinee. As mentioned earlier, the goal of CAT is to use the

1 The words ‘student’ and ‘examinee’ are used interchangeably.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 26

least number of questions necessary to determine, with high accuracy, the level of

performance of the examinee (Welch and Frick, 1993). An examinee is given an easier

problem to solve when he has answered the current one incorrectly, or a more difficult one

when he has answered the current one correctly. In this way, an examinee is presented with

problems of appropriate difficulty throughout the test. This careful tailoring and selection of

problems not only result in greater accuracy of the assessment with only a handful of

properly selected items but also reduces the overall testing time.

An adaptive test is usually computerised, although a manual method may be used such as the

self-scoring flexilevel test described by Frederic Lord in 1971, a description of which is given

by Thissen and Mislevy (1990). The main characteristics of CAT are:

• The test can be taken at the time convenient to the examinee; there is no need for mass

or group-administered testing, thus saving on physical space.

• As each test is tailored to an examinee, no two tests need be identical for any two

examinees and this minimises the possibility of copying.

• Questions are presented on a computer screen one at a time.

• Once an examinee keys in and confirms his answer, he is not able to change it.

• The examinee is not allowed to skip questions nor is he allowed to return to a question

which he has confirmed his answer to previously.

• The examinee must answer the current question in order to proceed onto the next one.

• The selection of each question and the decision to stop the test are dynamically

controlled by the answers of the examinee.

Examples of the use of CAT include three of the world's most widely used college and

graduate admissions tests which are trading the pencil-and-paper formats for CAT

(Educational Testing Service, 1999;Oseas-Europe, 2000). These are Graduate Record

Examinations (GRE®) General Test (GRE, 2000), the Graduate Management Admission

Test GMAT® (GMAT, 2000), and the Test of English as a Foreign Language TOEFL®

(TOEFL, 2000). Other major moves include Microsoft® for the Microsoft® Certified

Solution Developer (MCSD) credential (Microsoft, 2000), and COMPASS®/ESL which

measures students' mathematics, reading, and writing skills on demand (COMPASS, 2000).

Smaller scale examples include a commercial application called SWIFT in the domain of

desktop computer applications (Gemini, 2000) and a computer tutor called Mathemagic in the

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 27

domain of mathematics (Parvate et al., 1998).

A variation of CAT is self-adaptive testing, or SAT for short, where an examinee can

exercise some control over the sequencing of problems. The examinee, rather than a

computerised algorithm, chooses the difficulty of the next problem to be presented (Rocklin,

1994). In a study carried out by Rocklin and O'Donnell (1987), SAT was compared against

the more traditional FIT. Participants completed a self-report of text anxiety and were

randomly assigned to take one of the three tests of verbal ability. Anxiety is associated with

decrements in academic performance and is typified by a situation where a student claims to

have mastered the course material before the test or examination but is unable to perform

satisfactorily during the test, only to recall the material with complete clarity after it is too

late (Covington and Omelich, 1987). The study showed that SAT not only led to higher

ability estimates but also minimised the effect of test anxiety without any overall loss of

measurement precision.

A more thorough study which compared all three testing procedures – FIT, CAT and SAT –

was conducted by Vispoel et al. (1994). In this study, three aspects of the tests were

evaluated: (a) their measurement precision and efficiency, (b) the effects of several individual

difference variables (test anxiety, verbal self-concept, computer usage, and computer anxiety)

on ability estimates alone and in interaction with the test administration procedures, and (c)

examinees’ attitudes about various features of the tests they took. Volunteer college students

were assigned to take a vocabulary test using one of the three methods of testing. All the

tests used the same large, well-calibrated item bank. The results were interesting. CAT was

found to be more precise and efficient than SAT, which was in turn more precise and

efficient than FIT. SAT, however, yielded higher ability estimates than the other tests for

individuals with lower verbal self-concepts. Examinees indicated that they prefer tests in

which they can have as much control and as much information as possible. Taken

collectively, these results indicate that no single test administration procedure simultaneously

maximises precision, efficiency, validity, and examinee satisfaction. As each testing

procedure has its own benefits, some systems make use of more than one testing procedure.

For example, the work of Frosini et al. (1998) combined both CAT and SAT in their creation

of an automatic examiner in the domain of Pascal programming, where a SAT pre-exam

determined the starting difficulty level of the CAT.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 28

Despite its many advantages over FIT, CAT is not as widely used in the educational or

training environments as would be expected. A reason for it not to be readily embraced may

be that it is still a relatively new approach when compared with the traditional FIT which

have been the predominant testing strategy for generations. Also, mass testing, a feature of

FIT, is still favoured because it is a relatively cheaper form of test administration.

Unlike ITSs, most CAT systems describe a subject syllabus in terms of test items or problems

only, the main sources are likely to be from teachers, instructional materials and past class or

exam questions. A problem, as defined in the Oxford English Dictionary, is “a doubtful or

difficult question; a matter of inquiry, discussion, or thought; a question that exercises the

mind”. Problems must be chosen very carefully (Marshall, 1990) as they determine the

efficiency and effectiveness in carrying out assessment to determine what a learner knows,

understands, and can do in order to further learning and performance. Also, CAT makes

more stringent demands on its component items than its FIT counterpart. This is because its

tests are relatively shorter, usually half as long as FIT but with the same degree of accuracy,

and therefore each item is critical and must be well constructed. The effect of a flawed item

in CAT has much greater impact than one in FIT, mainly because not every examinee gets

the same test so a flawed item may affect some examinees but not others – this compromises

on test fairness. In the next two sections, the two major approaches of CAT are described,

based on two aspects – the building of the domain of test items and the problem progression

strategy.

2.5.1 Item Response Theory
Item Response Theory (Wainer and Mislevy, 1990), or IRT, is a statistical framework in

which examinees can be described by a set of ability scores that are predictive, linking actual

performance on test items, item statistics and examinee abilities. IRT was first proposed by

Lord (1980) and is well explained by Wainer (1990). There are web-based tutorials on IRT

(Rudner, 1998). True to the goal of CAT in general, IRT-based adaptive testing systems

have been shown to significantly reduce testing time without sacrificing reliability of

measurement (Weiss and Kingsbury, 1984).

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 29

Ideas from IRT have been very influential in student modelling and intelligent tutoring. They

have formed the basis of a system to assess student programming abilities (Syang and Dale,

1993), they have influenced Huang’s content-balanced tests (Huang, 1996), and more

recently, their influence can be seen in SIETTE which is a web-based adaptive testing system

in the domain of European vegetable species (Ríos et al., 1999).

2.5.1.1 Describing the Domain
In the terminology of IRT, a domain of test problems or items is called an item pool. Each

item is associated with one or more of these parameters – the difficulty level, the

discriminatory power and the guessing factor. The difficulty level describes how difficult an

item is, the discriminatory power describes how well the test item discriminates students of

different proficiency while the guessing factor is the probability that a student can answer the

item correctly by guessing.

To ensure that it best fit the current student population to be tested on, an item pool must

undergo content-balancing and item calibration. Content-balancing is used to ensure no

content area is over-tested or under-tested. Item calibration is used to estimate values for the

item parameters. This process is expensive as it involves large-scale empirical studies,

usually based on a minimum of 200 to 1000 or more students. An effort to avoid major

empirical studies for item calibration is the work by Huang (1996) whose CBAT-2 algorithm

uses a machine learning procedure to generate content-balanced questions based on a specific

part of a course curriculum.

2.5.1.2 The Problem Progression Strategy
The problem progression or adaptive testing algorithm in IRT (Thissen and Mislevy, 1990) is

given in Figure 8. At the start of the test, the algorithm has an initial provisional proficiency

estimate of the student and this is denoted by θ. This specifies an initial item which is

selected from the item pool. The selected item is aimed at providing the most information

about the student; the notion of the “most informative” item will be discussed later. Once the

student provides an answer for the selected item, a new proficiency estimate, θ�, is calculated

together with its confidence level. It is based on whether the student’s answer is correct or

incorrect, the old θ and the item parameters. If the confidence level of θ� reaches a

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 30

designated level, or when some predetermined number of items has been administered, the

test terminates. Otherwise another item is selected for the student, and the test continues.

1. Begin with Provisional Proficiency Estimate

2. Select & Display Optimal
Test Item

3. Observe & Evaluate
Response

5. Is Stopping Rule
Satisfied?

7. End of
Battery? 8. Administer Next Test

4. Revise Proficiency
Estimate

6. End of
Test

9. Stop

 No

 Yes

 Yes

 No

Figure 8. A Flowchart describing an Adaptive Test (Thissen and Mislevy, 1990)

As mentioned earlier, an item does not need to be characterised by all three parameters. For

example, problems in CBAT-2 (Huang, 1996) are indexed by two parameters – difficulty

level and guessing factor. Therefore, depending on the number of parameters used, the

confidence level or probability of θ� is calculated by any one of the three formulas where b is

the difficulty level, a the discriminatory power and c is the guessing factor (Wainer and

Mislevy, 1990). These formulas are presented in Figure 9.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 31

)(1
1)(be

P −−+
= θθ for one parameter. Also called one parameter logistic

 model or 1-PL or Rasch model

)(1
1)(bae

P −−+
= θθ for two parameters. Also called 2-PL model

)(1
1)(bae

ccP −−+
−+= θθ for three parameters. Also called 3-PL model

Figure 9. Formulas for 1-PL, 2-PL and 3-PL models

P(θ) is the probability of the examinee with proficiency θ responding correctly to an item. As

mentioned earlier, an item that is chosen is one which provides the most information about

the student. Items which offer the most information are those whose P(θ) equals or are close

to 0.5. The reasoning behind this is as follows: If P(θ) is more than 0.5, say 0.85, then the

test item would not be very informative because it is almost certain that the student would

provide a correct response to that test item. If P(θ) is less than 0.5, say 0.1, then the test item

is also not very informative as it can be fairly certain that the student would respond

incorrectly. If P(θ) is 0.5, then the test item is considered the most informative item as there

would be an equal chance of the student answering correctly or incorrectly.

Item characteristic curves or ICCs can represent the 1-PL, 2-PL and 3-PL models for

different values of a, b and c, as shown in Figures 10, 11 and 12 respectively. Appendix A

presents more ICCs for the 2-PL and 3-PL models for values of b equal to 0 and -1. A

detailed account of each model is given by Wainer and Mislevy (1990). Figure 10 shows

three ICCs representing three different values of difficulty, b. Figure 11 represents three

ICCs for three different values of the discriminatory power, a, with the value of b constant at

1. Figure 12 represents three ICCS for three different values of a, with the values of b and c

(the guessing factor) constant.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 32

Figure 10. Item Characteristic Curves for 1-PL Model at three levels of difficulty

Figure 11. Item Characteristic Curves for 2-PL Model (with difficulty level b=1)

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
P ro fic iency

P
ro

b
ab

ili
ty

 o
f

C
o

rr
ec

t
R

es
p

b = 1
b = 0
b = -1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-8 -6 -4 -2 0 2 4 6 8

Pro ficiency

P
ro

b
ab

ili
ty

 o
f

C
o

rr
ec

t
R

es
p

a = 1
a = 2
a = 0 .5

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 33

Figure 12. Item Characteristic Curves for 3-PL Model
(with difficulty level b = 1 and guessing factor c = 0.2)

Each item in the item pool is represented by an item characteristic curve or ICC which is

determined empirically using an item calibration procedure. As an example, assume that

each item in an item pool is represented by any one of three curves in Figure 10. If the

student’s proficiency estimate θ is 0, then the probability of the student getting an item of

difficulty level 0 (b = 0) correct is 0.5, the probability of him getting an item of b = 1 (a more

difficult problem) correct is about 0.28, and the probability of him getting an item of b = -1

(an easier problem) correct is about 0.73. As mentioned earlier, an item whose probability

estimate is close to or equal to 0.5 is the one which provides the most information about the

student and is thus chosen to be presented next to the student.

2.5.2 Knowledge Space Theory
Another strand of development in adaptive testing is based the Knowledge Space Theory,

KST for short, (Doignon and Falmagne, 1985), (Falmagne et al., 1990). Examples of

applications include a web-based, domain-independent system called RATH (Hockemeyer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-8 -6 -4 -2 0 2 4 6 8

Proficiency

Pr
ob

ab
ili

ty
 o

f C
or

re
ct

 R
es

po
ns

e

a = 1
a = 2
a = 0.5

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 34

and Dietrich, 1999), a web-based system for the domain of mathematics called ALEKS

(Doignon and Falmagne, 1998) and a general purpose system for testing and training called

ADASTRA (Dowling et al., 1996).

2.5.2.1 Describing the Domain
As with IRT-based systems, the domain is defined by a collection of test items. Here, a test

item can represent not only a problem but also a class of problems, and the relationship

between the test items are explicitly stated through prerequisite relationships. Unlike IRT-

based systems which are unidimensional in that only one student trait (such as mastery of a

topic) can be measured at one time, adaptive testing systems based on the KST can measure

more than one trait and can represent a set of skills or problems mastered by the student.

This set is known as a knowledge state. The structure of the domain takes the form of a

knowledge space which represents the area of the syllabus to be tested; the following

example will explain the notion of a knowledge space.

A body of knowledge is characterised by a set of items called the domain, say {a,b,c,d}. This

gives rise to 24 possible knowledge states:

{}, {a}, {b}, {c}, {d},

{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d},

{a,b,c}, {a,b,d}, {a,c,d}, {b,c,d}, {a,b,c,d}

A student’s knowledge state is defined as the set of items in the domain that the student is

capable of solving. For example, if a student has the knowledge state {a,b,d}, this means that

he can solve items a, b and d. Not all possible subsets of the domain are feasible knowledge

states. For example, if the student can solve item d, and that it is inferred that the student can

also solve item a, then any knowledge state that contains item d must also contain item a.

This means that knowledge states {d}, {b,d}, {c,d} and {b,c,d} are not feasible. This means

that a feasible knowledge state is one which contains not only all the items that the student

has demonstrated mastery of, but also the items which can be inferred. In effect, a feasible

knowledge state describes the prerequisite relationships between items. For example, in the

knowledge state {a,d}, item a is a prerequisite of item d. The collection of all feasible

knowledge states is called the knowledge structure. The knowledge structure must also

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 35

contain the null state {} which corresponds to the student who cannot solve any item, and the

domain which corresponds to the student who can solve or master all items.

When two subsets of items are knowledge states in a knowledge structure, then their union is

also a state, that is,

If K and K’ are states, then K U K’ is also a state

This means that the collection of states is closed under union. When a knowledge structure

satisfies this condition, it is known as a knowledge space.

In practice, feasible knowledge states are obtained through computer-aided procedures which

systematically query human experts to obtain their personal knowledge structures (Dowling

and Kaluscha, 1995) (Dowling, 1993) (Koppen, 1993) (Kambouri et al., 1994). The result of

such elicitation is a knowledge space which is a set of all feasible knowledge states. These

query procedures present assertions of the form below to the expert teacher for judgement

and ask the teacher to either accept or reject each displayed assertion (Dowling and Kaluscha,

1995):

Imagine a student who does not master the items p1, �, pk.

Is it then (practically certain) that this student does not master item q?

The problem is that the number of possible assertions increases with the number of test items.

For example, if there are 50 test items, then there are approximately 2.8 x 1016 possible

assertions. Not all these assertions need to be presented to the expert for judgement as

judgements on assertions whose acceptance or rejection can be inferred logically from

previous judgements can be omitted. This was tried by Kambouri, Koppen, Villano and

Falmagne in a study in which experts judged assertions on 50 examination questions

concerning U.S. high school mathematics (Kambouri et al., 1994). In this study, the experts

judged between 1000 and 2500 assertions until all 2.8 x 1016 assertions were deduced as

inferences.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 36

2.5.2.2 The Problem Progression Strategy
The knowledge space will serve as the core of a knowledge assessment system. Once the

domain is represented as a knowledge space, the adaptive testing strategy is then to locate as

efficiently and as accurately as possible, a student’s knowledge state, which is a point in the

knowledge space. Problem progression works like this. An item is selected. Usually, some

predictive probabilistic model is used to determine the sequence of items in a test (Villano,

1992). If a student has answered the item correctly (incorrectly), it can be inferred that he

can (cannot) answer a prerequisite (parent) item and will thus not be asked to solve the latter.

An item is a problem from a pool of similar problems, for example, problems which ‘add two

fractions of common denominators’. Inferences progressively prune the search space and at

the end of the test, a student’s knowledge of the subject domain is represented by a

knowledge state. In an example given by Dowling and Kaluscha (1995), a knowledge space

is represented as an AND/OR graph, as shown in Figure 13. The nodes represent problems

and the arcs state the prerequisite relationship between the nodes.

b

d

e

a

b

c d

e

a

b

c d

ee

d

ff

g h

f

g h

f

g h g h

a

c

a

c

b

i. ii. c incorrect iii. e and d incorrect iv. g incorrect

Figure 13. Illustration of Prerequisite Relationships and the Assessment Algorithm

Item b represents an AND node. This means that if item b is answered correctly (mastered),

then it can be inferred that both its prerequisites c and d are mastered. Item e represents an

OR node. This means that if item e is mastered, it infers that all the test items in at least one

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 37

of its prerequisite subgraphs must be known. These subgraphs are the one with the nodes g

and h, or the one with the nodes f and h.

Suppose item c is chosen and presented to the student and the student provides an incorrect

answer. From this incorrect response, it can be inferred that the student will not be able to

solve problems a and b either, as c is a prerequisite of a and b. Problems a and b are

considered more difficult than c and are thus not presented to the student. The next problem

to be selected will be one which is not a or b, nor one which has a, b or c as its prerequisites.

Suppose the next problem chosen is e and it is answered correctly. This infers a correct

answer to problem h, as h is a member of both subgraphs of the OR node, and h will be

removed from the list of candidate problems to be presented. Suppose d is presented next

and is answered correctly, and g is presented next and is answered incorrectly. This infers a

correct answer to f. The test stops and the student’s knowledge state is inferred as {d, e, f, h}

which was reached with only four questions being presented out of a maximum of eight.

2.6 Challenges in Student Modelling
Student modelling remains a difficult task and represents one of the most challenging

subfields of ITSs. Some barriers to student modelling which result from the problem of

inferring knowledge from learner’s behaviour are:

• the environment contains a large amount of uncertainty and noise

• the learner’s inference may be unsound and may be based on inconsistent knowledge

• constructing explanations from behaviour is computationally intractable

• learners are creative and inventive and frequently engage in unanticipated, novel

behaviour that requires much sophistication to interpret

• There is constant revision which the learner undergoes in his perceptions of the domain

of study as the instructional interaction proceeds, a feature that presents a constantly

moving target for the student modelling subsystem

As student modelling is an essential component of an ITS, the difficulties associated with

student modelling may be a major contributory factor for the relatively slow deployment of

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 38

ITSs into educational and training settings. Also, the construction of ITSs, in particular the

student modelling task, is a multidisciplinary endeavour and usually involves a team of

computer programmers, domain experts and educational theorists. Estimates of construction

time indicate that 100 hours of development translates to 1 hour of instruction (Beck et al.,

1998). There have been differing views on how the problem of student modelling should be

tackled. These are discussed in the following subsections.

a. Shift Away from One-on-One Tutoring

As student modelling seems to be an acute problem in a one-on-one tutoring environment,

many researchers have turned to alternative paradigms for student-system interaction in the

attempt to avoid the difficulty of doing student modelling. These alternative solutions

include collaborative learning, negotiated learning, guided discovery, discovery learning,

situated learning and constructivism. However, it is argued that each of these alternative

approaches still has a need for student modelling (McCalla, 1992).

b. Abandon the Idea of a Student Model

Due to the difficulty associated with student modelling, even building a partial model is a

challenge. Since student models are at best imprecise, it is argued that having no student

model at all is better than an inaccurate one. Therefore, some researchers have abandoned

the student modelling problem altogether, claiming either that it is intractable or that it is

unnecessary or that systems can be effective tutors without such a model (Gugerty, 1997).

However, without a student model, an ITS would be doomed to follow a preset sequence of

steps regardless of the impact of its actions on a student’s learning (Greer and McCalla,

1991). It would be like a human tutor who knows nothing about the individual learner, and

therefore is unable to adjust instruction to changes in the learner’s behaviour (Holt et al.,

1994).

While it is true that the ultimate goal of a completely accurate student modelling system will

never be reached and is probably impossible in principle, student modelling is essential to

effective intelligent tutoring as the very definition of an ITS as intelligent and individualised

is intimately tied to its student modelling capabilities (McCalla, 1992). Many key

researchers like Self (1990) and McCalla (1992) have argued that no sensible interactions

between a tutoring system and a student can happen without an accurate model or at least

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 39

generic knowledge of the student’s cognitive abilities. McCalla (1992) stressed that student

modelling is:

“not about building exact cognitive models. If it were, we would have to solve

all the problems of cognitive science, and teach a machine to be a cognitive

scientist, before we could build a student model. We only need to model to the

student the level of detail necessary for the teaching decisions we are able to take.

If the tutor only has two choices of action, then the model only needs to be

accurate enough to distinguish between them.”

Self believes that a computer tutor can never have perfect knowledge of a student - some sort

of approximation of the beliefs, knowledge, and goals of the student is the best that can be

expected. He also believes that this would suffice as there really is no need for a completely

accurate student model since even human teachers do not have absolutely accurate

perceptions of individual students and yet, they can still teach ‘effectively’ by employing

their partial knowledge of student cognition to good effect, using both generic knowledge of

stereotypical student and particular knowledge of individual students whom they are teaching

(Self, 1974).

A few recommendations on making student models more tractable were made along the four

slogans (Self, 1990):

• �Avoid guessing” - design the student-computer interactions such that information

needed to build a student model is provided by the student rather than being inferred by

the ITS from inadequate data.

• �Don't diagnose what you can't treat� - link the proposed contents of the student model

with specific instructional actions, ideally supported by educational evidence, in order to

clarify what is really needed (and not needed) in the student model.

• �Empathise with the student's beliefs, don't label them as bugs� - view the contents of

student models as representing the learner’s beliefs about the world; the role of the ITS is

then to assist the learner in elaborating those beliefs.

• �Don't feign omniscience - adopt a �fallible collaborator� role� - develop ITSs which

adopt a more collaborative role, rather than a directive one, for then the style correspond

to a better philosophy of how knowledge is acquired (the fidelity of the student model is

of less importance).

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 40

c. Increase Student Participation

As pointed out earlier, the accuracy of the contents of student models can be increased by

enabling the student to explicitly interact with the tutor to actively collaborate on building a

student model (Self, 1990). Another solution is to increase student control and participation

in order to encourage reflection on the part of the student, by having inspectable student

models which students can view and argue its accuracy. Examples include the work on

stereotypes and scrutable models (Kay, 2000), inspectable learner models (Paiva, 1995) and

open learner modelling (Morales et al., 1999).

d. Develop Standards

As research in ITSs and student modelling matures, there is increasing work in developing

standardised methods for constructing ITSs, in particular student models. These include the

use of authoring tools (Murray, 1999), ontologies (Mizoguchi, 2000;Mizoguchi and

Bourdeau, 2000), an actor-based approach (Frasson et al., 1996), a component-based

approach (Ritter et al., 1998), plug-in tutor agents (Ritter and Koedinger, 1996), and

minimalist design technique (Gutwin et al., 2000).

2.7 Dealing with Uncertainty
In dealing with uncertainty, Bayesian Belief Networks, also known as belief networks and

causal probabilistic networks, are fast becoming a popular approach in student modelling.

A good introduction to Bayesian Belief Networks is provided by Jensen (1996), Charniak

(1991), and, Russell and Norvig (1995). A Bayesian Network is a directed acyclic graph that

organises a body of knowledge in any given area by mapping out causal relationships

between nodes and encoding them with prior probability values that represent the extent to

which one node is likely to affect another. The nodes represent assertions and an arc from a

node A to a node B expresses that A is a cause of B.

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 41

Bayesian Belief Networks are based on the Bayes probability theorem (Bayes 1763):

)|(
),|(*)|(),|(cEP

cHEPcHPcEHP =

where the belief in the hypothesis H can be updated given the additional evidence E and the

background context c. The left-hand term, P(H|E,c) is known as the posterior probability or

the probability of H after considering the effect of E on c. The term P(H|c) is called the prior

probability of H given c alone. The term P(E|H,c) is called the likelihood and gives the

probability of the evidence assuming the hypothesis H and the background information c is

true. Finally, the last term P(E|c) is independent of H and can be regarded as a normalizing

or scaling factor. A more detailed account is given by Niedermayer (1998).

Bayesian Belief Networks can be used to represent a student model where each node

represents a key element of the subject domain. Prior probability values are usually obtained

empirically. With new evidence, such as a student’s response to a problem, an update

algorithm (e.g. Pearl 1988; Neapolitan 1990) is run and each node is assigned a posterior

probability value. In the end, when there is no more new evidence, the posterior probability

value of each node represents the mastery level of the student.

An extensive survey of Bayesian student modelling is provided by Murray (1998). Key

efforts include the works of Collins et al. (1996), VanLehn and Martin (1997) and VanLehn

and Niu (2001).

2.8 Conclusion
This chapter reviewed the literature on student modelling in intelligent tutoring systems. In

particular, it looked at major student modelling techniques which modelled domain-specific

knowledge. Problems associated with student modelling were discussed.

The chapter then discussed computerised adaptive testing in more detail. It first compared

computerised adaptive testing with other testing strategies such as fixed-item testing and self-

adapted testing. It presented two major approaches of computerised adaptive testing

mailto:daryle@gpfn.sk.ca

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 42

commonly used in student modelling were described: IRT and KST. For each approach, it

was shown that the way in which the domain was structured had an influence on problem

progression. The review of these two techniques has direct implications for the design and

construction of the knowledge components of SKATE.

Firstly, it is the consideration of the basic unit which makes up the domain knowledge or test

syllabus. While the basic unit in the IRT and KST approaches is usually a problem or a class

of problems, the basic unit of the domain knowledge component in an ITS is usually a

description of a body of knowledge in terms of skills, concepts and problems. In SKATE,

this will be decided by the expert. The IRT approach maintains large repositories of test

items and an attractive option might be to categorise these as classes of problems, as was

with the case of KST-based adaptive testing systems. There is a need to generate problem

instances from classes of problems, although this was not discussed in the KST approach.

These issues are taken up in Chapter 3.

Secondly, the structure of the domain is an important consideration. The development of an

IRT test requires a calibration exercise, which can benefit from a large sample size. This is

neither feasible nor affordable for SKATE when the aim is to conduct small-scale tests. The

KST approach looks like a reasonable candidate for incorporation in SKATE although it has

always been discussed by its authors in connection with large (for example, fifty items) tests.

This is taken up in Chapter 3.

Thirdly, in problem progression, the key consideration is the selection of problems of

appropriate difficulty at all times. IRT employs a statistical model which is used iteratively

after a student’s response in order to meet the stopping criteria or to select the next item.

KST relies heavily on the explicit structure of the domain elicited from one or more experts

and problem progression involves the pruning down of a set of candidate problems in the

space at each iteration. The issue of problem progression for SKATE is discussed in Chapter

4.

Lastly, the use of a student model is an important issue. In the IRT and KST approaches,

there is no explicit mention of the use of a student model to aid item selection and subsequent

remediation. In the IRT approach, a single proficiency estimate together with its confidence

Chapter 2. Student Modelling, Intelligent Tutoringand Adaptive Testing 43

level is used throughout testing to aid in test item selection and in stopping the test. At the

end of the test, this single estimate denotes the student’s proficiency in the subject domain.

As SKATE is a student modelling framework, more information about the student’s mastery

of the subject than just a single estimate is necessary. For this reason, the KST approach

might be more appropriate as it employs an overlay model where a knowledge state

represents a subset of the problem domain and is a list of items mastered by the student.

Chapter 3. Knowledge Acquisition and Representation 44

Chapter 3.

Knowledge Acquisition and Representation

3.1 Introduction
There are several problems to be confronted when adopting an expert emulation approach to

designing an adaptive test. Firstly, there is the problem of choosing a suitable expert.

Secondly, there is a need for finding suitable knowledge acquisition techniques to aid the

elicitation process. Thirdly, there is a need for knowledge representation of the area of

syllabus to be tested.

This chapter first lays the foundation for knowledge acquisition by describing the context in

which the research is conducted. It includes a description of a small experiment called

MATT which confirms that the expert teacher performs adaptive testing when assessing a

student’s knowledge in a subject domain on a one-on-one interaction. Knowledge

acquisition techniques are discussed including the potential use of constraint logic

programming in numeric domains.

The chapter then discusses the results of knowledge elicitation in the construction of the

domain knowledge which represents the test syllabus. Other issues like identifying problem

Chapter 3. Knowledge Acquisition and Representation 45

solving skills, generating problems, diagnosing student answers and measuring problem

difficulty are discussed. It also shows how Constraint Logic Programming can be used for

knowledge elicitation, knowledge representation, problem generation and answer evaluation.

This versatility comes from the dual nature of logic programming. The declarative aspect of

clp(FD) facilitates the definition of classes of problems while the procedural aspect allows

sample problems to be generated.

3.2 Context
This section describes the context in which expert emulation is carried out. It describes the

choice of experts, the type of students under study, the choice of domain, and the role of the

expert in his interaction with his students.

3.2.1 Choosing an Expert
The task of finding a suitable expert is not an easy one. Firstly, the expert must be willing to

participate in the elicitation process (Lightfoot, 1999). Secondly, there is the task of

distinguishing a skilled tutor from a novice, in terms of experience in teaching and tutoring.

For example, studies have shown that strategies of an expert differ from a novice in tasks

such as problem categorisation (Chi et al., 1981) and tutoring (Glass et al., 1999). For

example, in a study conducted by Glass, Kim, Evens, Michael and Rovick on the CIRCSIM

Tutor, it was found that expert tutors are more likely than novice tutors to query students for

information as opposed to informing them directly.

The validity of expert systems depends on the quality of the emulated expert. For the

experimental work described in this thesis, an experienced teacher was selected as an expert.

He has been in the teaching profession for over ten years and has taught Mathematics and

Physics at various UK educational institutions. He is accustomed to interacting with students

in a classroom setting as well as on a one-to-one basis. He has taught students from widely

differing backgrounds and capabilities, ranging from gifted students to those with learning

difficulties. At the time of this study, the expert was teaching remedial mathematics to a

population of male adults who are serving time at a local prison.

Chapter 3. Knowledge Acquisition and Representation 46

3.2.2 Type of Students
The type of student population under study is a non-typical one. This is a population of male

adult prisoners who do not share many of the characteristics of conventional classroom

students, but may tend to have more in common with adult learners engaged in distance

learning. The key characteristics of this type of population are:

• the transient nature

• diverse educational and cultural backgrounds

• varying levels of prior knowledge in subject domain

• generally low academic achievements

• low motivation and confidence levels

3.2.3 Choosing a Domain
The mathematics curriculum for this student population is one that prepares the students for

UK qualifications in City & Guilds (Key Skills), City & Guild (Number Power), and for

GCSE level examinations. In these courses, students must demonstrate the ability to solve

mathematics problems given in instructional texts and apply problem solving skills to handle

mathematical tasks in every day situations such as calculating tax, writing cheques, and

working out bills such as electricity and gas.

Mathematics has many applications in real-life situations and for this reason, it holds an

important part in educational curriculum. There is however usually a gap between the ability

to solve classroom mathematics problems and the ability to use the same skills to solve real

life mathematical tasks. Cooper and Dunne (2000) conducted a study on six hundred

students in the age group of 10-14 years old, of different social backgrounds and across the

sexes and they found that while many children can solve classroom type mathematical

problems, the same children could not apply their knowledge and skills to solve real life

mathematical problems. Deboys and Pitt (1988) believe that it is the role of mathematics

teachers to ensure that students not only acquire proficiency in basic arithmetical

computation but that they should understand the processes they are using and be able to apply

Chapter 3. Knowledge Acquisition and Representation 47

them constructively in unfamiliar situations.

Interviewing the expert resulted in the partitioning of an area of syllabus and the focussing on

a narrow domain of fraction additions in which to construct an adaptive test (Figure 14).

Fractions is an important part of the mathematics curriculum and is a domain commonly used

in intelligent tutoring research (for example, (Stern et al., 1996) (Nwana, 1993)) and in

adaptive testing (Baumunk and Dowling, 1997). This domain is an important one as it is the

basis of many mathematical tasks in the City and Guild curriculum for the current student

population. From a student modelling point of view, this domain is small but rich enough to

allow all sorts of student behaviour.

Fractions Decimals Percentages

Subtract Fractions Add Fractions Multiply Fractions

2 Operands N Operands

Both operands not
in lowest form

Both operands in
lowest form

Only one operand
in lowest form

Figure 14. Partitioning an Area of Syllabus

3.2.4 Role of Expert
Due to the transient nature of this type of student population, students enrol at different times.

This makes the job of the teacher very difficult especially when there is a need to assess the

mathematical knowledge level of each student upon enrolment before appropriate remedial

help can be given.

Chapter 3. Knowledge Acquisition and Representation 48

In his current role, the expert provides remedial teaching to an average class size of twelve

students. He has four such classes. One of the first tasks of the expert with a new student is

to conduct an initial assessment of the student’s current knowledge level in mathematics.

The transient nature of the student population means different enrolment times which suggest

that students are assessed on their mathematical abilities at different times. Assessment is one

of the most important tasks in teaching and learning as it has a major impact on subsequent

remedial help that is rendered (VanLehn and Martin, 1997). By performing one at the start of

a course can help the student to overcome isolation and to promote active learning (Taylor,

1998). At present, the initial assessment of the student’s state of knowledge in mathematics

takes the form of a FIT which is made up of several topics such as fractions, percentages and

decimals. A student performs the test in the conventional pencil and paper setting. His

answer script is examined by the expert who identifies the areas of weakness. This type of

assessment, FIT, has several disadvantages, including the ones discussed in Section 2.5.

First, designers of such tests have to ensure that the test is content-balanced, that is, each

topic is represented and that no topic or subtopic is over tested or under tested. If a test is not

content-balanced, there is a possibility that one or more areas of weakness of the student may

not be identified. Secondly, the test is the same for each student and this introduces the

possibility of noise, such as copying especially if there is more than one student performing

the test at any one time.

After assessment, the students carry out their own remediation with the help of text materials.

A book by Llewellyn and Greer (1996) is heavily used. The book is structured such that for

each topic, there are subtopics where concepts are explained as expositions followed by a

series of problems which are arranged in order of difficulty. Each student works on his

respective areas of weakness. The expert advises the students on a manual adaptive

remediation strategy. The student is to attempt questions of moderate difficulty and if he

finds these to be easy, he is to attempt the more difficult ones. Conversely, if he finds them

too difficult, he is to attempt the easier ones. This strategy allows the student to further

isolate, and at a finer detail, his areas of weakness.

The expert then intervenes with remedial help on a one-on-one basis or in a group if more

than one student has difficulty in a similar area. He first explains the underlying concepts

before attempting to teach procedural knowledge through a series of problems on the board.

Chapter 3. Knowledge Acquisition and Representation 49

This remediation strategy is reteaching and is rather coarse-grained in that it does not focus

on specific student misconceptions. The students then attempt to solve similar problems

chosen by the expert. In group teaching, students tended to understand at different rates and

there is evidence of peer-to-peer tutoring where the better students help out their weaker

peers.

While there is evidence of a manual adaptive remediation strategy, there is no evidence of

adaptive testing, manual or otherwise, as a strategy for assessing a student’s knowledge upon

enrolment. Although FIT features as the main assessment procedure, adaptive testing is an

attractive alternative. The following section presents a small experiment to observe an expert

in his one-on-one assessment with students. It was found that the expert conducted a manual

form of adaptive testing.

3.2.5 The MATT Experiment

3.2.5.1 Aim of Experiment
The MATT (Manual Adaptive TesTing) experiment is experiment was conducted to observe

and establish if an adaptive form of testing was adopted by the expert in his one-on-one

assessment of the state of knowledge of a student in a subject domain.

3.2.5.2 Subjects
Two school children were invited to participate in the experiment. The two subjects are

young children who are currently attending a local school and are following the UK National

Curriculum. The first subject is an eleven year old boy at Year 6. The second subject is a ten

year old girl at Year 5.

3.2.5.3 Method
The sessions were conducted in a home environment. The chosen domain is fraction addition

and subtraction in elementary mathematics. The expert did not use any instructional

materials or software tool to perform the test. The expert had access to the problem solving

strategy of the students. These interactive sessions were observed by the knowledge engineer

and are documented in Appendix B.

Chapter 3. Knowledge Acquisition and Representation 50

3.2.5.4 Findings
The expert was observed to perform a manual form of adaptive testing. The following

observations were made.

• Input bandwidth

Human testers have many advantages over computers. The expert could combine data

from a wide variety of sources, such as voice effects or facial expressions, an “eureka”

look, a puzzled expression, or a hesitant tone of voice (Wenger, 1987) (Holt et al.,

1994). In addition, the expert had access to the ‘thinking aloud’ and problem-solving

steps by the student. All these data helped to shape the decision in problem selection

and in starting, continuing and stopping the test.

• Starting the Test with an “Easy” Question

 The expert was concerned with maintaining the motivation and confidence of the subject

at all times and was particularly concerned with the appropriate entry point in which to

begin the test. His choice of problems was influenced by the cues he picked from the

student. His strategy was to start the test with a problem of lower level of difficulty than

the one he thinks the student is capable of solving, that is, with an easier portion of the

syllabus. For example, questions were selected differently for each of the two subjects

as the first subject exuded confidence in mathematics while the second subject displayed

anxiety in the test and a lack of confidence in mathematics in general.

• Evidence of Redundant Questioning

It was observed that the expert adopted a rather loose and ad hoc strategy in his selection

of subsequent problems. This is consistent with the findings of Putnam (1987) who

observed that teachers use loose curriculum scripts rather than grain assessment. For

example, in assessing the knowledge of the first subject, the expert was particularly

interested in assessing the mastery level of the subject in a particular skill, calculate

lowest common denominator, but his choice of a problem, 4/3 + 5/4, did not discriminate

against the use of the skill calculate common denominator (which could be achieved by

multiplying the denominators). There were about three ‘redundant’ problems before the

Chapter 3. Knowledge Acquisition and Representation 51

skill, calculate lowest common denominator, was specifically tested out.

• Stopping the Test

It was observed that the expert stopped testing when he found that further questioning

would not reveal any new information about the student’s knowledge in the subject. In

the case of the first subject, all the problems presented had non-common denominators

and because the subject showed that he was capable of solving them, the expert did not

present him with ‘easier’ problems such as those with common denominators. Likewise,

the second subject was presented with problems of common denominators and because

she had difficulty in solving them, she was never presented with ‘harder’ questions, such

as those involving non-common denominators.

• Diagnostic Strategy

This is concerned with the diagnosis of student answers to problems. The expert

observed the problem solving steps of each student and modelled the student’s

knowledge in terms of domain-specific knowledge such as problem solving strategies,

and correct and incorrect knowledge. The cognitive modelling strategy of the

perturbation model also maintains the latter type of knowledge where the student’s

knowledge can be described in terms of correct rules and mal rules. By correct

knowledge, this means that the expert was looking for a demonstration by the student of

the relevant problem solving skills. By incorrect knowledge, the expert was looking for

common misconceptions; for example, the second subject demonstrated a common

misconception where the denominators were added together to give a resultant

denominator.

• Remediation Strategy

This is concerned with the remedial help given to the student after the test has taken

place. It is observed that the expert did not find it necessary to offer remedial help to the

first subject as the student has demonstrated a mastery of the necessary problem solving

skills. As for the second subject, remediation took the form of reteaching of certain

basic concepts of fractions and the problem solving steps of the problems which the

student had displayed difficulty in solving.

Chapter 3. Knowledge Acquisition and Representation 52

• Student Model

The type of information which was maintained by the expert about the student was

observed to be both learner-related characteristics, such as motivation and confidence,

and domain-specific knowledge, such as problem solving strategies, correct knowledge

and misconceptions.

3.2.5.5 Experiment Summary
The above experiment confirmed that the expert adopts an adaptive form of testing when

assessing student’s knowledge in a subject domain on a one-on-one basis. The expert was

observed to perform deep cognitive modelling of the student’s domain-specific knowledge

in terms of problem solving strategies and correct and incorrect knowledge. Despite this,

his problem progression strategy for selecting subsequent questions was found to be rather

loose, with many redundant questioning. Also, his remediation strategy is coarse-grained

reteaching and it did not justify the deep cognitive modelling effort he performed during

test administration.

3.3 Conventional Knowledge Acquisition Techniques
Expert emulation involves expressing human knowledge and strategies in a computer system

and is often referred to as the bottleneck problem (Murray, 2000). Knowledge acquisition is

a difficult and time-consuming process which involves many hours of interaction between the

expert and the knowledge engineer. There is also the problem of choosing the right tool for

eliciting the appropriate knowledge type.

A knowledge engineer has a choice over many knowledge acquisition techniques, such as

concept analysis, unstructured interviewing, structured interviewing, domain and task

analysis, process tracing and protocol analysis and simulations and automated tools (McGraw

and Harbison-Briggs, 1989). The choice of one technique over another depends on the type

of knowledge which the knowledge engineer wishes to elicit from the expert. There is a

mapping of types of knowledge to knowledge acquisition techniques (Table 1). For example,

Chapter 3. Knowledge Acquisition and Representation 53

if the knowledge acquisition activity for a particular phase is to “identify general heuristics

that are available on a conscious level”, the knowledge engineer would be seeking knowledge

that is primarily declarative in nature. Declarative knowledge is generally available in the

short-term memory, which allows the domain expert to express it verbally.

The choice of technique for this study is likely to be structured interviewing and task analysis

as the types of knowledge to be elicited are likely to be declarative (domain knowledge and

student model) and procedural (problem progression strategy).

Knowledge Activity Suggested Technique

Declarative knowledge Identifying general (conscious) heuristics Interviews

Procedural Knowledge Identifying routine procedures/tasks Structured Interview

Process Tracing

Simulations

Semantic Knowledge Identifying major concepts/vocabulary Repertory Grid

Concept Sorting

Semantic Knowledge Identifying decision making procedures and

heuristics (unconscious)

Task Analysis

Process Tracing

Episodic Knowledge Identifying analogical problem solving

heuristics

Simulations

Process Tracing

Table 1. Correlating Knowledge Type and Acquisition Technique
(McGraw and Harbison-Briggs, 1989)

3.4 Constraint Logic Programming
3.4.1 Background of Constraint Logic Programming
Constraint Logic Programming, or CLP for short, has been heralded by ACM (Association

for Computing Machinery) as one of the strategic directions in computing research (Marriott

and Stuckey, 1998). CLP provides a language for the description of relationships in the form

of constraints and a mechanism to calculate a set of values which satisfy those constraints.

Constraint programs are often written to provide optimal solutions to problems. CLP comes

under the paradigm of Constraint Solving which is a powerful paradigm that allows a natural

representation of complex problems (Lassez, 1987).

Chapter 3. Knowledge Acquisition and Representation 54

Constraint Logic Programming is an extension of Logic Programming aimed at replacing the

pattern matching mechanism of unification, as used in Prolog, by a more general operation

called constraint satisfaction or constraint solving (Cohen, 1990) (Constraint Programming,

2000). Logic Programming is a language paradigm based on logic. It shot to fame via the

Prolog language as a consequence of the Japanese Fifth Generation project and the expert

systems boom of the mid 1980s (Pountain, 1995). Logic programming is characterised by

two components: resolution and unification. Resolution is an inference step used to prove the

validity of predicate calculus formulas expressed as clauses while unification is the matching

of terms used in a resolution step (Cohen, 1996). Prolog is based on first-order predicate

logic and the objects that it manipulates are pure symbols with no intrinsic meaning.

Execution of Prolog program proceeds by searching a database of such facts to find those

values that will satisfy a user’s query, using a process called unification based on syntactic

identify. Since Prolog tries to find the set of all solutions to a query, during this search many

dead-ends may get explored and then abandoned by backtracking to an earlier state and

trying a different branch. For complex problems, this search process can take up both space

and time, which can lead to inefficiency.

Although a relatively young paradigm, the use of CLP in industry since its inception in the

late 1980s has resulted in many successful real-life applications. CLP is especially well

suited to solving problems in scheduling. Examples include container port scheduling

(Abbott, 1995) and nurse scheduling (Darmoni et al., 2000). The history and background of

constraint programming is usefully summarised by Marriott and Stuckey (1998). Constraint

programming modules are available for a range of programming platforms. Examples

include Prolog II and Prolog III (Jaffar and Lassez, 1987), CHIP, clp(R) and clp(FD).

Constraint Logic Programming provides a language for the description of relationships in the

form of constraints and a mechanism to calculate a set of values which satisfy those

constraints. The basic components of a problem are stated as constraints while the problem

as a whole is represented by putting the various constraints together as rules. A problem is

defined in terms of its variables and in terms of the constraints that must be solved by these

variables. Two types of constraints exist – domain constraints and relational constraints.

Domain constraints refer to constraints on the range of values each variable can take while

Chapter 3. Knowledge Acquisition and Representation 55

relational constraints refer to constraints placed on the relationship between the variables.

Solutions to such problems can be found by using the constraints to detect impossible

combination of values and arriving at an optimum solution.

CLP has been particularly geared to solving Constraint Satisfaction Problems, or CSPs. A

Constraint Satisfaction Problem consists of a set of variables, each of which has a discrete

and finite set of possible values, and a set of constraints between the variable which specify

which combinations of values are allowed and which are not. Variables may have integer or

symbolic domains. A solution to a CSP is a set of variable-value assignments which satisfies

all the constraints. It involves network consistency check algorithms (Tsang, 1993),

constraint propagation, and backtracking search. In essence, the algorithms increase the

efficiency of the search by looking ahead, and actively using the constraints to prune the

search space, thus minimising backtracking. Optimisation is based on a form of branch and

bound, that is, as soon as a solution is found, a further constraint is added to the effect that the

value of the optimising criterion must be less than the value just found. This causes the

system to backtrack until a better solution is found. When no further solution can be found

the optimum value is known.

A significant advantage of CLP over the standard implementation of Prolog is that CLP can

perform arithmetic with uninstantiated variables. As a simple example, consider this code

fragment which can be used to calculate the integer side lengths of right angle triangles:

domain([X,Y,Z], 1, 99),

Z*Z #= X*X + Y*Y,

X #< Y,

labeling([], [X,Y,Z]).

The first line introduces a list of variables, and specifies that they may take values in the

range between 1 and 99. The second line presents the Pythagorean constraint. The "#"

symbol is used to indicate a relational constraint. The third line constrains X to be less than

Y. This usefully eliminates solutions which differ only in the ordering of X and Y; for

example, we do not need both 3,4,5 and 4,3,5 as solutions. The final line initiates a search

Chapter 3. Knowledge Acquisition and Representation 56

for solutions for X, Y and Z. The way this search is carried out is controlled by the first

argument of "labeling". This is the constrain and generate methodology: first, the constraints

are applied, then a solution is generated by labeling. The empty list symbol, [], indicates that

the default strategy is to be used. A backtracking search is used, which explores the domains

in ascending order. When compiled and run, this code will provide values for all three

variables, X, Y, and Z. Given that all these input variables were uninstantiated at the start,

Prolog would not have been able to produce any instantiations unless only one variable was

not instantiated.

3.4.2 Constraint Logic Programming as a Tool for Knowledge Acquisition
A type of constraint logic programming, clp(FD), for knowledge acquisition is used in this

study. Clp(FD) or constraint logic programming over finite domains (Carlsson et al., 1997)

is a particular implementation of constraint logic programming that is integrated with

SICStus Prolog, a commercially available Prolog system developed and distributed by the

Swedish Institute of Computer Science (SICStus, 2002). This implementation is used for the

practical work of this thesis.

As clp(FD) is particularly suited to representing constraint problems with a finite number of

discrete solutions. It has a range of built-in procedures for search for optimal solutions. It

also has applications in knowledge acquisition. Knowledge acquisition is the process of

acquiring knowledge from human experts which is entered into a computer and organised for

use in an expert system. It is essentially made up of two processes – knowledge elicitation

and knowledge representation. Clp(FD) is used to represent classes of arithmetic problems,

and it is also used in the knowledge elicitation process.

Clp(FD) may be actively used by the interviewer when conducting knowledge elicitation

interviews. The teacher, who is the target of the emulation, is not expected to write

constraints, though is more than likely to take an interest in them. During discussions, which

involve the production of example problems, the interviewer enters the necessary constraints,

or modifies existing constraints, to describe the particular class of problem under discussion.

The set of constraints is then solved interactively to produce example problems. These allow

the interviewer to obtain confirmation of what had been elicited and form the basis of further

rounds of discussion and modification. For most classes of problems, it is not feasible to

Chapter 3. Knowledge Acquisition and Representation 57

expect the teacher to inspect every example. This means that unexpected and undesirable

examples may be not be revealed during this knowledge elicitation process. Traditional

program testing and additional knowledge elicitation sessions are needed to reduce the

probability of errors.

Using clp(FD), domains can be enlarged or restricted, and constraints can be added or

removed. It is easy to represent both the mathematical structures of problems and it is also

easy to control the choice of numeric values incorporated in problems. As with all

knowledge elicitation, good preparation by the interviewer is extremely valuable. This can

conveniently take the form of developing some speculative constraints, but this should not be

allowed to influence the interviews. The aim of emulating the expert must be paramount.

Although the technique is used here for simple arithmetic problems, it could also be applied

to a much wider range of problems involving the manipulation of a finite number of

categories.

The following section discusses the elicitation of the domain knowledge and the role of

clp(FD) in knowledge elicitation, knowledge representation, problem generation and answer

evaluation.

3.5 Domain Knowledge Representation
Knowledge representation is the task of writing down, in some language or communicative

medium descriptions or pictures that correspond in some salient way to the world or a state of

the world. In Artificial Intelligence, this is concerned with writing down descriptions of the

world in which an intelligent machine might be embedded in such a way that the machine can

come to new conclusions about its world by manipulating these symbolic representations

(Levesque, 1986). Techniques such as semantic networks, frames, and rules have been used

for this purpose. For many ITSs, a body of knowledge has been described in terms of skills,

concepts and problems. Examples include a granularity hierarchy (McCalla et al., 1992), a

curriculum hierarchy (Huang, 1996), a curriculum tree (Chan, 1992), a topic network (Beck

et al., 1997) and a skills graph (Mao and Lin, 1992). For many CAT systems, a test syllabus

has been described in terms of problems (such as IRT systems) or classes of problems (such

as KST systems).

Chapter 3. Knowledge Acquisition and Representation 58

3.6 Eliciting the Domain Knowledge
Having decided on the area of syllabus to be tested, for example fraction additions in this

study, the next step is to elicit the strategy of the expert in describing the component or basic

item of the domain knowledge. Through interviewing, it was revealed that the expert’s

approach involves an exhaustive review of all classes of problems within a test syllabus.

This indirectly handles the task of content-balancing, commonly associated with IRT-based

systems, as an exhaustive declaration of problem types implies that no area within the

domain is under or over tested. Clp(FD) was used by the interviewer when conducting

knowledge acquisition interviews. For example, after discussing example problems with the

expert, the interviewer used clp(FD) to represent these problems and to generate as many

example problems. The result is a domain of problems categorised according to their features

and response types. This is discussed in following sections.

3.6.1 Categorising Problems
There are different ways of categorising problems. For example, studies have shown that

competent or expert problem solvers could readily categorise word problems and they tend to

categorise problems differently from novices and this is because experts hold a richer body

of knowledge about the subject matter (Chi et al., 1981). In this study, the expert has chosen

to categorise problems into several classes according to features such as common or non-

common denominators and the range of possible values of numerators and denominators,

based on the expression:

N1/D1 + N2/D2 = N/D

This strategy in categorising problems can be represented by constraints. Clp(FD) provides a

declarative and executable means of describing such specifications, and can be made

sufficiently convenient for it to be used on the fly during a knowledge elicitation session

involving the expert and the knowledge engineer. Such software facilitates the capture of

descriptions of classes of problems and also descriptions of possible responses of a student to

those problems. These executable descriptions can be used to generate examples which can

form the basis of several rounds of discussion between the expert and the knowledge

engineer. An example is given in the following code fragment which was used during

knowledge elicitation.

Chapter 3. Knowledge Acquisition and Representation 59

?- use_module(library(clpfd)).

generate_problems(N1,D1,N2,D2,N,D):-
 domain([N1, N2], 1,8),
 domain([D1, D2], 2,9),
 domain([N,D],1,10),
 labeling([], [N1,D1,N2,D2,N,D]),
 N1/D1 + N2/D2 =:= N/D.

The first three clauses of the generate_problems predicate are domain constraints which

dictate the range of possible integer values which can be taken by any variable. Constraint

solving is achieved by the labeling predicate which will initiate a search for solutions for all

the variables in the arithmetic expression N1/D1 + N2/D2 = N/D.

A solution from the execution of the above code is:

N1 = 1, D1 = 2, N2 = 1, D2 = 2, N = 2, D = 2

or

2
2

2
1

2
1 =+ , which satisfies the constraints. More solutions or problem instances can be

generated, for example,
4
3

4
1

2
1 =+ and

10
7

5
1

2
1 =+ .

The expert segregated these different instantiations of problems into classes of problems.

The result, as shown in Figure 15, is a declaration of an exhaustive list of problem classes

which represents the different configurations of problems in the domain of fraction addition

of two operands. The clp(FD) representation of the problem classes is given in Appendix C.

Chapter 3. Knowledge Acquisition and Representation 60

PT1: Add two proper fractions with common denominators
PT2: Add two improper fractions with common denominators
PT3: Add a proper fraction and an improper fraction with common denominators
PT4: Add two proper fractions of different denominators which are multiples of one another
PT5: Add two improper fractions of different denominators which are multiples of one another
PT6: Add a proper and an improper fraction of different denominators and are multiples of one another
PT7: Add two proper fractions of different denominators which are not multiples of one another

PT8: Add two improper fractions of different denominators which are not multiples of one another

PT9: Add a proper fraction and an improper fraction of different denominators and are not multiples

Figure 15. Classes of Problems

The use of constraints for describing classes of problems is similar to the efforts by

Hirashima et al (1996) who constructed a pool of Physics word problems - equivalent

problems, partial problems and specialised problems - by eliciting from human tutors and

practice materials. They did not, however, mention the use of any specific constraint

language. The use of constraints in this study can also be compared with that of Ohlsson’s

constraint-based student modelling technique (Ohlsson, 1994). Like our approach, Ohlsson

represented domain knowledge as a set of constraints, but while our approach uses

constraints to describe the explicit features of each problem class, Ohlsson uses constraints to

detect erroneous student answers. He uses a representational format called state constraints.

A state constraint is an ordered pair <Cr,Cs> where Cr, the relevance condition, identifies the

class of problem states for which the constraint is relevant, and Cs, the satisfaction condition,

identifies the class of (relevant) states in which the constraint is satisfied. Each member of

the pair can be thought of as a conjunction of features or properties of a problem state.

Consider the problem of adding two fractions. For example, the idea that fractions have to

have equal denominators before they can be added can be expressed in state constraint form

as:

if the problem is n1/d1 + n2/d2 and if n = n1 + n2,

then it had better be the case that d1 = d2 or else something is wrong

Chapter 3. Knowledge Acquisition and Representation 61

The relevance conditions are n1/d1 + n2/d2 and n = n1 + n2. The first condition is relevant

only when one is adding fractions. The second condition is relevant only when the

denominators are equal. The satisfaction condition, d1 = d2, is satisfied only if the relevance

conditions are true. State constraints are elicited from experts and captured the central

concepts of the domain. Any violated constraints represent the student’s erroneous behaviour

and are used to guide subsequent remediation.

Another difference is that Ohlsson’s approach is mainly declarative such that the domain and

student model are not executable. Our approach goes a step further by using constraint

solving, thus making the domain and student model executable; the advantages of this

strategy are discussed in Section 3.6.3 and Chapter 4 respectively.

3.6.2 Categorising Responses
The expert identified a list of answer or response types that are possible with the current

domain, as shown below:

RT1: Proper fraction in its simplest form (e.g. 1/2)

RT2: Whole number = 1 (e.g. 3/3)

RT3: Proper fraction which can be simplified further (e.g. 6/8)

RT4: Improper fraction in its simplest form (e.g. 4/3)

RT5: Improper fraction which can be simplified further (e.g. 10/6)

RT6: Whole number > 1 (e.g. 8/2)

Figure 16. Types of Possible Responses

It was found through rapid prototyping that not all response types could be generated for

each problem class of Figure 15. For example, the problem class “Add two improper

fractions with common denominators” could never yield a proper fraction as a response type.

A list of possible response types is given in Figure 16. The set of problem classes can be

further classified according to their possible response types. This is given in Appendix D.

Chapter 3. Knowledge Acquisition and Representation 62

3.6.3 Domain Representation in clp(FD)
Once the description of a class of problems and their appropriate responses is treated as a set

of constraints – domain and relational – it must be satisfied by every example of that class

and this is achieved through constraint solving. Classes of problems with possible response

types make up the problem domain as constraint logic programs. Each problem class consists

of a set of variables, a statement of the domain constraints that determine the range of integer

values that each variable can hold, and a statement of the relational constraints that hold

between the variables. For example, if the expert wanted to represent a class of problems of

type PT1 and he wanted to use single digit integers, this can be represented as the following

code fragment in clp(FD):

domain([N1, N2], 1, 8), % Single digit integers
domain([D1, D2], 2, 9),
N1 #< D1, % First operand - proper fraction
N2 #< D2, % Second operand - proper fraction
D1 #= D2. % A common denominator

The expert can also specify a response type. For example, he may want to specify a response

type as a proper fraction, that is, RT1 (see Figure 16). This can be achieved through the

constraint:

N #< D

where N and D can be specified to take any integer value from 1 to 99. These constraints can

be added to the previous code fragment, thus:

domain([N1, N2], 1, 8), % Single digit integers
domain([D1, D2], 2, 9),
domain([N,D], 1, 99), % Possible values for the answer
N1 #< D1, % First operand - proper fraction
N2 #< D2, % Second operand - proper fraction
D1 #= D2, % A common denominator
N #< D. % Answer must be a proper fraction

Likewise, if the intention was to have a result that is an improper fraction, the constraint

N#<D can be replaced by N #> D.

Chapter 3. Knowledge Acquisition and Representation 63

As a more complete example, consider the following interview excerpt:

Expert: If I have a student who displays a dislike for mathematics and little

confidence in general, I would want to ensure that I do not start with a

difficult question. I would use single-digit integers (domain constraint)

and start the test with a simple problem which involves the addition of

two proper fractions of a common denominator, in their lowest form,

which would yield another proper fraction in its lowest form. This way,

only one skill is needed, that is, the student needs only to add the

fractions without having to bring it to its lowest form. For example, I

would give him 1/3 + 1/3 and not 1/8 +1/8.”

From this excerpt, the knowledge engineer first identifies the domain and relational

constraints. A class of problems which satisfy these constraints can be built and be

represented in clp(FD), as shown in Figure 17. A solution from the execution of the code is:

N1 = 1, D1 = 3, N2 = 1, D2 = 3, N = 2, D = 3

which can be formatted as
3
2

3
1

3
1 =+ , which satisfies the constraints. More problem instances

can be generated, for example,
5
3

5
2

5
1 =+ and

9
5

9
4

9
1 =+ .

The problem class represented in Figure 17 corresponds to problem type PT1_RT1 given in

Appendix D which is the addition of two proper fractions with common denominators with a

response type of a proper fraction in its simplest form. Each problem class given in

Appendix D can be represented as a constraint logic program. The use of the clp(FD)

formalism in this way gives rise to an executable problem domain which facilitates problem

generation and the evaluation of student answers. Unlike many student modelling systems,

these two routines do not need to be coded separately; they are discussed in the following

subsections.

Chapter 3. Knowledge Acquisition and Representation 64

?- use_module(library(clpfd)).
qt(N1,D1,N2,D2,N,D):-
 domain([N1,D1,N2,D2], 1,9), % Single digit integer numerators
 domain([N,D],1,99), % Possible values for answer
 N1 #< D1, % First operand - proper fraction
 N2 #< D2, % Second operand - proper fraction
 D1 #= D2, % A common denominator
 D #= D1, % Same denominator in solution
 N #< D, % Answer is a proper fraction
 labeling([],[N1,D1,N2,D2, N,D]), %Generate values
 \+ cancel(N1,D1,_,_), % First operand in lowest form
 \+ cancel(N2,D2,_,_), % Second operand in lowest form
 \+ cancel(N,D,_,_), % Answer in lowest form
 N1/D1 + N2/D2 =:= N/D. % Arithmetic expression
%
% Skill: Cancel fraction e.g. N/D into lowest form X/Y e.g. 63/81 gives 7/9
cancel(N,D,X,Y) :-
 domain([N,D,X,Y,F], 1,99), % F is the highest common factor
 F*X #= N,
 F*Y #= D,
 maximize(labeling([], [F,X,Y]), F),
 F \== 1. % To ensure cancel fraction has taken place

Figure 17. A Problem Class and a corresponding Response Type

3.6.3.1 Problem Generation
Problems can be generated on the fly by executing a problem class. This is achieved through

constraint solving, as illustrated in the example in Figure 17. An advantage is that, unlike

IRT systems, there is no need to maintain huge repositories of test items or problems.

There are two uses of this facility – during knowledge acquisition and during the delivery of

the adaptive test. During knowledge acquisition which involves the production of example

problems, the knowledge engineer enters the necessary constraints, or modifies existing ones,

to describe the particular class of problem under discussion. The set of constraints is then

solved interactively to generate example problems. During the delivery of an adaptive test,

one or more problems can be generated from a problem class and response type. Although

constraint programs are often written to provide optimal solutions to problems, their use can

be to generate multiple solutions, in this case, to generate more than one problem for a

specific problem class. In adaptive testing, this has the advantage of ensuring that no two

tests look identical thus reducing the possibility of copying.

Chapter 3. Knowledge Acquisition and Representation 65

3.6.3.2 Evaluating Student Answers
The use of clp(FD) has another advantage when a diagnostic approach is required to evaluate

student answers to problems. It allows a “shallow” type of diagnosis where a student’s final

answer is evaluated as correct or incorrect. When a problem is generated, an answer to the

problem is also generated. During diagnosis, this answer is checked against that of the

student. This type of diagnosis will provide information on what problems have been

successfully or unsuccessfully attempted. It differs from deep cognitive modelling in that the

student’s solution path or final answer is not inspected to reveal detailed domain-specific

information such as the student’s problem solving strategy and misconceptions.

3.7 Eliciting Other Information
Other pieces of information were also elicited from the expert. These are the identification of

problem solving skills for the current domain and the expert’s strategy in measuring problem

difficulty.

3.7.1 Categorising Problem Solving Skills
The expert identified the following problem solving skills which are commonly used in

solving problems in the current domain.

• Add equivalent fractions

• Cancel fraction

• Make proper

• Find the lowest common multiple

• Find equivalent fractions

Multiple solution paths may exist for any problem and the skills used in one solution path

may differ from those used in another solution path. Also, students usually devise their own

problem solving strategy and may not use all the skills expected to be applied to solve a

problem. An example is given in the MATT experiment described previously where the first

subject was asked to solve ¾ + ½. The expert had expected the student to use the skills find

common denominator, find equivalent fraction and make proper, but instead the student used

the skills number facts, sum whole numbers and add equivalent fraction.

Chapter 3. Knowledge Acquisition and Representation 66

Each of the problem solving skills listed above could be represented in clp(FD). For

example, the cancel fraction skill can be represented in the following clp(FD) code fragment.

% Simplify the fraction N/D into its lowest form to give X/Y
 % Example: 63/81 gives 7/9
 cancel_fraction(N,D,X,Y) :-
 domain([N,D,X,Y,F], 1,99),
 F*X #= N,
 F*Y #= D,
 maximize(labeling([], F,X,Y]), F).

However, the use of clp(FD) here is optional and the skill can be coded in any other

procedural or declarative language such as Prolog. This is because an optimal use of

constraint logic programming would be when none of variables are instantiated. The

cancel_fraction predicate would normally be invoked with the input parameters, N and D,

already instantiated to integer values. The variable F is the common factor to be cancelled.

This is specified by the two relational constraints. The final line initiates a search for

solutions for X, Y and F. The way this search is carried out is controlled by the first

argument of labeling. The empty list symbol, [], indicates that the default strategy is to be

used, that is a backtracking search which explores the domains in ascending order. The

maximize predicate in the final line ensures that the largest value of F will be found.

3.7.2 Measuring Problem Difficulty
One of the main advantages of adaptive testing over fixed-item testing is the significant

reduction in the test length, and consequently, in the testing time (Ríos et al., 1999). This is

facilitated by the ability to present a problem of appropriate difficulty to the student at the

right time. Problem difficulty can be measured at either one of two stages – prior to or

during test delivery.

The measure of problem difficulty prior to test delivery is perhaps the more common

approach. A simple strategy is to rank the difficulty of a problem as proportional to the

number of identifiable skills required to solve it (Beck et al.1997). The skills are not ranked

in order of difficulty. Lee (1996) highlighted that this strategy of measuring problem

Chapter 3. Knowledge Acquisition and Representation 67

difficulty by the number of skills is just one of the many factors. Others that might be used

include:

• Number of steps required to solve the problem. This may differ from the number of

skills required to solve the problem as a skill may be used more than once.

• Student�s familiarity with the problem. If a student recognises a problem (Davis, 1984),

he is more likely to be able to solve it correctly even if the problem is considered a

difficult one. This is especially relevant in situations where tutoring has been conducted

based on past examples (Renkl, 1997; Ross and Kennedy, 1990; Chi et al., 1989).

The measure of problem difficulty can also be captured empirically. Response time can be

used to calculate the total elapsed time between problem presentation and response. The

rationale behind this is that difficult questions require more processing time to solve. Lee

(1996) identified an item difficulty ratio which is a ratio of the number of respondents

answering correctly to the total number of responses to the problem. Another strategy is to

calibrate a set of problems for a population of students such that a problem is considered

easy if a high percentage of the population can solve it, or difficult if only a small percentage

can solve it. This is the approach undertaken by IRT designers. However, this is based on a

rather straightforward assumption that a question answered correctly is easy while that

answered wrongly is difficult.

Some argued that the measure should indicate how much cognitive effort is required from the

student (Lee, 1996). This is because a problem may be considered difficult due to it being

poorly phrased or misleading, rather than requiring the student to understand difficult

concepts or perform complex calculations. Once the problems is rephrased or clarified, it

may be easily solved. On the other hand, difficult problems might be answered correctly for

reasons other than thoughtful replies; for example, there may be clues in the question which

point to the correct answer. An interesting observation by Beck et al. (1997) is that some

students rate the difficulty of problems on surface features. For example, they may find

problems with single-digit integers easier to solve than those with two or more digits,

although these problems may require the same set of problem solving skills. For instance,

students found the problem 2/3 + 4/3 easier to solve than the problem 17/18 + 19/18 although

both these problems require the application of the same skill.

Chapter 3. Knowledge Acquisition and Representation 68

The strategy of measuring problem difficulty prior to test delivery leads to the creation of a

database of problems, each attached with a measure of difficulty. The expert in this study

employs this strategy and is similar to that of Beck (1997) where each problem is attached a

difficulty level proportional to the number of skills needed to be applied.

A less common but effective approach is to measure problem difficulty during test

administration. This approach supports the notion that different students may rate the

difficulty of problems differently. Examples include SIETTE (Ríos et al., 1999) and

CBAT-2 (Huang 1996). Certain item parameters are identified, such as the number of times

a question has been posed to the student, and, the correctness of a student’s response to the

present question. These item parameter values are updated after every student’s response to a

question and are used to recalculate the student’s new proficiency level and the difficulty

level of each remaining question in the database. The system updates the temporary student

model and uses this information to guide the test. Once the test terminates, the temporary

student model becomes the student’s current knowledge.

3.8 Conclusion
This chapter first provided a foundation in which to carry out knowledge acquisition. It

introduced the problem domain of elementary arithmetic with fraction additions and has

discussed the teaching background of the teacher who is the “expert” in the expert systems

aspect of the thesis. It also described an observational study of the expert’s assessment

techniques which paid particular attention to the issue of “adaptability”.

The chapter then showed how knowledge acquisition can be supported by software to

produce both a declarative description of classes of problems and an executable procedure

which can evaluate student answers and produce sample problems. These samples can be

used as part of the knowledge acquisition process to refine the representation of a problem

domain, and they can also be used in the ultimate delivery of an adaptive test. The chapter

discussed the use of software support for describing problem solving skills which may be

used to categorise problems. This ability is relevant to the task of estimating the difficulty of

a problem and this, in turn, is relevant to the sequence in which problems are presented

during tests.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 69

Chapter 4.
Initial Experiments: Creating a Student

Model and Problem Progression in

Adaptive Testing

4.1 Introduction
This chapter discusses the experiments in creating a student model and a problem progression

strategy in SKATE. It first discusses the usefulness of a student model for adaptive testing

and seeks to determine the contents of such a model. It bases its decision on the findings of

two experiments, such as the remediation strategy of the expert after testing and concludes

with the choice to maintain domain-specific information about the student, in terms of what

is believed to be mastered and a record of successful and unsuccessful attempts at problems.

A clp(FD) representation means that the overlay student model is executable and is useful for

predicting a student’s performance and for generating problems during remediation.

The chapter next presents two distinct strategies for problem progression based on expert

emulation. The first experiment is the development of a computer-aided procedure to

systematically query an expert to extract a test item sequence called BT. The second

experiment describes a knowledge elicitation exercise which captures the expert’s testing

strategy called XP, which is based on his measure of problem difficulty by the number of

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 70

skills needed to solve a problem.

4.2 The Use of a Student Model
A student model may contain domain-specific information and learner-specific characteristics

about a student. As mentioned in Chapter 2, the former type of information is still more

commonly maintained in a student model mainly because of the difficulty with capturing the

latter type of information. In adaptive testing, the type of information that is maintained

about the student is also mainly domain-specific and such information is used to select the

next problem, or to determine when to stop the test, or to guide subsequent remediation. For

example, IRT systems maintains information about a student as a single proficiency estimate

together with a confidence level while KST systems maintains student information as a

knowledge state which is a set of problems, problem classes or skills which the student has

displayed mastery of.

Domain-specific information about the student is commonly captured through an analysis of

student responses to problems (Brusilovskiy, 1994). This may be achieved in different ways:

a. Characterising final answers

 This is the simplest form of diagnosis which involves the characterising of a student’s

final answer to a problem as correct or incorrect, without inspecting the answer in detail

or accessing the intermediate steps of the student. There is a trade-off between accuracy

and speed and it is the most common diagnostic strategy of adaptive testing systems. An

answer is treated as incorrect even if it is, upon closer inspection, partially correct. The

measure of mastery of the skills associated with the problem can be increased for a

correct response, or decreased for an incorrect response. If an ITS employs a

perturbation model, then the cause of an incorrect response can be determined by a

perturbation in either the student model or the buggy library. The advantage of this

strategy is its robustness in the face of bug migration and radical strategy variability as it

is not affected by inconsistent behaviour or multiple problem solving strategies of the

student.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 71

b. Analysing problem solving steps

 Analysing a student’s problem solving steps or solution paths provides additional

information about the student’s cognitive processes and avoids having to infer from

large search spaces or deal with the problem of combinatorial explosion. The task is to

observe the student’s problem solving steps of known problems, either online or offline.

The analysis of the student’s actions of unknown problems is not discussed here but is

the most complex form of analysis; an example is WEST (Burton and Brown, 1985)

which uses the differential modelling technique. The analysis of solution paths of

known problems is usually made possible because an ITS usually maintains procedural

knowledge. Examples include GUIDON (Clancey, 1979) which observes medical

students during problem solving, and the LISP Tutor (Anderson and Reiser, 1985) and

FITS (Nwana, 1993), both of which maintain a set of correct procedures as well as

buggy rules to monitor students during problem solving by the model tracing technique.

c. Deducing from final answers

This involves deducing a student’s solution path from a final answer. For example, if

there is an executable student model as an overlay model and a buggy model, it can be

used to simulate the problem solving steps of the student, from the final answer by using

a set of correct and incorrect knowledge elements to entire procedures. Examples

include DEBUGGY (Brown and Burton, 1978), PROUST (Soloway and Johnson, 1984)

and ACM (Langley and Ohlsson, 1984). However, there is no guarantee that the

inferred solution path represents the true problem solving strategy of the student, as

there is the possibility of idiosyncratic behaviour (Nwana, 1993) and radical strategy

variability (Ohlsson, 1994) on the part of the student.

The first type of diagnosis reveals domain-specific information in terms of existing

knowledge and gaps in knowledge while the second and third types capture information in

terms of problem solving strategies and misconceptions. The following subsection describes

an experiment carried out to diagnose student answers to problems in two modes –

characterising final answers and analysing problem solving steps. The diagnosis was carried

out manually by the expert. The findings reveal that the second mode provides more detailed

domain-specific information about the student than the first mode.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 72

4.2.1 The DSA Experiment

4.2.1.1 Aim of Experiment
The aim of the DSA (Diagnosing Student Answers) experiment is to compare two different

modes of diagnosis. Both modes yield domain-specific information about each student in a

subject domain. The first mode is a simple form of diagnosis which inspects final answers

and characterises each answer as correct or incorrect. The second mode performs a detailed

diagnosis or deep cognitive modelling of the student answers by examining all the working or

problem solving steps leading up to final answers.

4.2.1.2 Subjects
The test was presented to twelve inmates who are part of the student population described in

Section 3.2.2.

4.2.1.3 Method
A pencil-and-paper fixed-item test was presented to the subjects; a copy of the test is given in

Appendix E. It covers the topic of fraction additions and consists of thirty-five questions

which represent all the problem classes listed in Appendix D. The questions are arranged in

an order of difficulty: solve a problem requiring a basic skill such as calculate lowest

common denominator, add two fractions with common denominators, add two fractions with

different denominators. Table 4 in Appendix F shows each question corresponding to a

problem class and a set of problem solving skills which can be applied to solve the question.

The first eleven questions asked specific basic skills, such as cancel fraction, and do not

correspond to any problem class declared in Appendix D.

No time limit was imposed on completing the test and the students were not allowed to

confer with one another. They were instructed to write down their intermediate problem

solving steps on the answer scripts. The test was invigilated by the expert, who is their

teacher, in a formal classroom setting. The answer scripts were collected after the test and

inspected by the expert in the two modes of diagnosis.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 73

4.2.1.4 Findings
The results of the two modes of diagnosis are given in Table 5 and Table 6 of Appendix F.

Both modes reveal the evidence of “downward consistency” which is a term coined to mean

that if a student has successfully answered questions which have required more than one

problem solving skill, say {a,b,d}, then it was observed that he could also successfully

answer questions which required fewer but similar skills, say {a} or {a,b}. For example, the

students who have answered question 5 correctly (which required skills a and b) have also

answered question 1 correctly (which required skill a). “Downward consistency” was also

observed by Marshall (1981). It has an important implication in that the number of candidate

problems to be selected can be reduced.

The second mode reveals more detailed domain-specific information than the first mode,

such as noise and misconceptions. These are discussed below.

• A correct final answer may be due to copying
Although the students were instructed to display their problem solving steps for each question, there

were varying degrees of working shown. Some presented full workings while others presented either

partial workings with some missing steps or no working at all. If a correct final answer to a problem

was accompanied by full working, this implies that the student has successfully solved the problem

and that he has mastered the relevant skills needed for that problem. When no working is given, a

correct final answer may imply that the student has copied. There is therefore a possibility of noisy

data caused by copying. Evidence of this possibility can be found in the answers of subject I for

questions 24 to 35 where the subject did not show any working to any of these problems but provided

a correct final answer for each of them. One of the skills required in each of these questions was

calculate lowest common denominator. If “downward consistency” was true, then the subject should

be able to answer some earlier but easier problems (questions 6 to 9) which have required the use of

only one skill, that is, calculate lowest common denominator. However, when the subject did not

successfully solve these easier problems, it implied that he had copied.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 74

• A correct final answer may be due to guesswork

A possibility of a final answer being categorised as correct but is in fact incorrect may be caused by

another type of noise, that is, guesswork. There is no evidence of this type of noise in this experiment,

but is worth mentioning here.

• A correct final answer may be due to a misconception or stable error

Another possibility that is not evident in this experiment but is also worth mentioning is a situation

where a correct answer may be caused by a misconception or stable error (VanLehn, 1990). An

example is provided by Borasi (1994) where a student was asked to solve 16/64 and he provided the

correct final answer as ¼. No working was provided by the student but a correct response implies that

the student has successfully used the skill, cancel fraction. However, when the student was asked to

solve another problem 18/84 and he provided the answer 1/4, it became clear that he did not use the

skill cancel fraction and this drew suspicion to the earlier problem of 16/64, which the student had

‘successfully’ solved. It then became obvious that the student had applied a misconception by

cancelling a common digit from the numerator and denominator. This influenced subsequent remedial

help which dealt at a more basic level, that is, at the concept of a fraction, rather than providing help

with the skill, cancel fraction.

• A wrong final answer may be partially correct

A closer inspection of the final answers revealed that some were partially correct. For example, the

answers to question 5 of subject E and to question 19 of subject G were found to be partially correct

and it was evident that they did not apply the skill cancel fraction. This implies a lack of mastery of

this particular skill. Another example can be found in the answers to question 17 and 20 of subject I

where he did not apply the required skill make proper.

• A wrong final answer may be due to misunderstanding of question

There is also a possibility of a wrong answer being caused by a misunderstanding of the

question. This might have been the case with the answers to questions 10 and 11 by subject

D and this may be due to a poorly phrased question, as discussed earlier by Lee (1996).

Although subsequent remedial help may focus on the skills required to solve these problems,

it may be the case where the questions needed to be rephrased or clarified for them to be

easily solved.

• A wrong final answer may be due to careless slips

It is not difficult for a teacher to detect a careless slip from other types of noisy data such as

guesswork or copying as this inspection usually takes place in relation to the student’s

answers to previous problems. Examples of careless slips can be found in the answers to

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 75

questions 29 and 33 by subjects F and J respectively. These subjects can be classified as

‘good’ students as they have successfully solved the majority of the test questions. A

possible reason for careless slips may be that the students had to wade through the easier

problems before reaching the more difficult ones, and slips may occur due to boredom or

demotivation. Another possible cause may be forgetting due to cognitive overload which

may interfere with the process of problem solving and lead to errors (Sweller, 1988)

(Kashihara et al., 1994).

• A wrong final answer may belong to a question which was not attempted at all

A blank answer is usually characterised as incorrect. This may be due to test anxiety,

demotivation, or that the student has run out of time. A good example can be found in the

answers of subject B who “gave up” after the fifth question and provided a correct answer to

only the first question.

• A wrong final answer may be caused by a misconception

Just as a correct final answer may actually conceal a misconception, a wrong final answer may reveal

one or more misconceptions. A misconception may be represented by a mal rule. What distinguishes

a misconception is the uniform pattern of problem solving to one or more problems which leads to a

wrong answer. Upon a closer inspection of student answers, a list of possible mal rules was found as

follows:

mr1 add denominators for the resultant denominator (for common denominator problems)
mr2 add numerators for resultant numerator and added denominators for resultant

denominator (for non-common denominator problems)
mr3 add numerators but subtract denominators (for non-common denominator problems)
mr4 add numerators and multiplied denominators (for non-common denominator problems)

Figure 18. A List of Mal Rules

In a perturbation model approach, the mal rules would form part of the bug library and be

used to detect misconceptions in student answers.

4.2.1.5 Experiment Summary
This experiment compared two types of diagnosis. A detailed diagnosis of student answers

provided more domain-specific information about the student than one which merely

characterises each answer as correct or incorrect. A detailed diagnosis revealed the student’s

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 76

problem solving strategies, misconceptions and noisy data such as guesswork, careless slips

and copying. This has implications in the way subsequent remedial help is rendered.

4.3 Contents of the Student Model in SKATE
This section discusses the factors which influence the type of information to be maintained in

a student model of SKATE. It draws from the findings of the MATT and DSA experiments

described in Section 3.2.5 and Section 4.2.1 respectively.

Findings from the MATT experiment show that the expert maintains a detailed model of the

student during adaptive testing. Such information included domain-specific information,

such as correct and incorrect knowledge, and learner-related characteristics, such as

confidence and anxiety. Domain-specific information about the student was specially useful

during adaptive testing to select subsequent problems and to stop the test, and after testing to

provide appropriate remedial help. Learner-related characteristics were specially useful to

kick-start the test with a problem of appropriate difficulty. Findings from the DSA

experiment show that deep cognitive modelling provided more information about the

student’s cognitive state than a ‘shallow’ form.

Despite these findings which suggest a detailed student model in terms of domain-specific

knowledge, such as misconceptions, and learner-related characteristics, such as confidence,

there are other findings from the two experiments and factors which influence the final

decision, which is, to include domain-specific knowledge in terms of what he knows. The

reasons are discussed as follows.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 77

• Loose strategy in problem selection

 In the MATT experiment, it was observed that despite having access to detailed

information about the student, the expert did not use the information as effectively as he

could have when he employed a rather loose strategy in selecting subsequent questions.

Also, there was evidence of redundant questioning. This may mean that the expert did

not maintain a detailed model of the students’ performance, or it may just have been

evidence of human fallibility. It is important to emphasise that this is the strategy of the

current expert, and not necessarily one that is used by human testers in general. This

also highlights a possible weakness in knowledge acquisition. The human expert may

have made use of extraneous data such as signs of student confidence or anxiety. Even

if such data was used by the expert human tester, it would not have been possible to

exploit it during this project.

• Access to student’s answers to problems

A solution to a problem given by a student presents the raw materials for diagnosis. For

most adaptive testing systems, it is usual for students to key in only final answers to

problems, or to select an answer from a multiple-choice question (Rudner, 1998). The

degree of detail that is required from a student in terms of answers to problems depends

on the type of diagnosis that is carried out. For example, if the diagnostic element in

SKATE requires details on misconceptions, then a student is expected to enter the

solution path leading to a final answer. However, as was evident in the DSA

experiment, students may provide different degrees of working despite being instructed

to display the full working for each question. Therefore a diagnostic module would need

to be robust enough to handle not only idiosyncratic answers but should be able to work

on different degrees of working given. An alternative is to allow the student to provide a

final answer only and to use, like ACM, a machine learning algorithm to work

backwards from a final answer to infer a solution path. Limitations of such an approach

have been discussed earlier.

• Task of Constructing a Bug library

The ability to perform deep diagnosis usually entails the construction and maintenance

of a bug library. As discussed earlier, despite the costly and time-consuming effort in

conducting large empirical studies, it is not exempt from the possibility of misdiagnosis,

bug migration and the non-generality of bug libraries.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 78

• Subsequent Remediation

In the DSA experiment, it was pointed out that the level of detail of diagnostic

information will influence subsequent remediation. However, the remediation strategy

of the expert is reteaching, as highlighted in Section 3.2.4 and in the MATT experiment

(Section 3.2.5). Even in its coarse-grained approach, reteaching is found in some studies

to be as effective as remediating errors (Sleeman et al., 1989). Also, Self’s slogan of

“don’t diagnose what you cannot treat” (Self, 1990) can be interpreted to mean that the

degree of diagnosis on student answers should be proportional to the degree of

subsequent remediation or treatment. This implies that if reteaching is the remediation

strategy, then a simple form of diagnosis which characterises student answers as correct

or incorrect is sufficient.

From the arguments presented above, the student model in SKATE can be represented as an

overlay model and an interaction history component. An overlay model maintains a record of

the problem classes which the student has successfully attempted, and an interaction history

component keeps a record of the student’s successful and unsuccessful attempts to problems.

Like the representation of the problem domain, the overlay student model is executable. This

is particularly useful for predictive purposes. For example, before a problem is presented to

the student, it can be matched against the student model. If a match is found, it can be

inferred that the student can solve the new problem. It cannot, however, simulate a student’s

behaviour at problem solving. An executable model is also useful during remediation where

a similar problem can be generated from any problem classes contained within the model and

be used as practice exercises for the student.

4.4 The Progression Problem
The issue of progression has been a primary concern in the literature of intelligent tutoring

and adaptive testing. In intelligent tutoring, progression involves navigating from one topic

to another, or to a problem, or to an exposition, while in adaptive testing, progression is

usually in terms of moving from one problem to another, or of meeting the stopping criteria.

In both cases, the domain (Halff, 1988) must be structured well enough for the pedagogical

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 79

module (Anderson, 1988c) or the testing module to make use of. As mentioned previously, a

possible drawback is the huge efforts, usually empirical, involved in structuring the domain.

For example, bug libraries (Brown and Burton, 1978) and IRT-based test item pools (Wainer,

1990) both require data from large and across different student populations to overcome the

problem of non-generality. Also, some domains are constructed with such complexity, for

example granularity hierarchies (McCalla et al., 1992), that it may hinder the transfer to other

subject domains and the acceptance by end-users such as teachers.

Stochastic methods feature in many problem progression efforts. For example, Marshall

(1981), vanderLinden (1998), Villano (1992) and Collins et al. (1996) use Bayesian

inferencing (Jensen, 1996) (Charniak, 1991) while Huang (1996) employed a probability

model based on the IRT. Non-stochastic efforts include the perturbation model approach

where problem progression works by first detecting any misconception in a student’s answer

and matching this misconception against a bug library before presenting a problem to

confirm the misconception; an example is the FITS Tutor (Nwana, 1993). Other pieces of

information about the student, such as acquisition and retention factors (Beck et al.,

1997;Stern et al., 1996), have also been useful in controlling problem progression.

The approach undertaken in this study attempts to avoid some of the major drawbacks of the

above techniques, such as large empirical studies and the complexity of domain knowledge

construction, by featuring on expert emulation to construct the testing strategy. Two

approaches are presented. The first is an algorithm which is designed to investigate the

possibility of side-stepping the task of describing the structure of a domain by using expert

system knowledge acquisition techniques to elicit from an expert tutor the actual sequence of

questions to be used in an adaptive test. A main feature is a query procedure which provides

an authoring environment for the expert’s strategy to be captured. The second explores an

elicitation approach based on an analysis of “skills” that a student of a particular problem

domain needed in order to successfully solve problems. Although both methods make use of

the state-space search paradigm, they are in fact a formalisation of the non-theoretically

motivated strategy of a human tutor whose knowledge and skills were worthy of emulation.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 80

4.5 Direct Elicitation of Test Item Sequencing
This section describes a query algorithm for eliciting the test item sequencing strategy of the

expert. A manual query approach is tried and this is followed by a computer-aided approach.

4.5.1 Manual Querying An Expert

4.5.1.1 Aim of Experiment
The aim of this experiment is to examine the feasibility of a manual approach in eliciting the

test item sequencing strategy of the expert.

4.5.1.2 Method
The expert was given a set of test items and had access to example problems which were

generated for each test item. His task was to sequence the set of test items for starting,

continuing and stopping the test. In this example, six test items made up the problem domain

(Figure 19) which is a smaller set of problem classes than the one presented in Figure 15.

Each test item represents a problem class.

a. Add two proper fractions with common denominators
b. Add two improper fractions with common denominators
c. Add a proper fraction and an improper fraction with common denominators
d. Add two proper fractions of different denominators
e. Add two improper fractions of different denominators
f. Add a proper fraction and an improper fraction of different denominators

Figure 19. A Set of Test Items

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 81

The interview was conducted along a systematic line of questioning:

�Suppose the student has provided a wrong (correct) answer to a problem

class X, what would you ask him next?�

This differs from the style of querying adopted by Kambouri et al. (1994) as described in

Section 2.5.2.1.

4.5.1.3 Results
The elicited testing sequence takes the form of a binary tree structure (Figure 20). Each node

represents a problem class while the arcs dictate the sequence from one node to another,

depending on a student’s correct or incorrect response.

Figure 20. Manually Elicited Test Item Sequence as a Binary Tree

a

e

f

c

T T

T

T

T

X

X

XX

Legend

X
a correct response

an incorrect response

T termination node

b

X

TT

X

d

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 82

4.5.1.4 Comments
The manual approach was tested for a small set of test items but it is envisaged that this

method will break down with increasing number of test items; five to eight test items seem

feasible. For example, there is the possibility of noise in terms of contradictions on the part

of the expert and the possibility of redundancy in the tree as many paths will share common

sequences. An alternative approach is a computer-aided query procedure; this is described in

the next section.

4.5.2 Computer-aided Elicitation
A computer-aided approach that facilitates the elicitation of the problem progression strategy

of the expert is described. It has two features – a query procedure which systematically

elicits the test item sequence from the expert, and a delivery procedure which allows the

expert to review and confirm his strategy. The query procedure can be used to author the

adaptive testing component of SKATE where the resultant binary tree called BT can be used

by the delivery procedure to function as the adaptive testing strategy of SKATE.

4.5.2.1 The Query Procedure
The query procedure is designed to systematically query the expert in his problem

progression strategy and the line of questioning is similar to that of the manual approach

described in the previous section. The algorithm for the query procedure is as follows.

Let A be the set of test items {a,b,c,d,e}.

a. When constructing a new binary tree, display A.

b. Expert chooses an item from A and this becomes the entry node for starting the adaptive

test.

c. Expert selects a node from which to expand. He selects an item following a correct

response, and another following an incorrect response, or a leaf node to indicate a

terminating condition.

d. Update branch with new node.

e. Update list of all possible items for expert to choose from.

f. Repeat from c. until no test items are left.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 83

In the example given in Figure 20, each path through the binary tree starts at a and ends in a

leaf node. Each path corresponds to a possible adaptive test. So, the possible tests are:

a

a,f,e

a,f,c

a,f,c,d

a,f,c,d,b

and the possible outcomes, each is associated with a remediation programme, are:

a, fail

a, succeed, f, succeed, e, succeed

a, succeed, f, succeed, e, fail

a, succeed, f, fail, c, fail

a, succeed, f, fail, c, succeed, d, succeed

a, succeed, f, fail, c, succeed, d, fail, b, fail

a, succeed, f, fail, c, succeed, d, fail, b, succeed

4.5.2.2 The Delivery Procedure – the BT algorithm
The expert can review and confirm the newly elicited problem progression strategy via a

delivery procedure. The query and delivery procedures can be run iteratively until the expert

is satisfied that the testing sequence is consistent with his strategy. The testing strategy is

called BT. The delivery procedure has an additional function of delivering the test during

student modelling. The test is administered by traversing the resultant binary tree. The

algorithm of the delivery procedure is as follows:

a. make the root of the tree the current node.

b. if the current node is a terminal node, display remedial advice, stop test.

c. ask the question associated with the current node.

d. evaluate the answer provided by the student.

e. if the answer is correct, make the left-hand node the current node.

f. if the answer is incorrect, make the right-hand node the current node.

g. repeat from b.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 84

4.5.2.3 Comments
The computer-aided query procedure may be seen as an improvement over the manual

approach in that it can easily keep track of what test items have been used. Such information

is useful not only in tailoring the querying process but also in detecting any noise in terms of

contradictions from the expert. However, the number of possible questions increases with

the number of test items and this may increase the possibility of contradictory behaviour on

the part of the expert. This was a problem faced also by Kambouri et al. (1994), as described

in Section 2.5.2.1, where experts judged between 1000 and 2500 questions for a 50-item

problem domain and it was already considered an improvement over the 2.8x1016 possible

questions.

A student model can be maintained to keep diagnostic information about the student and

facilitate subsequent remediation. The delivery procedure can be augmented by a diagnostic

module to record the path taken by a student through the binary tree of problem classes. For

example, a path can be one of the possible outcomes described earlier and each leaf node of

the binary tree is a remedial programme. The binary tree is a means of mapping each student

onto a programme.

4.6 Problem Progression based on Problem Solving Skills
This section describes the elicitation of the test item sequence of the expert based on the

expert’s measure of problem difficulty (see Section 3.7.2). The strategy called XP is an

alternative to the one proposed in the previous section.

4.6.1 Aim of Experiment
The aim of the experiment is to elicit a strategy in problem progression based on the expert’s

assertion that the difficulty of a problem can be measured by the number of problem solving

skills needed to solve the problem. The expert has taken the assumption that all the skills

under consideration are of the same level of difficulty.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 85

4.6.2 Method
Knowledge elicitation took the form of interviewing and task analysis and was carried out

using the domain of fraction additions with five problem solving skills (see Section 3.7.1).

The general approach derived from the interviews with the expert is as follows. Sets of

problems requiring a specific number of skills to be used by the student are formed. The sets

are labelled with a number. For example, in Figure 21, the node with a number, say 3,

denotes a set of problems which each requires specifically three skills to be solved. A

process rather like a binary search is used to investigate a student’s ability. Having

established either competence or incompetence at set n, the next set of problems to be

investigated are set mid way between n and max (for competence) and n and min (for

incompetence) where max and min are the largest and smallest labels. The process is

repeated with revised values for max and min as appropriate. The exploration of problems in

a particular set is explained by the example in the next section, with max equals 5 skills. The

strategy of the expert was also captured for different values of max.

4.6.3 Example
The example was extracted from a knowledge elicitation session. In Figure 21, the adaptive

test begins at node 3 that contains problems each of which can be solved by three skills.

Figure 21. Problem Progression for a Domain of Five Skills

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 86

Problem progression from node to node, that is from one level of difficulty to another, works

like this. If the student gets more incorrect than correct answers to problems within that

category, he moves onto node 2 which contains problems each of which can be solved by

exactly two skills. Conversely, if he gets more correct answers within node 3, he will move

onto node 4 which contains problems each of which can be solved by exactly four skills.

Problem progression within a node works like this. If there are a set of five skills, {a,b,c,d,e},

then at node 3, say, there are nCr possible combinations of skills, that is:

nCr = !)!(
!

rrn
n

−

or 5C3 or 10 possible combinations of skills: {[a,b,c], [a,b,d], [a,b,e], [a,c,d], [a,c,e], [a,d,e],

[b,c,d], [b,c,e], [b,d,e], [c,d,e]}. For example, the combination [a,b,c] would involve a set of

problems which each require all the skills a, b and c to be used. Some combinations may not

yield a problem. For example, there may be no problems associated with combination [a,d,e].

As a skill can appear more than once in different combinations, the expert decided to give

priority to those skills which have been asked the least. This criteria was enforced by the

knowledge engineer through the use of weights where weights were introduced to each

combination to enable the selection of the next best combination. The following criteria were

imposed for calculating the weight of each candidate set:

• If a skill has been not been asked yet, it carries a weight of 2

• If a skill has already been asked once, it carries a weight of 1

• If a skill has been asked more than once, it carries no weight

Based on the weighting criteria, the following example shows how problems, each of which

requiring a combination of three skills, were presented to the student.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 87

a. Select the first set amongst the list of candidate combinations, in this case, [a,b,c].

Calculate the scores of the other combinations, based on the above rules.

 [a,b,c] [a,b,d] [a,b,e] [a,c,d] [a,c,e] [a,d,e] [b,c,d] [b,c,e] [b,d,e] [c,d,e]

1 * 4 4 4 4 5 4 4 5 5

b. Select the first set with the highest score. Combination [a,d,e] is chosen and the scores of

the other combinations are recalculated.

 [a,b,c] [a,b,d] [a,b,e] [a,c,d] [a,c,e] [a,d,e] [b,c,d] [b,c,e] [b,d,e] [c,d,e]

1 * 4 4 4 4 5 4 4 5 5

2 - 2 2 2 2 * 3 3 3 3

c. Combination [b,c,d] becomes the next best choice and is thus chosen.

 [a,b,c] [a,b,d] [a,b,e] [a,c,d] [a,c,e] [a,d,e] [b,c,d] [b,c,e] [b,d,e] [c,d,e]

1 * 4 4 4 4 5 4 4 5 5

2 - 2 2 2 2 * 3 3 3 3

3 - 0 1 0 1 - * 1 1 1

d. Combination [a,b,e] becomes the next best choice and is chosen.

 [a,b,c] [a,b,d] [a,b,e] [a,c,d] [a,c,e] [a,d,e] [b,c,d] [b,c,e] [b,d,e] [c,d,e]

1 * 4 4 4 4 5 4 4 5 5

2 - 2 2 2 2 * 3 3 3 3

3 - 0 1 0 1 - * 1 1 1

4 - 0 * 0 0 0 0 0 0 0

e. As there are no more candidate sets, no more problems are presented.

In the above example, it shows that out of the ten possible combinations, only problems of

combinations [a,b,c], [a,d,e], [b,c,d] and [a,b,e] were chosen.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 88

Progression to the next node depends on the student’s performance at the current node. If the

student had provided any incorrect responses, he would be assigned ‘easier’ problems; in this

case, this means progression to node 2, where he would be presented with problems requiring

exactly two skills. The whole process is repeated for problems requiring exactly two skills.

Conversely, if the student had answered all the problems at the current node 3 correctly, then

he would assign ‘harder’ problems (node 4) each of which requires exactly four skills.

It must be noted that it is possible that not every combination would yield a problem.

4.6.4 Comments

• Pruning the search space within a node

Pruning the search space within a node takes place in two ways. Firstly, not all the generated

combinations will yield a valid problem. Secondly, the weighting criteria are used to constrain

the choice of future problems. Constraining future choices in this way is similar to the

inferences used by Kambouri et al. (1994) to reduce the number of knowledge states, or the

technique described in the previous section to reduce the amount of effort needed to construct

a binary tree of test. In this way, the intuitively attractive idea of not repeatedly gathering

information about the same skills can be operationalised.

• Pruning the search space from one node to another

The expert took the view that if a student has solved a ‘harder’ problem, it can be implied that

he could solve an ‘easier’ problem. In this way, the set of candidate problems could be pruned

further. For example, if a student has successfully solved problems requiring three skills say,

then he need not be presented with problems requiring a lesser number of similar skills. This

conforms with the notion of “downward consistency” (Section 4.2.1.4).

• The Use of a Student Model

Throughout the adaptive testing, a record of the student’s performance is maintained as an

interaction history component of the student model. The student model is constantly being

updated throughout the adaptive testing to record the problems which the student has already

tackled, and this information was used to guide the selection of future problems and

subsequent remediation.

Chapter 4. Initial Experiments:Creating a Student Model and Problem Progression in Adaptive Testing 89

4.7 Conclusion
The chapter discussed the experiments leading to the creation of a student model and a

problem progression strategy for SKATE. The findings of two experiments led to the choice

to maintain domain-specific information about the student in terms of an overlay model and

interaction history module. The clp(FD) representation of the overlay model meant that it is

executable and is useful for predicting a student’s performance and for generating problems

to aid remediation. In problem progression, two options for the design of a module to control

the sequence of test items in an adaptive test were presented. The first experiment

demonstrated the scope for computer assistance in knowledge elicitation while the second

experiment adopted a skills-based approach based on the expert’s measure of problem

difficulty. The two strategies made use of a student model for diagnosis and remediation and

in selecting an approach suitable for SKATE, testing systems associated with student

modelling are preferred to those developed for summative testing purposes only, such as

IRT-based systems.

Chapter 5. Design and Implementation 90

Chapter 5.

 Design and Implementation

5.1 Introduction
The elicitation carried out in the last three chapters resulted in the construction of the three

main knowledge components of SKATE, namely the domain knowledge, the student model

and the adaptive testing strategy. Two testing strategies, XP and BT, were elicited from the

human expert.

This chapter discusses the contents of the student model and the domain knowledge in

relation to XP (see Section 4.6), which was the preferred testing strategy of the domain

expert. Fraction addition was the example domain used throughout the study but the

proposed architecture should be able to support other topics in mathematics. The design of

each component is the result of the aim to produce adaptive tests that are both efficient and

acceptable to teaching professionals. Each component has been strongly influenced by

interaction with a domain expert. This is described in a section on “Origins of the Design”

which follows a general overview of the structure of the model. Subsequent sections are

devoted to describing each of the main components of the model.

Chapter 5. Design and Implementation 91

5.2 Origins of the Design
The process of Knowledge Acquisition has been described in Chapter 3. Since the domain

expert is the authority for both the domain knowledge and the testing strategy, he is the major

influence on the student modelling architecture. The approach based on emulation to

adaptive testing was, by design, entirely under the control of the expert. Although the subject

matter of the research, “fractional arithmetic”, is well understood, this does not mean that

there is only one way in which domain knowledge can be represented. The way in which this

emerged, with an emphasis on specific manipulative skills, and a concern that skill

combinations should be the only measure of problem difficulty and that problem difficulty

should be central to testing, again reflected the influence of the domain expert. This means

that there is no reason to suppose that an identical testing strategy and domain modelling

would emerge were the work to be repeated with a different expert. But some elements of

the model would be constant, and more significantly, the approach to constructing the model

would remain the same.

The domain expert’s characterisation of fractional arithmetic in terms of specific

manipulative skills leads directly to the design of the student model. It is the ability to

exercise skills in problems at a certain level of difficulty that represents a student’s

competence. The student model in SKATE, for this particular domain, consists, at any time

during the testing process, of those skill combinations that the testing strategy indicates are

within the ability range of the student. Implicit in the expert’s approach to testing is an

assumption of a hierarchy of competence. This means that if a student can exercise the set of

skills {a,b,c} to solve a problem, then it follows that the student can exercise any subset of

those skills, so that there is no need to explicitly test for competence with those subsets.

However, competence with {a,b,c} has no implication for competence with proper super sets.

It is this hierarchical assumption that motivated the expert’s testing strategy, and a way of

summarising the ability of a student in terms of the maximum size of the set of skills in

which he had demonstrated competence.

Chapter 5. Design and Implementation 92

5.3 SKATE – A Student Modelling Architecture

Domain
Knowledge

XP Student
Modeller

Adaptive Testing Strategy
Difficulty
Selection

Problem
Selection

Answer
Evaluation

Update

Skills

Problems

Student
Model

Overlay
Model

Interaction
History

Interface
Legend

Database

Human User

Process

Flow of interaction

Student

Figure 22. The Architecture of SKATE with XP testing strategy

The architecture of SKATE was first introduced in Chapter 1. A more detailed architecture is

given in Figure 22, with XP as the kernel of the SKATE model. The student modeller

orchestrates the student modeling process. First, the difficulty selection module is invoked to

determine the level of difficulty of the first problem to be presented. With the assigned

difficulty level, the problem selection module selects a problem from the problems bank in

the domain knowledge component. The problem is presented to the student via a simple

interface. The student’s response is passed to the answer evaluation module, which

compares the student’s response with that of the system. The verdict is recorded in the

interaction history module by the update module. A predetermined number of problems

Chapter 5. Design and Implementation 93

within the assigned difficulty level are presented to the student, one at a time, with no

duplicates of problems or skill combinations. Once this is exhausted, the cycle repeats with

subsequent selection of difficulty level being determined by how the student fared in

answering the set of questions at the current difficulty level. The test stops at a difficulty

level which indicates the student’s level of attainment.

5.4 The Adaptive Testing Strategy
The main functions of XP are described in more detail.

• Difficulty Selection

This is a binary chop algorithm to determine progression from one level of difficulty to

the next. Problem difficulty is proportional to the number of skills needed to solve the

problem. All skills are considered to be equally difficult (see Section 3.7.2). The rule

used to determine movement from one level to the next is strict. The student has to

demonstrate competence by solving all the problems presented at the assigned difficulty

level. He is only allowed to progress to a higher difficulty level if he has provided more

correct answers than wrong ones at the present level. The number of questions at each

level was determined by the domain expert during the Knowledge Acquisition process.

Conversely, if he has more wrong answers than right ones, a lower difficulty level is

assigned where he will be presented with problems requiring fewer skills to be applied.

• Problem Selection

The selection is based on matching a combination of skills to a problem. This approach

requires the presentation of problems of varying number and combination of skills. As

an example, say there are five problem solving skills for a domain under study,

[a,b,c,d,e], and the present difficulty level is 2, then all two skill problems in the question

bank become candidates for selection. No problem is presented more than once. Also,

any problem which requires the same combination of skills, that is, the same skills in the

same order to be exercised, is removed. For example, if there are three problems, q1, q2

and q3, which require the same order of skills to be applied, say [b,c], then q2 and q3 no

longer become candidates for selection.

Chapter 5. Design and Implementation 94

• Answer Evaluation

The answer from the student, in response to a problem, is checked against that of the

system. The system’s answers to problems are recorded in the problems bank. If a

match is found, it returns the verdict as ‘correct’, otherwise the verdict ‘wrong’ is

returned.

• Update

The update module records in the interaction history module, details of each student’s

attempts on problems presented to him. The details include the student’s answer, the

system’s verdict and the combination of skills which the system believes the student has

exercised. At the end of the test, the update module summarises which skills the student

is believed to have mastered and this is recorded in the overlay student model.

5.4.1 Parameters of XP
The parameters under which XP operates are described.

a. Number of problems per combination of skills

When XP determines a set of skills out of nCr possible combinations of skills (see Section

4.6.3), a problem matching that combination is chosen from the problems database and

presented to the student. There is usually at least one problem for any combination of

skills. XP currently requires the presentation of only one problem per combination of

skills.

b. Progression of difficulty level

Each student starts the test at the same level of difficulty. With the version of the binary

chop algorithm currently adopted by XP, as discussed in Section 4.6, progression from

one level of difficulty to the next is calculated by rounding up to the nearest integer, the

value of the midpoint between the present level of difficulty and the highest or lowest

level of difficulty, depending on whether progression is to easier or more difficult

problems. For example, in a six-skill problem domain, the starting level of difficulty is 4,

which is the rounded up value of the midpoint between 1 and 6. If the student proceeds

to easier problems, the next difficulty level will be 3.

Chapter 5. Design and Implementation 95

c. Threshold level of success

A student progresses to a higher (lower) difficulty level when he provides more correct

(incorrect) answers to problems than incorrect (correct) ones at the present level of

difficulty. The difference between the number of correct and wrong answers may be no

greater than 1.

d. No intervention

XP performs student modelling via problem presentation. Unlike the more generic types
of Intelligent Tutoring Systems, it does not intervene to offer hints or explanation.

e. Low Bandwidth

Like PROUST (Soloway and Johnson, 1984), XP has access to student’s final answers

only, and not intermediate steps or solution paths. This is different from performance

assessment that includes data on student problem solving behaviour as well as their

answers, as described by Linn, Baker and Bunbar (1991) in VanLehn & Niu (2001).

With such low bandwidth of information, XP performs knowledge tracing and not model

tracing.

f. No Memory of previously answered questions

XP has no memory of previously answered questions. It does not have the mechanism of

reviewing previously answered questions to check for any inconsistencies, which could

arise from noisy data such as careless slips or lucky guesses. This is further discussed in

Section 6.6.

g. One solution path per problem

There may be more than one solution path leading to the correct final answer of a

problem. XP currently stores one solution path per problem. A solution path is

represented as an ordered combination of skills which can be exercised to arrive at the

correct final answer.

Different versions of XP can be created by altering one or more of the above parameters.

This is taken up in Sections 6.7 and 6.8.

Chapter 5. Design and Implementation 96

5.5 Domain Knowledge
Domain knowledge in SKATE is concerned with problem solving skills and problems. It is

the problem solving skills as exhibited by students that are the object of the adaptive tests.

The next subsections describe the problem solving skills relevant to the subject domain under

study and a typography of problems derived from the exercise of skills.

5.5.1 Problem Solving Skills
The problem solving skills identified during knowledge acquisition and discussed in Section

3.7.1 can be further reclassified as the following:

• makeVulgar

This skill transforms a mixed fraction into an improper fraction, or returns proper and

improper fractions unchanged.

• makeCommon

This skill manipulates fractions to give a common denominator.

• checkAndAdd

This skill adds two proper fractions of a common denominator.

• cancel

This skill removes common factors from the numerator and denominator of a fraction

and the resultant is a fraction is in its lowest form.

• makeProper

This skill transforms an improper fraction into a mixed fraction.

• makeWhole

This skill provides a whole number, 1 or 0, by applying the makeProper skill to

fractions such as 3/3 and 0/3.

The reclassification allows the introduction of a three-phase structure, Prepare-Add-Tidy,

which are the three phases involved in solving fraction addition problems. The set of

problem solving skills is represented in SKATE as the predicate, skills(N, L), where N is the

Chapter 5. Design and Implementation 97

total number of skills identified for the topic under study and L is the list of identifiable skills.

An example for the current subject domain is:

 skills(6, [makeVulgar, makeCommon, checkAndAdd, cancel, makeProper, makeWhole]).

Each problem solving skill can be categorised into the respective phase as follows:

Prepare Add Tidy
makeVulgar
makeCommon

checkAndAdd

cancel
makeProper
makeWhole

For example, to solve the problem 1/12 + 1/6 requires the use of the makeCommon skill in

the Prepare phase to transform the task to 1/12 + 2/12. The checkAndAdd skill in the Add

phase can then be exercised to yield 3/12. Using the cancel skill in the Tidy phase, this can

be transformed to 1/4. Each phase can contain one or more skills. It is assumed that a skill is

used in not more than one phase.

It will be shown in Section 6.3 how the three-phase structure is used to describe the overlay

or buggy student model of a simulated student.

5.5.2 Problems
Having represented a set of problem solving skills, the XP algorithm requires problems to be

characterised by the opportunity they provide for the exercise of the skills. Problems can be

either predicates that generate problems, similar to the approach of the BT algorithm (Section

4.5.2), or can be hand-coded by a human assessor, as was the case with the DSA experiment

(Section 4.2.1). Each problem is passed through a rule-based problem solver to produce the

final correct answer and the corresponding set of skills needed to solve the problem. A

sample of problems is given in Appendix H where each problem is represented by the

predicate:

question(N, Cp, T, P, Ap)

where N is the difficulty level representing N number of skills needed to solve question P of

Chapter 5. Design and Implementation 98

type T, by using a combination of skills, Cp. The combination Cp is the set of skills provided

by the problem solver. The system’s correct answer is Ap. Examples are:

question(2,[c,e], q_ce_6, fr(7/5,2/5), fr(1:4/5)).

question(3,[a,c,e], q_ace_1, fr(1:1/5,2/5), fr(1:3/5)).

Problem progression within a difficulty level was described in Section 4.6.3. There may be

no problem associated with certain nCr combinations of skills. For example, there is no

fraction addition problems associated with the six-skill combination [makeVulgar,

makeCommon, checkAndAdd, cancel, makeProper, makeWhole]. If this occurs, SKATE will

proceed to another combination.

The following subsections address the generation of different problems, characterised by the

number of skills required to solve them.

5.5.2.1 One Skill Problems
There are some problems that can be completely solved with one skill, namely checkAndAdd

in the Add phase. Examples are 1/3 + 1/3 = 2/3 and 3/5 + 1/5 = 4/5. The characteristics of

such problems are common denominators, the sum of the numerators is less than the

denominator and the sum of numerators and denominators do not have common factors, that

is, they are prime numbers.

5.5.2.2 Two Skills Problems
Examples of valid two skill combinations are [checkAndAdd, cancel], [checkAndAdd,

makeProper], and [makeCommon, checkAndAdd]. If we allow the cancel skill to be used

outside the Tidy phase, we could allow 2/6 + 1/3 which can be transformed, using the cancel

skill, into 1/3 + 1/3, before applying checkAndAdd to arrive at 2/3.

Examples of two skill combination problems using checkAndAdd and cancel are:

 1/6 + 1/6 = 2/6 = 1/3

 3/8 + 1/8 = 4/8 = 1/2

Chapter 5. Design and Implementation 99

The characteristics of such problems are common denominators, the sum of numerators is

less than the denominator and the sum of numerators and denominators has a common factor.

Examples of two skill combination problems using checkAndAdd and makeProper are:

 2/3 + 2/3 = 4/3 = 1:1/3

 5/6 + 2/6 = 7/6 = 1:1/6

 7/5 +2/5 = 9/5 = 1:4/5

The characteristics are common denominators, the sum of numerators is less than the

denominator and the sum of numerators and denominators does not have a common factor.

Examples of two skill combination problems using makeCommon and checkAndAdd are:

1/3 + 1/5 = 5/15 + 3/15 = 8/15

 5/8 + 1/6 = 15/24 + 4/24 = 19/24

The characteristics of such problems are no common denominator, the sum of numerators is

less than the denominator, and the sum of numerators modulo the denominator and the

denominators does not have a common factor.

5.5.2.3 Three Skills Problems
Valid three skill problems are [makeCommon, checkAndAdd, Cancel], [makeCommon,

checkAndAdd, makeProper], [checkAndAdd, makeProper, makeWhole] and [makeVulgar,

checkAndAdd, makeProper].

Examples of problems using skills makeCommon, checkAndAdd and cancel are:

 1/12 + 1/6 = 1/12 + 2/12 = 3/12 = 1/4

 2/15 + 1/5 = 2/15 + 3/15 = 5/15 = 1/3

 3/15 + 2/5 = 3/15 + 6/15 = 9/15 = 2/3

The characteristics of such problems are no common denominator and the sum of fractions is

always less than 1.

Chapter 5. Design and Implementation 100

Examples of problems using skills makeCommon, checkAndAdd and makeProper are:

 4/5 + 3/4 = 16/20 + 15/20 = 31/20 = 1:11/20

 5/6 + 1/3 = 5/6 + 2/6 = 7/6 = 1:1/6

 6/7 + 3/8 = 48/56 + 21/56 = 69/56 = 1:13/56

 6/7 + 5/8 = 48/56 + 35/56 = 83/56 = 1:27/56

 5/8 + 4/5 = 25/40 + 32/40 = 57/40 = 1:17/40

 5/8 + 5/6 = 15/24 + 20/24 = 35/24 = 1:11/24

 3/8 + 5/6 = 9/24 + 20/24 = 29/24 = 1:5/24

 8/9 + 3/5 = 40/45 + 27/45 = 67/45 = 1:22/45

The characteristics of these problems are no common denominator, the sum is always greater

than 1, and the numerator and denominator of the factional part of sum have no common

factor.

Examples of problems using skills checkAndAdd, makeWhole, makeProper are:

 4/5 + 1/5 = 5/5 = 1:0/5 = 1

 1/2 + 1/2 = 2/2 = 1:0/2 = 1

Characteristics of such problems are common denominators and the sum is 1.

Examples of problems using skills makeVulgar, checkAndAdd, makeProper are:

 1:1/5 + 2/5 = 6/5 + 2/5 = 8/5 = 1:3/5

 2: 3/7 + 2/7 = 17/7 + 2/7 = 19/7 = 2:5/7

Characteristics of these problems are common denominators, at least one operand is greater

than 1 and the numerator and the denominator of the factional part of sum have no common

factor.

Chapter 5. Design and Implementation 101

5.5.2.4 Four Skills Problems
Valid four skill combinations are [makeVulgar, checkAndAdd, makeProper, makeWhole],

[makeCommon,checkAndAdd,makeProper,cancel],[makeVulgar, checkAndAdd, makeProper,

cancel], [makeVulgar, makeCommon, checkAndAdd, makeProper].

Examples of problems using skills makeVulgar, checkAndAdd, makeProper, makeWhole are:

1:1/3 + 2/3 = 4/3 + 2/3 = 6/3 = 2: 0/3 = 2

 1:1/5 + 3/5 = 6/5 + 4/5 = 10/5 = 2:0/5 = 2

Characteristics of these problems are at least one operand is greater than 1, common

denominators and the numerator and the denominator of the factional part of sum must be a

multiple of the denominator.

Examples of problems using skills makeCommon, checkAndAdd, cancel and makeProper are:

3/8 + 5/6 = 18/48 + 40/48= 58/48 = 29/24 = 1:5/24

 4/5 + 3/10 = 40/50 + 15/50 = 55/50 = 11/10 = 1:1/10

 7/8 + 3/4 = 28/32 + 24/32 = 52/32 = 13/8 = 1:5/8

Characteristics of such problems include operands less than 1, sum is always greater than 1

and the common denominator is greater than the lowest common denominator.

Examples of problems using skills makeVulgar, checkAndAdd, cancel and makeProper are:

 1:1/8 + 1:3/8 = 9/8 + 11/8 = 20/8 = 5/2 = 2:1/2

 1:1/6 + 2:1/6 = 7/6 + 13/6 = 20/6 = 10/3 = 3:1/3

Characteristics of such problems are at least one operand is greater than 1, common

denominators and the numerator and the denominator of the factional part of sum must have a

common factor.

Chapter 5. Design and Implementation 102

Examples of problems using skills makeVulgar, makeCommon, checkAndAdd, makeProper

are:

 1:3/8 + 1/2 = 11/8 + 1/2 = 11/8 + 4/8 = 15/8 = 1:7/8

 1/5 + 1:5/7 = 1/5 + 12/7 = 7/35 + 60/35 = 67/35 = 1:32/35

Characteristics of these problems are at least one operand is greater than 1 and the

denominators are relatively prime.

5.5.2.5 Five Skills Problems
Valid five skill problems are [makeVulgar,makeCommon,checkAndAdd,cancel makeProper,].

An example is:

 1/3 + 1:5/6 = 1/3 + 11/6 = 6/18 + 33/18 = 39/18 = 13/6 = 2:1/6

Characteristics of such problems are that an operand is greater than 1, the denominators are

not the same and the numerator and the denominator of the factional part of sum must have a

common factor.

5.6 The Student Model
The student model contains the system’s beliefs of the student’s level of knowledge of the

subject domain. These are inferred from the interaction with the student during the test and

are made up of two types of domain-specific information:

• an overlay model which is a set of problem solving skills that the system believes the

student has mastered. It can be a subset or the whole set of the problem solving skills

identified in the subject domain.

• an interaction history which is the set of problems presented to the student together with

the system’s verdicts of the student’s answers, the difficulty level and the combination of

skills provided by the problem solver. This is represented as the predicate,

visited(N,Cp,T,P,V), where N is the difficulty level, Cp the combination of skills which

the system believes the student has exercised to solve problem P of type T. The

Chapter 5. Design and Implementation 103

parameter Cp is the same as Cp of the questions/5 predicate described in Section 5.5.2.

The system’s evaluation of the student’s answer is represented as V. An example is given

below.

visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong).
visited(1, [c], q_c_1, fr(1/3,1/3), correct).

Figure 23. A Fragment of the Interaction History Module

The above fragment shows successfully and unsuccessfully exercised sets of skills at

different levels of difficulty. During student modelling, the visited/5 predicate is checked for

two purposes. Firstly, it is to ensure that the same problem or combination is not presented

more than once. Secondly, it is used to determine progression to the next level. In the above

illustration, as the student has produced more incorrect than correct answers at level 3, he

proceeds to a lower level of difficulty, that is, 2.

Other types of information can be derived from the visited/5 predicate, as will be discussed in

the next chapter.

5.7 Conclusion
This chapter described the student modelling architecture, SKATE. It is based on the

information acquired from an expert teacher of elementary arithmetic. The underlying

domain knowledge relates to a particular view of the topic by a particular person. The

approach to adaptability developed in SKATE is not the only technique used by the domain

expert. It has the advantage that it can be used as a basis for a series of experiments that

charts the consequence of a range of minor variations. An account is given of such a range of

experiments using a simulation of student performance to follow through the consequences of

such changes in the next chapter.

Chapter 6. Experiment and Analysis 104

Chapter 6.

 Experiment and Analysis

6.1 Introduction

Effective evaluation of educational software requires trials with students. A common but
time-consuming approach is to have a human assessor analysing verbal and written protocols
of human students who were solving a large number of problems. An alternative way is to
perform evaluation using simulation. It is a convenient way of exploring the workings of an
adaptive testing strategy where it is possible to make comparisons at various levels of student
performance, between students at various predetermined ability levels.

This chapter presents an evaluation of the XP testing strategy or assessor, as it shall be called
in this chapter, through the use of simulated students. A three-phase structure, Prepare-Add-
Tidy, designed in the previous chapter, is used to describe a simulated student. An added
feature is the introduction of malrules into the three-phase structure. The results from the
evaluation of XP are analysed and compared with those of a sequential file, called ST. By
varying the parameters of XP, the performance of XP was re-evaluated and compared with
ST.

Chapter 6. Experiment and Analysis 105

The chapter is structured in the following way. The evaluation strategy is described. This is
followed by a description on how evaluation is being carried out and a discussion on
experimental results. The varying parameters of XP are described followed by an evaluation
of the performance of the different versions of XP.

6.2 The Evaluation Strategy
A method for evaluating a student modelling strategy is to develop a model of a student, use

it to predict its performance and to check to see if the prediction is accurate. This was the

method undertaken by Anderson et al. (1995) in the evaluation of the LISP Tutor and by

Shute (1995) in evaluating the SMART student modelling system. More recently, VanLehn

& Niu (2001) presented an evaluation of the ANDES assessor through the use of a set of

simulated students which was generated to depict varying conditions in which to test the

performance of the assessor.

A simulated student is a computer model of a human student (VanLehn, Ohlsson & Nason

1994). It assumes the traits and characteristics of a human student, which are in this study,

confined to overlay or buggy knowledge with no conative or affective characteristics.

VanLehn, Ohlsson & Nason (1994) identified three main applications of student simulation.

There are tutor training systems, collaborative learning and formative evaluations. An

example is a three-agent learning situation (Chan & Baskin 1990) where interaction takes

place between a computer tutor, a human learner and a simulated learning companion. The

simulated learning companion can also take the form of a ‘troublemaker’.

Like the work of VanLehn & Niu (2001), simulated students are used in this study in place of

human students mainly for the ease of performing an evaluation on a student modelling

system. In their work, a set of solution graphs of Physics problems is converted into

Bayesian Belief Networks (or BBN). A problem solver of ANDES generates the solution

graphs. A simulated student is generated by randomly deleting rules from the BBN, thus

modelling the fact that different students have different knowledge. The reduced BBN is

then used to solve problems. The problem solving actions are recorded and passed to the

ANDES assessor, which predicts the mastery level of each rule. The assessor is deemed

accurate if it assigned the deleted rules a low posterior probability of mastery and the other

rules a high probability.

Chapter 6. Experiment and Analysis 106

There are many advantages of using simulated students. Firstly, a simulated student can be

readily created by assuming as many or as few traits, which means that its competence is

known. This makes it easy to determine the accuracy of the assessor in its prediction of the

simulated student’s competence. Secondly, an ideal setting for any computerised adaptive

testing is one in which its students do not suffer from anxiety which could distort the

accuracy of the test. This setting could be achieved more easily through the use of simulated

students than a test setting of real students.

Evaluation is carried out in the following way. Different types of students are simulated. A

set of problems, in the domain of fraction additions, is prepared and solved by each simulated

student, creating a series of log files. Each log file is assessed in a series of runs by an

assessor which infers the mastery of skills of each student. The following steps in the

evaluation are identified as:

1. Creating simulated students

2. Generating Logfiles

3. Running the assessor

Figure 24 shows the process of evaluation. A set of simulated students called Sam is created,

each equipped with a problem solver and an overlay or buggy student model. Each student is

required to solve all the questions in the problems bank and their attempts are recorded in

logfiles. The logfiles are then used by the assessors to infer an overlay student model and to

create a student interaction history for each student. It is useful to note that the assessors are

run in ‘batch’ mode, and not interactively with each simulated student. Each inferred overlay

student model of ST and XP is matched against the overlay model, and not buggy

knowledge, of the corresponding simulated student. The accuracy of the assessor is rated by

the number of matches that can be found. A more precise measurement of the performance

of the assessor is conducted by analysing each student interaction history.

Chapter 6. Experiment and Analysis 107

Step 1. Create Simulated
 Students

Generate Logfiles Assessor

LogFiles

Step 2. Generate Logfiles Step 3. Run the Assessor

Student
Interaction

History

Problems
Bank

Overlay
Student
Model

Sam

Overlay or
Buggy Student

Model

Problem Solver

LogFiles
LogFiles

Figure 24. The Evaluation Strategy

The following sections describe the evaluation steps in more detail.

6.3 Creating Simulated Students
As mentioned earlier, a simulated student consists of two parts - a problem solver and an

overlay or buggy student model. The task of the problem solver is to solve problems using

the overlay or buggy student model. The student model is built on a three-phase, Prepare-

Add-Tidy, structure. This format, introduced in Section 5.5.1, allows different types of

students to be simulated. In this study, five types of students are simulated. They are Sam1,

Sam2, Sam3, Sam4 and Sam5. They will be described in the following subsections.

Different simulated students can be created by instantiating from any type of student listed

above. In this study, 28 such students are simulated and their student models represented as

Prolog predicates, as shown in Appendix G. The format is:

simStudents(S, [S-Ls])

where S is the name of the simulated student and Ls is a list of mastered skills and/or

malrules. Ls is made up of three parts corresponding to the three-phase structure of a

Chapter 6. Experiment and Analysis 108

simulated student.

The assumption is that no forgetting or learning takes place during assessment. This is

similar to ANDES (VanLehn and Niu 2001). For example, if a student knows all the relevant

skills, he will exercise them as required during problem solving.

6.3.1 Sam1 Student Type – knows all the skills
This type of student knows all the relevant skills in the subject domain and can correctly

apply them in order to solve a problem. He may not need to exercise all the skills at one time

to solve a problem. Also, apart from mastering all the skills, he must be able to execute them

in an appropriate order for successful operation. For example, if sam1a and sam1c are two

simulated students who know all the relevant skills but in a different order from one another:

simStudents(sam1a,[[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper, makeWhole]]]]).

simStudents(sam1c,[[sam1c-[[makeVulgar,makeCommon],[checkAndAdd],[makeProper,makeWhole,cancel]]]]).

This may have an effect on problem solving. For example, sam1a may be able to produce

the correct answer for a question while sam1c may not.

6.3.2 Sam2 Student Type – gaps in knowledge
This type of student has gaps in his knowledge of the subject domain. This means that there

are one or more skills he does not know or has not yet mastered. He solves problems using

the skills that he knows. An example is sam2a who knows all the skills except the

makeCommon skill:

simStudents(sam2a,[[sam2a-[[makeVulgar],[checkAndAdd],[cancel,makeProper,makeWhole]]]]).

6.3.3 Sam3 Student Type - malrules
This type of student has some buggy knowledge or malrules. Malrules or misconceptions are

rules, perhaps invented by the pupil, which appear effective but in fact work only under

certain conditions (Hall 2002). An example is sam3a who has mislearned the cancel skill

and stored this as a malrule called malCancel:

simStudents(sam3a,[[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel, makeProper, makeWhole]]]]).

Chapter 6. Experiment and Analysis 109

6.3.4 Sam4 Student Type – lucky guesses
This type of student can make lucky guesses which to the assessor, are synonymous to

copying. He may have gaps in his knowledge, like Sam2, or malrules, like Sam3, but

somehow manages to produce correct final answers to questions which require the

application of certain skills that he has not mastered or has misconceptions on. An example

of Sam4 type of student is sam4a:

simStudents(sam4a, [[sam4a-[[makeCommon],[checkAndAdd],[]]]]).

Student sam4a has an identical overlay model to sam2f. In this study, the logfiles of sam4a,

sam4b and sam4c were created by ‘tweaking’ the logfile of sam2f to simulate lucky guesses.

The logfiles of sam4d and sam4e were created by ‘tweaking’ the logfiles of sam2a and

sam2c respectively.

6.3.5 Sam5 Student Type – careless slips
This type of student knows all the relevant skills necessary for solving problems correctly but

makes the occasional careless slip. When a student produces a wrong answer to a question

which requires the application of skills that the student is believed to have mastered, this may

be caused by a careless slip. An example of this type of student is sam5a:

simStudents(sam5a, [[sam5a-[[makeVulgar, makeCommon],[checkAndAdd],[cancel, makeProper, makeWhole]]]]).

Student sam5a has an identical overlay model to sam1a. In this study, the logfiles of sam5a

and sam5b were created by ‘tweaking’ the logfile of sam1a to simulate careless slips. The

logfiles of sam5c and sam5d were created by ‘tweaking’ the logfiles of sam1c and sam2b

respectively.

6.4 Generating Logfiles
The next step in the evaluation process is to generate logfiles which record the attempts of

each simulated student at all the problems in the problems bank. A total of 68 problems were

created, as shown in Appendix H, with the predicate, question(N, Cp, T, P, Ap), that was

described in Section 5.5.2.

Chapter 6. Experiment and Analysis 110

The question/5 predicate stores not only the questions but also the assessor’s solutions to the

questions, in terms of the combinations of skills used (Cp) and the final correct answers (Ap).

Each of the 28 students solves all 68 problems and their logfiles are contained in Appendix I.

A fragment of the logfile of sam2f is given in Figure 25. Student sam2f, as we recall, has

gaps in his knowledge and only knows the makeCommon and checkAndAdd skills.

simStudents([[sam2f-[[makeCommon],[checkAndAdd],[]]]]).

% a makeVulgar
% b makeCommon
% c checkAndAdd
% d cancel
% e makeProper
% f makeWhole

sam(sam2f,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok).
sam(sam2f,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok).
sam(sam2f,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok).
sam(sam2f,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok).
sam(sam2f,[b,c],q_bc_3,fr(5/8,1/6),fr(38/48),no).
sam(sam2f,[c],q_cd_1,fr(4/9,2/9),fr(6/9),no).
sam(sam2f,[c],q_cd_2,fr(12/64,4/64),fr(16/64),no).
sam(sam2f,[c],q_cd_3,fr(9/24,3/24),fr(12/24),no).
sam(sam2f,[c],q_cd_4,fr(9/16,3/16),fr(12/16),no).
sam(sam2f,[c],q_cd_5,fr(1/6,1/6),fr(2/6),no).
sam(sam2f,[c],q_cd_6,fr(3/8,1/8),fr(4/8),no).
sam(sam2f,[c],q_ce_1,fr(5/7,6/7),fr(11/7),no).
sam(sam2f,[c],q_ce_2,fr(4/7,8/7),fr(12/7),no).
sam(sam2f,[c],q_ce_3,fr(8/5,6/5),fr(14/5),no).

Figure 25. Sample of a generated logfile

In the sample, it can be seen that the student’s attempt at each problem is represented by the

predicate:

sam(S, Cs, T, P, As, V)

where S is the simulated student who applied a combination of skills, Cs, in order to solve

problem P of type T. The student’s final answer, As, is evaluated against Ap, the assessor’s

answer to the same problem. A verdict, V, is returned where ‘ok’ means the student has

Chapter 6. Experiment and Analysis 111

provided a correct answer and ‘no’ means the answer was wrong. The combination of skills,

Cs, is the student’s solution path which shows the set of skills he has exercised in his attempt

to solve problem P. It may be different from Cp, the assessor’s combination of skills used for

the same problem.

6.5 Running the XP and ST Assessors
The generated logfiles are passed to the ST and XP assessors. ST needs information from the

logfiles on each student’s attempt at every problem in the question bank, while XP requires

information on each student’s attempts on selected problems only. The acquired information

is used to infer an overlay student model and a student interaction history.

It must be noted that for each simulated student, ST and XP have access to the S, T, P, As and

V values of the sam(S, Cs, T, P, As, V) predicate described earlier, but not the following pieces

of information:

• The overlay or buggy model. This is the Ls variable of the simStudents(S, [S-Ls])

predicate described in Section 6.3.

• The solution path or combination of skills exercised for each problem. This is the

Cs variable of the sam(S, Cs, T, P, As, V) predicate. This simulates the setting that the

assessor has no access to the student’s intermediate steps during problem solving.

Whenever a student successfully solves a problem, the assessor will assume that the

student has applied all the skills in the combination, Cp, which is the assessor’s

combination of skills used to solve the same problem.

Figure 26 are the results from running XP for sam2e, using information from the generated

logfiles. The results of all 28 simulated students from running XP and ST are compiled in

Appendices J and K respectively.

Chapter 6. Experiment and Analysis 112

% XP ADAPTIVE TEST output xp_2e

% a makeVulgar
% b makeCommon
% c checkAndAdd
% d cancel
% e makeProper
% f makeWhole

Student =
[[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]]

Selected Node : 4

Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).

Selected Node : 3

Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).

% Summary - XP1 ADAPTIVE TEST output

problems_presented(11,68).
opportunities_presented([(a,4),(b,5),(c,11),(d,7),(e,8),(f,4)]).
opportunities_correctly_applied([(a,3),(b,4),(c,7),(d,4),(e,6),(f,0)]).

Figure 26. Running XP on Student sam2e

Chapter 6. Experiment and Analysis 113

The following pieces of information can be obtained from running the assessors:

• Student’s attempts at problems

This is a record of the student’s attempt at each question and is represented by the

visited/5 predicate, as described in Section 5.6.

• Number of problems presented

This is the number of problems presented to the student out a total number of possible

problems. It is represented as the problems_presented(X,Y) predicate, where X is the

number of problems presented during the test and Y is the total number of problems in

the problems bank. As is typical with computerised adaptive testing, the XP assessor

will always present fewer questions than ST. In the above example, XP presented sam2e

with 11 problems, that is, 57 problems less than ST.

• Number of opportunities presented

This is the number of opportunities presented to the student in which a particular skill can

be exercised. It is represented by the opportunities_presented(P) predicate where P

contains a list of skills with the corresponding number of opportunities each skill could

be applied.

• Number of opportunities correctly applied

This is the number of opportunities a particular skill appears to be correctly applied or

exercised by a student. It is represented by the opportunities_correctly_applied(A)

predicate where A contains a list of skills with the corresponding number of opportunities

each skill is believed to be correctly applied. It represents the inferred overlay student

model.

• Progression of Difficulty Level

The visited/5 clauses show the progress of the student from one level of difficulty to

another. In the example, sam2e started at level 4 and proceeded to level 3 before the test

stopped. The student did not proceed to a level lower than 3 because he produced more

correct answers than wrong ones at current level 3.

Chapter 6. Experiment and Analysis 114

• Highest Level of Difficulty

A student’s level of attainment, in terms of problem difficulty, is demonstrated by his

ability to solve problems of the highest difficulty level possible. In the illustration given

in Figure 26, sam2e has demonstrated that he is able to solve problems requiring the

exercise of three skills. This information is useful for remedial purposes and can also be

used to select the starting point if the test is administered again.

6.6 Comparing XP and ST Assessors
The results from running the assessors were that every skill had a numeric value. In broad

terms, if the assessor was accurate, then each mastered skill of the simulated student should

have a value greater than 1 while each unmastered skill should be assigned the value 0. The

inferred overlay student model for each simulated student can be compared with the

corresponding overlay, and not buggy, knowledge of the student. Information on the former

is given by the predicate opportunities_correctly_applied(A), as described in the previous

section, while information on the latter is given by the predicate simStudents(S, [S-Ls]), as

described in Section 6.3 and Appendix G.

As an example, consider the results of running XP for student sam2e, as shown in given in

Figure 26, where the value of S-L of simStudents(S, [S-Ls]) is:

 sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]

or

 sam2e-[[a,b],[c],[d,e]]

and the inferred overlay model is given as:

 opportunities_correctly_applied([(a,3),(b,4),(c,7),(d,4),(e,6),(f,0)]).

XP is deemed accurate as it successfully identified the mastered skills of sam2e as a,b,c,d,e,

where all the values of the skills are greater than 1, and the unmastered skill as f, whose value is

0.

Chapter 6. Experiment and Analysis 115

For a more detailed measure of performance, three measures are used:

• Accuracy on mastered skills. This measures how good the assessor is at identifying

the simulated student’s mastered skills. It equals the number of times the mastered

skills are correctly predicted divided by the number of opportunities those skills are

presented. A mastered skill is correctly predicted if it is correctly applied or

exercised by the student.

• Accuracy on unmastered skills. This measures how good the assessor is at

identifying the simulated student’s unmastered skills. It equals the number of times

the unmastered skills are predicted correctly divided by the number of opportunities

those skills are presented. An unmastered skill is correctly predicted if the student

wrongly exercises it.

• Overall Accuracy of Assessor. This measures how good the assessor is at

identifying the simulated student’s mastered and unmastered skills. It equals the sum

of the times the mastered and unmastered skills are correctly predicted divided by the

sum of the opportunities these skills are presented.

As an example, consider the two samples given in Table 2 and Table 3 for student sam2f who

has gaps in his knowledge of the subject domain. His mastered skills are the ones that are

shaded. These samples are tabulated from the results after running XP and ST, as discussed

in the previous section and given in Appendices J and K. The tabulated results for other

simulated students, after running XP and ST, are compiled in Appendix O.

Chapter 6. Experiment and Analysis 116

Skills Total no.of

opportunities

No. of

opportunities

presented

No. of

opportunities

correctly

applied

No. of

opportunities

wrongly

applied

Accuracy

on

mastered

skill

Accuracy on

unmastered

skill

a. makeVulgar 14 4 1 3 - 0.75

b. makeCommon 37 6 1 5 0.17 -

c. checkAndAdd 68 15 3 12 0.20 -

d. cancel 44 8 0 8 - 1.00

e. makeProper 45 9 1 8 - 0.89

f. makeWhole 11 4 0 4 - 1.00

Total: 219 46 6 40

Average: 0.18 0.91

Table 2. Tabulated Results of sam2f after running XP

Skills Total no.of

opportunities

No. of

opportunities

presented

No. of times

correctly

answered

No. of times

wrongly

answered

Accuracy

on

mastered

skill

Accuracy

on

unmastered

skill

a. makeVulgar 14 14 4 10 - 0.71

b. makeCommon 37 37 3 34 0.08 -

c. checkAndAdd 68 68 8 60 0.12 -

d. cancel 44 44 0 44 - 1.00

e. makeProper 45 45 4 41 - 0.91

f. makeWhole 11 11 0 11 - 1.00

Total: 219 219 19 200

Average: 0.10 0.91

 Table 3. Tabulated Results of sam2f after running ST

The second column ‘Total no. of opportunities� represents the maximum number of times

each skill can be presented. It is the accumulation of the number the times each skill appears

in the skills combination of every question in the question bank given in Appendix H. In the

above example, the total number of opportunities for all six skills to be presented is 219. XP

requires only 46 opportunities, or 21%, of a total of 219 opportunities while ST requires all

219 opportunities.

Chapter 6. Experiment and Analysis 117

The accuracy of XP in identifying a mastered skill of sam2f, say makeCommon, is 0.17, and

is calculated as the number of opportunities the skill is correctly applied (column 4) divided

by the number of opportunities the skill is presented (column 3). The accuracy of XP in

identifying a unmastered skill of sam2f, say makeProper, is 0.89, and is calculated as the

number of opportunities the skill is wrongly applied (column 5) divided by the number of

opportunities the skill is presented (column 3).

In studying the results of sam2f above, ST and XP performed well in assessing the

unmastered skills of sam2f but were not accurate in their prediction of the student’s mastered

skills. Upon closer observation, XP performed marginally better than ST, despite having

presented far fewer problems than ST.

There is, however, a limitation to this method of measurement. There may an occasion when

a student has a mastered skill but may have produced an incorrect answer to a problem which

had required the application of the mastered skill. This could be caused by the presence of

one or more unmastered skills which led to the eventual incorrectness of the final answer.

This is not obvious as the assessor only evaluates final answers as correct or wrong; it has no

access to the intermediate steps of the student’s solution. As an example, consider the

makeCommon skill in Table 2. It can be seen that although this skill is one which is mastered

by the student, given a total of 6 opportunities, the student is seen to have correctly applied

this skill only once. This could be caused by the possibility that the problems presented may

require the application of unmastered skills, such as makeVulgar, cancel, makeProper or

makeWhole.

The tabulated results of Appendix O which present the performance of XP and ST in

assessing the different types of students can also be shown as bar charts. Figure 27 compares

XP and ST in their accuracy in assessing mastered skills, while Figure 28 compares their

performance in assessing unmastered skills. In Figure 28, information on Sam1 type of

students is absent. This is because this type of students does not have unmastered skills. The

overall performance of XP and ST in assessing both mastered and unmastered skills is shown

in Figure 29.

Chapter 6. Experiment and Analysis 118

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Sam1 Sam2 Sam3 Sam4 Sam5

Simulated Student

A
cc

ur
ac

y

XP

ST

Figure 27. Comparing XP and ST – Accuracy of Mastered Skills

In assessing mastered skills, as shown in Figure 27, ST fared considerably better than XP in

inferring the mastered skills of Sam1 type who knows all the skills and Sam5 type with

careless slips. There are only marginal differences in their accuracy in assessing Sam2 type

who has gaps and Sam3 type with malrules. XP performed considerably better than ST in

assessing Sam4 type of students with lucky guesses.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Sam2 Sam3 Sam4 Sam5

Simulated Student

A
cc

ur
ac

y

XP

ST

Figure 28. Comparing XP and ST – Accuracy of Unmastered Skills

Chapter 6. Experiment and Analysis 119

In assessing unmastered skills, as shown in Figure 28, XP and ST fared equally well for Sam2 and

Sam3 types. ST was better than XP in its prediction of unmastered skills of Sam4 type but fared

worse than XP in assessing Sam5 type of students.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Sam1 Sam2 Sam3 Sam4 Sam5

Simulated Student

A
cc

ur
ac

y

XP ST

Figure 29. Comparing XP and ST – Overall Accuracy

In terms of overall accuracy, as shown in Figure 29, XP is better in assessing the mastered

and unmastered skills of students who knew the skills (Sam1) or have gaps in their

knowledge (Sam2) than it is with students with noisy data such as malrules, lucky guesses or

careless slips. ST performed best in its assessment of students who knew all the skills

(Sam1) and those with careless slips (Sam5). It performed only marginally better than XP in

assessing students with gaps in their knowledge (Sam2) but was marginally worse than XP in

assessing students with malrules (Sam3) and those with lucky guesses (Sam4).

A possible reason for XP’s low accuracy in assessing students with noisy data is that it is not

capable of detecting inconsistencies in student answers. It is relatively easier for a human

assessor to detect such inconsistencies, as discussed in the DSA experiment of Section 4.2.1,

especially when the assessor has access to student problem solving steps as well as final

answers. As an example, consider student sam3a who has a malrule, mg or malCancel,

which is a misconception of the cancel skill. His attempts at some questions in which he

exercised the malrule are given below:

Chapter 6. Experiment and Analysis 120

sam(sam3a,[c,mg],q_cd_2,fr(12/64,4/64),fr(1/4),ok).
sam(sam3a,[c,mg],q_cd_3,fr(9/24,3/24),fr(1/4),no).
sam(sam3a,[c,mg],q_cd_4,fr(9/16,3/16),fr(2/6),no).

The student used mg to solve question q_cd_2 successfully, but not the next two questions.

This malrule was described by Borasi (1994) in Section 4.2.1.4 where the student eliminates

similar digits from the numerator and denominator. The addition of the two fractions in the

first question gives 16/64 and the student applied the malrule mg which led to the correct

answer, 1/4. However, when he attempted to apply the same malrule to next two questions,

his answers were incorrect. The application of the malrule is ‘masked’ in the first answer but

not in the second or the third. As the XP assessor has no memory of previously answered

questions, it was not able to detect such inconsistencies.

The question that arises is whether XP can detect inconsistencies without performance

assessment or model tracing. This may be achieved with a procedure that reviews or inspects

all the final answers of the student at the end of the test in order to check for inconsistencies.

For example, if a student consistently produces wrong answers to questions which require the

application of a certain skill, then it can be inferred that the student does not know that

certain skill. However, if his behaviour is inconsistent, then this presents an avenue for

checking for the possibility of noisy data such as malrule application, lucky guesses or

careless slips. The characteristics of each possibility must be known precisely in order to

distinguish one from the other.

Inconsistent behaviour could also be caused by the student using a different solution path or a

different set of skills to the one predicted by the assessor. This possibility could be reduced if

each problem in the problems bank is saddled, wherever possible, with more than one

possible solution path or combination of skills. The assessor can then be equipped with a

heuristic function which checks for all possible causes for inconsistent behaviour and settles

on the most probable one.

Another shortcoming of XP arises because it has been implemented for evaluation by

simulation. If it were used in classroom tests, because it would present identical tests to two,

it is hard to distinguish a good student from one who copies from him. To resolve this,

problems could be selected at random.

Chapter 6. Experiment and Analysis 121

6.7 Varying the Parameters of XP
Many variations of XP could be studied. The previous section described the performance of

XP based on the values of its parameters identified in Section 5.4.1. This section investigates

the effects of varying some parameters of XP on its accuracy in assessing the mastered and

unmastered skills of the different types of students. The selected parameters are:

a. Number of problems per combination of skills

XP currently requires the presentation of only one problem per skills combination. A

variation is to increase this to two problems per combination.

b. Progression of Difficulty Level

The progression from one level of difficulty to another is described in Section 5.4.1. As

an example, consider the results of sam1a after running XP (Appendix J). The student

started the test at difficulty level 4, and as he consistently produced correct answers, he

progressed to level 5 and then to level 6, although at this level, there were no problems in

the database that matched a six-skill combination. In the case of sam2f who knew only

two out of six skills and produced more incorrect answers than correct ones, progress was

from level 4 to level 3, then to level 2 and level 1. A variation is to calculate the

midpoint by rounding down, instead of rounding up, to the nearest integer. For a good

student like sam1a, progress will then be from level 3 to level 5 and then level 6. For a

weak student like sam2f, progress will be then from level 3 to level 1. If at level 1, sam2f

produces more correct answers than wrong ones, he will proceed to level 2 where he will

be presented with problems requiring the exercise of two skills and the test stops.

c. Threshold level of success

A student progresses from one difficulty level to another based on how he fared at the

current level. For example, if 10 problems were presented and 6 were answered

correctly, the student progresses to a higher level of difficulty. A variation is to raise this

threshold to 0.75, which means that the student needs to answer correctly at least 8

problems out of 10 if he is to be allowed to progress to a higher difficulty level;

otherwise he will be presented with easier problems at a lower difficulty level.

The next section discusses the results from running variations of the XP assessor.

Chapter 6. Experiment and Analysis 122

6.8 Running Variations of XP

Variations of XP were created, namely XP1, XP2 and XP3, based on changes to the three
parameters suggested in the previous section. XP1 incorporates a variation to the first
parameter that is presenting two problems per combination of skills. XP2 incorporates
variations to the first and second parameters, where the latter involves recalculating the next
difficulty level as rounding down to the nearest integer, the midpoint between two difficulty
levels. XP3 represents variations to all three parameters, where the last parameter involves
raising the threshold of success to 0.75. The three newly created versions of XP were run
and the results of selected students are tabulated in Appendices L, M and N.

A summary of results, which compares the performance of the five assessors, is given in
Appendix P. The results can also be represented as bar charts. Figure 30 shows the chart for
overall accuracy at assessing mastered and unmastered skills.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

XP XP1 XP2 XP3 ST

Assessor

A
cc

ur
ac

y

Sam1
Sam2
Sam3
Sam4
Sam5

Figure 30. Comparing Assessors – Overall Accuracy

Chapter 6. Experiment and Analysis 123

The following observations were made in relation to the varying parameters introduced in the

previous section:

• Accuracy is not proportional to the number of questions presented

An increase in the number of questions presented, from 1 per skills combination to 2,

does not seem to have an effect on accuracy. This can be inferred by comparing XP and

XP1. For example, apart from Sam5 students, there was no evidence of increased

accuracy with the doubling of questions posed to the student.

• Increased accuracy with changing progression of difficulty level

There was an improvement in accuracy with the introduction of a different navigation of

test difficulty. This is evident by comparing the performance of XP2 to XP1.

• Marginal increase in accuracy with a higher threshold of success

Performance only improved marginally with the introduction of a higher threshold of

success which dictated progression to another level of difficulty. This can be seen by

comparing XP2 and XP3. With Sam1 type, there was no increase in accuracy.

Figure 31 compares the performance of the different assessors in their prediction of mastered

skills. Apart from increased accuracy for Sam5 students with careless slips, performance did

not improve with the presentation of more problems, from XP to XP1. In fact, accuracy

depreciated significantly in assessing the mastered skills of Sam4 type of students with lucky

guesses. There is however a significant increase in accuracy with the introduction of a

changed progression of difficulty level. There is a marginal increase in accuracy for most

assessors with the introduction of a higher threshold of success. ST fared well in assessing

the mastered skills of Sam1 and Sam5 types of students but it performed worse than its

counterparts in assessing the mastered skills of the other types of students.

Figure 32 compares the performance of the different assessors in their prediction of

unmastered skills. As can be seen from the figure, data for Sam1 type is absent and this is

because this type of students has no unmastered skills. On the whole, apart from its

assessment of Sam5 type, ST fared better than the other assessors in assessing unmastered

skills. The introduction of the varying parameters seems to have an adverse effect on the

performance of the assessors.

Chapter 6. Experiment and Analysis 124

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

XP XP1 XP2 XP3 ST
Assessor

A
cc

ur
ac

y

Sam1
Sam2
Sam3
Sam4
Sam5

Figure 31. Comparing Assessors - Accuracy of Mastered Skills

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

XP XP1 XP2 XP3 ST

Assessor

A
cc

ur
ac

y

Sam2

Sam3

Sam4

Sam5

Figure 32. Comparing Assessors – Accuracy of Unmastered Skills

Chapter 6. Experiment and Analysis 125

6.9 Conclusion
This chapter presented an evaluation strategy as a means of measuring the performance of an

adaptive testing strategy, XP, under varying conditions provided through the use of simulated

students. Three steps were identified in the evaluation and these led to an inferred overlay

student model and a student interaction history for each simulated student. Each inferred

overlay student model is compared with the overlay model of a simulated student. A more

detailed measure of performance was proposed which measured the accuracy of the assessor

in identifying mastered and unmastered skills. The results were compared with those of a

sequential testing strategy, ST.

The XP assessor was good at differentiating a student who knows all the relevant skills in the

subject domain from one who had gaps in his knowledge, but it was not good at making fine

distinctions between students with mal rules, lucky guesses or careless slips.

Variations of the assessment were studied. The values of three numerical parameters of XP

were readjusted in order to detect improvement in accuracy. It was observed that an increase

in the number of questions presented and an increase in threshold level of success had little

impact while changing the navigation of test difficulty improved accuracy.

An important finding is that adaptive testing can perform as well, and in some cases even

better, than sequential testing. No single assessor was found to be good at inferring the

mastered and unmastered skills of all student types. On the whole, XP3 fared the best in

assessing all student types, except Sam5 type of students with careless slips, where it came

second place to ST. A possible scope for expansion involves further tuning XP3 by varying a

variety of parameters and revaluating its performance.

Chapter 10. Conclusions 126

Chapter 7.

 Conclusions

This thesis has discussed computerised adaptive testing in the context of Intelligent Tutoring

Systems and student modelling. It has explored the scope for exploiting the Expert Systems

technique of knowledge acquisition in the construction of adaptive tests. In particular, the

thesis shows how software-aided knowledge acquisition can make a contribution to syllabus

description and to determining the sequence in which questions should be presented to

students. The thesis also discusses the delivery of adaptive tests.

This chapter presents a summary of this work. It highlights the main contributions of the

thesis and discusses the scope for future work.

7.1 Summary
Chapter 1 addressed the motivation and aim of the research. It presented the idea that

teachers, working in a small and familiar domain, may have good adaptive testing strategies

for assessing the student’s state of knowledge in a subject domain. It proposed an expert

emulation approach to designing and constructing adaptive tests with the ultimate aim of

Chapter 10. Conclusions 127

incorporating the results of elicitation in a student modelling architecture called SKATE.

Student modelling and student testing have similar aims and may use similar techniques.

Chapter 2 presented a review of literature on student modelling in intelligent tutoring

systems. It examined the different techniques and challenges of student modelling and

discussed the relationship of adaptive testing to student modelling. The implications of the

review on the design of SKATE are highlighted especially in the construction of the domain

and the student model. It further discussed computerised adaptive testing in the light of

other testing strategies and presented two common approaches in adaptive test design and

construction, namely the Item Response Theory and the Knowledge Space Theory. The

former seems an extremely effective means of conducting summative testing but has little

application to formative testing while the latter concerns itself more with formative testing.

The implications of the review on the design of SKATE are highlighted especially in the

structuring of the domain and in the issue of problem progression.

The first part of Chapter 3 is devoted to a discussion of preliminary topics to provide a

foundation for knowledge acquisition work described in subsequent chapters. It introduced

the problem domain of elementary arithmetic with fraction additions and discussed the

teaching role of the teacher who is the “expert” in the expert systems aspect of the thesis. It

described an observational study of the expert’s assessment techniques which paid particular

attention to the issue of “adaptability” and highlighted the possibility of using knowledge

acquisition support software based on constraint logic programming, clp(FD). The second

part of Chapter 3 described the results of elicitation in the construction of a problem domain

which describes a test syllabus. This work discussed the successful application of clp(FD) as

a tool for knowledge elicitation, knowledge representation and rapid prototyping. The

description of a problem domain in terms of constraint logic programs allows it to be

executable and this facilitates the evaluation of student answers and the generation of

problems for use during knowledge acquisition and test delivery.

Chapter 10. Conclusions 128

Chapter 4 discussed experiments in creating a student model and problem progression

strategy in adaptive testing. In determining the contents of a student model for adaptive

testing, findings of two experiments were used to aid in the decision where the student model

will maintain domain-specific information about the student as an overlay model and an

interaction history module. The clp(FD) representation of the overlay model meant that it is

executable and this is useful for predicting student performance in problem solving and for

generating problems to aid remediation. The crucial element in adaptive testing is the

selection and progression of questions and the determination of the stopping place. Chapter 4

further described two experiments which elicited the problem progression strategy of the

expert. The first method involves a computer-aided query procedure which systematically

elicits the task of problem sequencing. The use of such software makes the potentially

tedious process acceptable to experts. The result is a binary-tree algorithm called BT. The

second method presents an alternative strategy of problem progression which is based on the

expert’s measure of problem difficulty. This resulted in the design of a skills-based

algorithm called XP.

Chapter 5 described the student modelling architecture, SKATE. It is based on the

information acquired from an expert teacher of elementary arithmetic. The underlying

domain knowledge relates to a particular view of the topic by a particular person. The

approach to adaptability developed in SKATE is not the only technique used by the domain

expert. It has the advantage that it can be used as a basis for a series of experiments that

charts the consequence of a range of minor variations. An account is given of such a range of

experiments using a simulation of student performance to follow through the consequences of

such changes in the next chapter.

Chapter 6 describes an evaluation strategy carried out to measure the performance of XP

provided through the use of simulated students. Different types of students were simulated –

students who knows all the skills, students who have gaps in their knowledge, students with

malrules, students making lucky guesses and students making careless slips. The results

from the evaluation were compared with those of a sequential testing strategy, ST. It was

found that XP fared relatively well, despite presenting far fewer questions to the student than

ST. Variations of XP were created and evaluated against XP and ST.

Chapter 10. Conclusions 129

7.2 Publications
Several of the ideas discussed in this thesis have given rise to conference and workshop

presentations. These have not been cited in the thesis but are listed in Appendix Q.

7.3 Main Contributions
This thesis takes the idea of adaptive testing, that were initiated by ‘Item Response’ theorists

such as Lord (1980) and Weiss and Kingsbury (1984), who were psychometricians, and

shows how that idea can contribute to the work of the Intelligent Tutoring Systems

researchers. To do this, it was necessary to relate adaptive testing to the central concept of

Intelligent Tutoring Systems, namely the student model that was introduced by John Self in

1974. It was also necessary to develop implementation techniques, since computer

development and delivery are obviously essential for intelligent tutoring. Of course,

psychometricians are also concerned with computing (Doignon and Falmagne, 1985), and

indeed computers are the obvious medium for the delivery of adaptive tests. However, the

focus of the work of psychometricians in this area is on the development of mass tests where

reliable statistical quality control assurance can be provided (Weiss and Kingsbury, 1984). In

contrast, the emphasis of the Intelligent Tutoring community has been on the individual

student, and this thesis has thus been concerned with the economical way of developing and

delivering adaptive tests for individuals and small groups of students.

The main contribution of the thesis is embedded in the design of a student modelling

architecture called SKATE, which is intended for the development, delivery and evaluation

of adaptive tests. SKATE is composed of many of the components that are to be expected in

an Intelligent Tutoring System, but with the pedagogic or tutoring model replaced by a test

delivery model. The experimental problem domain for SKATE had a considerable influence

on its design. By choosing to work with the algebra of integer fractions, it was necessary to

find computationally flexible ways of representing arithmetic problems which were limited to

a subset that teachers, tutors and text book authors think suitable for their students. Since

Constraint Logic Programming (CLP) permits a statement of integer domains, and since it

Chapter 10. Conclusions 130

interfaces seamlessly with Prolog, it is an obvious choice for representing the test material.

But the representation of the problem domain in an intelligent tutoring system influences

most other components, and so CLP affected the design on most components in SKATE. In

addition to the domain model, these components are the student model and the test delivery

model. They are discussed in the following sections and a critical assessment is made of the

contribution to the current state of research in adaptive testing and intelligent tutoring

systems, and the relationship of SKATE to the broader question of ‘learning’.

7.3.1 The Domain Model
The use of constraints in domain models is not new. Ohlsson (1994) and Mitrovic (1998)

used constraints to model an envelope of possibilities, which is actions or interpretations, in a

particular domain that can be used to map a student’s performance onto a range of pedagogic

corrective strategies. In the SKATE model, constraints are used to model problems and not

student behaviours. Further, there is no place in an adaptive test for corrective strategies.

The action that follows either success or failure with a test item is determined by a separate

testing strategy and is independent of the details of the way in which a student completes a

test item.

However, even though the representation of the testing strategy does not make use of CLP, it

was used as a means of facilitating the knowledge elicitation process used to arrive at a

strategy. Section 3.6 describes an interactive process that relies on the generation of sample

problems coded as CLP program fragments to elicit an order in which problems should be

presented. The feature of CLP that is exploited here is its ability to simultaneously represent

both a narrowly defined class of problems and particular examples of that class.

CLP does not compete directly with other techniques used for domain representation in

Intelligent Tutoring Systems. It is an extension of the expressive power of logic as well as an

algorithm for solving constraint problems. So it may be used to facilitate and extend a

representation technique, or it may find a place in tandem with some other techniques. The

two standard techniques of Intelligent Tutoring Systems are the mal-rule or buggy technique

used to represent student misconception, and the automatic problem solving technique used

to represent a student’s search path from problem presentation to solution. Both of these

combine elements of a student model as well as the domain model, and are discussed below.

Chapter 10. Conclusions 131

Brown and Burton (1978) use mal rules in their classic DEBUGGY system that is discussed

in Section 2.4 and which, like SKATE, deals with arithmetic problems. Its domain

representation could be extended by CLP. CLP facilitates the representation of discrete

domains, and operation that can be performed on them, and it is as easy to represent the use

of an incorrect, or buggy operator, as a correct one. Consider the example used by Ohlsson

(1994), of the elementary mistake of summing fractions by summing the numerators to give

the numerator of the result, and summing the denominators to give the denominator of the

result. This can be represented by the following fragment:

This not only exactly models the “buggy” operator, but can be solved to deliver erroneous

summations.

The widely used alternative approach to domain and student modelling, usually referred to as

the Machine Learning Approach (Section 2.4.8), does not stand to benefit from the use of

CLP in the same direct way but they may be used together. This approach relies on the exact

modelling of one or more solution paths. Although it is possible to exercise some control

over CLP’s constraint satisfaction algorithms, there is no mechanism for controlling this in

sufficient detail to model a human protocol. So in SKATE, a backward-chaining problem

solver is used to analyse problems in terms of problem-solving skills needed for a solution.

This information is used for problem assessment as part of one of the delivery algorithms

(Section 5.5.2). The strength of CLP lies in its ability to model problems, rather than

problem domains, where the solution or sets of partial solutions are more significant than the

solution path. Its potential for use in mal rules or buggy rules though not studied in this thesis

should be worth further investigation.

BuggyAdd(N1,D1,N2,D2,N3,D3) :-

domain([N1,D1,N2,D2,N3,D3],1,9), % Single digit integers
N1 #< D1, % First operand - proper fraction
N2 #< D2, % Second operand - proper fraction
N3 #= N1 + N2, % Sum the numerators
D3 #= D1 + D2. % Sum the denominators

Chapter 10. Conclusions 132

7.3.2 The Student Model
The student model used in SKATE records a student’s progress through a series of test items.

Such a model, which relies on the representations in the domain model, is called an overlay

model. It records a student’s success or failure for each test item and also records those

features of a test that are relevant for determining the “next” test item to be presented.

Information about a student’s competence has to be inferred from this record of results, so

competence or the lack of competence is characterised in terms of the characteristics of test

items.

From the adaptive test perspective, the crucial decision is always what test item should be

presented next. Two aspects need to be discussed. One is the reliability of item results; the

other is determining which test item should be delivered next in order for the maximum

information about the student’s ability to be gathered with the smallest number of test items.

It is in answering the former question that other researchers have used Bayesian statistics; see

for example the ANDES system (VanLehn and Niu, 2001). This approach is compatible with

the CLP based domain model of SKATE, but would require information to indicate how to

update a probability hypothesis in the light of the result of a test item. This information is not

available within SKATE, and decisions about the progression through test items are dealt

within the delivery module, which is discussed below.

7.3.3 The Test Delivery Model
There are two broad approaches that have been used for determining the order in which the

questions that constitute an adaptive test are asked. These are the statistical approach, such as

Item Response Theory (Wainer and Mislevy, 1990) and the Knowledge Space approach

(Doignon and Falmagne, 1985). These are discussed in Chapter 2. The statistical approach

studies patterns of behaviour of population samples in order to discover the patterns of co-

occurrence of success or failure. The Knowledge Space approach relies on a semantic

analysis of a problem domain. This can be carried out directly, by looking for a semantic

ordering of prerequisites (Dowling and Kaluscha, 1995) or by the use of knowledge

acquisition from educational experts (Koppen, 1993; Kambouri et al. 1994).

This thesis uses two variants of the knowledge acquisition approach. Section 4.5 discusses a

Chapter 10. Conclusions 133

technique for knowledge acquisition directed to determining a specified sequence of classes

of test items, and Section 4.6 discusses a more abstract approach. The former is only suitable

for small tests, since the knowledge acquisition process is quickly swamped by combinatorial

explosion of possible test paths. The second approach, the XP strategy, is independent of the

size of the test. The XP strategy focuses on the mastery of specific “micro-skills” needed to

solve particular problems. Its limitation is that it treats all identifiable skills as equally

significant and equally prone to error. However, the strategy is independent of the number of

number of problem classes, and so scales without problem. The worse case delivery

performance is proportional to the log to base two of the number of problem class clusters

used.

There is a growing body of research in this area. McCalla et al. (1992) have studied the

issues of levels of detail, or granularity; Hirashima et al. (1996) have used a notion of the

simplification of problems, though this has been in the context of tutoring rather than testing.

Work that has been carried out with the intent of developing tests has focused on the

representation of problems. Work carried out that has been concerned with tutoring has not

shared this focus, and is more concerned with sequencing the introduction of skills and

concepts. This is an area in which more research is needed in order to improve the accuracy

and coverage of adaptive tests.

When XP was evaluated using simulated students, its assessment of different types of

students was found to be comparable to that of sequential testing (Section 6.6) and it was

found that the accuracy of XP could be further fine-tuned by varying its parameters (Sections

5.4.1 and 6.7). The problem with using simulated students is that the simulation is based on

the same “knowledge base” as the adaptive test or intelligent tutoring system that is being

evaluated. Exactly the same assumptions that underlie the adaptive test or intelligent tutoring

system also inform the construction of the simulated students. This clearly limits what can be

learned from simulation experiments. But as mentioned above, simulation may find a role in

“fine tuning” the parameters of a test, or estimating the number of interactions required when

using an intelligent tutoring system.

Chapter 10. Conclusions 134

7.3.4 Learning
SKATE has no assumptions about learning: it is only concerned with testing. However, the

interpretation of a test result is sensitive to assumptions about:

• whether or not learning takes place during the testing process;

• the ambiguity that arises when there are several ways of solving a problem; and,

• the complexity of assessing a skill use, when the skill can only be demonstrated in

conjunction with other skills.

However, it is not just SKATE that has this sort of problem. Van Lehn and Niu’s BBN

system (2001), bug libraries, (Brown and Burton, 1978) and machine learning techniques

such as ACM (Langley and Ohlsson, 1984) all suffer from radical strategy variability

(Section 2.4.7), since a student can have several strategies in use at any moment in time, and

may switch between them on a problem-by-problem basis.

SKATE presents a quick means of assessment that helps the student identify straightaway the

skills that he needs to reinforce learning on, and focus on learning this aspect. It assumes that

if a student has any unmastered skill, this will surface by constant questioning. The careful

placing of questions will minimise the possibility of student using different solutions and not

necessarily those skills. In this way, SKATE supports many learning theories. Perhaps the

closest is the Information Processing learning theory (Miller 1956). There are two concepts

in this learning theory framework – chunking and information processing. Chunking is first

advocated where the student holds several pieces or chunks of information in his short-term

memory (encoding or retention). In the current domain of study, a chunk can be a problem

solving skill. Next, the student is presented with a problem. At this stage, information

processing takes place, where the student retrieves relevant chunks and applies one or more

skills in order to solve the problem.

Assessment is, and will remain, closely associated with teaching and learning. Evaluating the

progress of a student is a vital part of both tutoring and teaching systems. The state of

knowledge of a student in a subject domain is best assessed when he is not anxious.

Computerised adaptive testing promises an effective and accurate strategy. This thesis

Chapter 10. Conclusions 135

presented a feasible approach to creating small-scale tests with the hope that this software-

supported technique will eventually find its way in educational and training settings in class

rooms and elsewhere.

7.4 Further Work
Adaptive testing has been developed independently of tutoring systems, and it has been

mainly used for large-scale summative evaluation. This thesis has been concerned with

developing a range of techniques which, amongst other things, are applicable in small-scale

testing. They are useful particularly for transient student populations or for students engaging

in lifelong learning with gaps in their knowledge. But the same techniques are applicable as

alternatives to fixed length tests in normal classroom teaching. Research needs to be

undertaken, which would benefit from collaboration with textbook authors and publishers as

well as with classroom teachers, to evaluate this possibility. The present work has only

investigated the use of CLP to represent arithmetic problems. Though there are many

potential applications in the field of mathematics and related subjects, it should be fruitful to

explore the application in all those areas of management science, engineering, planning and

design that have presented constraint satisfaction problems.

A second area of application is in conjunction with, or integrated with, an ITS system. Here

SKATE could be used for pre-testing before proper tutoring begins, much like a pretest for

SIETTE (Arroyo et al. 2001) and SMART (Shute 1995). There is interesting work to be

undertaken here which would involve the integration of the testing needed for example for

the detection of misconceptions on the one hand and performative competence on the other.

There is a more interesting possibility, which is suggested by the nature of CLP, whose

constraint solving algorithm automatically provides a family of problems and solutions from

a description of a class of problems. This is the potential for the generation of test items from

a complete representation of domain of an intelligent tutoring system. This would require a

pedagogic model that would provide a structure for tutorial topics, problem classes and

tutorial information in an explicit fashion so that the progression problem of adaptive testing

could be solved by drawing on the same material used for sequencing tutorial strategies.

Appendix A. Item Characteristic Curves 136

Appendix A. Item Characteristic Curves

This appendix contains item characteristic curves for the 2-PL and 3-PL models for different
values of a, b and c. Item characteristic curves were discussed in Section 2.5.1.

Figure 33. 2-PL Item Characteristic Curves (b=0)

Item Characteristic Curves for 2-PL model (with
difficulty level b = 0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-8 -6 -4 -2 0 2 4 6 8

Proficiency

Pr
ob

ab
ili

ty
 o

f C
or

re
ct

 R
es

po
ns

e

a = 1
a = 2
a = 0.5

Appendix A. Item Characteristic Curves 137

Figure 34. 2-PL Item Characteristic Curves (b=-1)

Figure 35. 2-PL Item Characteristic Curves (b=0, c=0.2)

Item Characteristic Curves for the 2-PL model (with
difficulty level b = -1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-8 -6 -4 -2 0 2 4 6 8

Proficiency

Pr
ob

ab
ili

ty
 o

f C
or

re
ct

 R
es

po
ns

e

a = 1
a = 2
a = 0.5

Item Characteristic Curves for the 3-PL model (with
difficulty level b = 0, c = 0.2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-8 -6 -4 -2 0 2 4 6 8

Proficiency

Pr
ob

ab
ili

ty
 o

f C
or

re
ct

 R
es

po
ns

e

a = 1
a = 2
a = 0.5

Appendix B. Manual Adaptive Testing 138

Appendix B. Manual Adaptive Testing

This appendix contains two interactive sessions which took place between the expert and two
students on a one-on-one basis. This was discussed in Section 3.2.5.

Appendix B. Manual Adaptive Testing 139

Subject 1: An 11 year old student on the UK National Curriculum, Year 6

Task/Observation Problem posed Student’s response
Start the test
Teacher’s impression of student through cues:
student seems confident

The student has used a different strategy to the one
predicted by the teacher. The teacher had expected
the student to add ½ and ¾ to arrive at an improper
fraction before converting it to a proper fraction and
adding the whole number to the other whole
numbers.

Student used the skills number facts, sum whole
numbers and add equivalent fractions but not the
expected skills of find common denominator, find
equivalent fraction and make proper.

The teacher is also aware that the skill cancel
fraction has not been tried yet. He expects student to
demonstrate mastery in the skills find common
denominator, find equivalent fractions and make
proper. This influences the choice for the next
problem

Teacher thinks: “Can the student really solve
fractions with different denominators. Did he apply
LCM or did he just get the product of the
denominators to get a common denominator. My
previous question does not reveal this, so I will pose
the next one”

2 ½ + 3 ¾

4/3 + 5/4

Can you break it
down further?

7/2 + 8/3 – 6/5

Thinking aloud: ¾ = ½ + ¼, so
½ + ½ = 1. Add that to the
whole numbers gives 6. The
remaining fraction is ¼, so the
answer is 6 ¼

16/12 + 15/12 = 31/12

Struggles and wrote 2 r 7 / 12
and then 27/12 and then 2 7/12

Struggles to get LCM for 3
numbers
2 3 5
4 6 10
6 9 15
8 12 20
10 15 25
12 18 30
14 21 35…..and said LCM
= 4, then thought again

Appendix B. Manual Adaptive Testing 140

Teacher intervenes with a simpler problem

8/3 – 6/5

40/15 – 18/15 = 22/15 = 1 7/15
{solves successfully then
resumes to solve previous
problem}

105/30 + 80/30 – 36/30 =
149/30 = 4 29/30

Again, teacher’s choice of question did not test for
the ability of the student to use LCM, so another
question was devised

The skill cancel fraction has not been tested, so I will
give a specific question on it

Stop the test
Verdict: Student has demonstrated mastery in all
skills and can handle fraction addition and
subtraction up to 3 operands

4/3 – 1/6 + 5/4

What if the
answer was 2
3/12, can you
break that down
any further

{Thinks aloud}
LCM = 24, now can I make it
any lower…..12
16/12 – 2/12 + 15/12 = 29/12
= 2 5/12

2 ¼

Appendix B. Manual Adaptive Testing 141

Subject 2: A 10 year old student on the UK National Curriculum, Year 5

Task/Observation Problem posed Student’s response
Start the test
Teacher’s impression of student through cues:
student looking math anxious, therefore start test
with very easy problem

Student has added both numerator and
denominator – a clear misunderstanding of the
concept of fraction addition

Give a simpler problem

Student has displayed the same misconception

Give another problem

Stop the test
Verdict: Student has demonstrated
misunderstanding of the concept of fraction
addition. Remedial help should take the form of
visual display e.g. pieces of a pizza, to
demonstrate the idea of fractions and then
fraction addition

2/3 + 3/4

2/5 + 3/5

1/4 + 2/4

5/7

5/10

3/8

Appendix C. Clp(fd) Representation of Problem Classes 142

Appendix C. Clp(fd) Representation of Problem Classes

This appendix contains a clp(FD) representation of the problem classes for the domain of

fraction additions. Each procedure can be executed to generate one or more example

problem or problem instances. This was discussed in Section 3.6.1.

Appendix C. Clp(fd) Representation of Problem Classes 143

Question Type PT1: Add Two Proper fractions of common denominator
?- use_module(library(clpfd)).
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D
pt1(N1,D1,N2,D2,N,D):-
 domain([N1,D1,N2,D2], 1,9), % Single digit integers for numerators
 domain([N,D],1,99), % Possible values for answer
 N1 #< D1, % First operand - proper fraction
 N2 #< D2, % Second operand - proper fraction
 D1 #= D2, % A common denominator
 D #= D1, % Same denominator in solution
 labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables
 \+ cancel(N1,D1,_,_), % First operand in simplest form
 \+ cancel(N2,D2,_,_), % Second operand in simplest form
 N1/D1 + N2/D2 =:= N/D. % Arithmetic expression

Question Type PT2: Add a Proper fraction and an Improper fraction of a common denominator
?- use_module(library(clpfd)).
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D
pt2(N1,D1,N2,D2,N,D):-
 domain([N1,D1,N2,D2], 1,9), % Single digit integers for numerators
 domain([N,D],1,99), % Possible values for answer
 N1 #< D1, % First operand - proper fraction
 N2 #> D2, % Second operand - improper fraction
 D1 #= D2, % A common denominator
 D #= D1, % Same denominator in solution
 labeling([], [N1,D1,N2,D2, N,D]), %Generate values for all variables
 \+ cancel(N1,D1,_,_), % First operand in simplest form
 \+ cancel(N2,D2,_,_), % Second operand in simplest form
 N1/D1 + N2/D2 =:= N/D. % Arithmetic expression

Question Type PT3: Add two improper fractions of a common denominator
?- use_module(library(clpfd)).
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D
pt3(N1,D1,N2,D2,N,D):-
 domain([N1,N2], 1,8), % Single digit integers for numerators
 domain([D1,D2], 2, 9), % Single digits, start at 2 to avoid 1 in denominator
 domain([N,D],1,99), % Possible values for answer
 N1 #> D1, % First operand - improper fraction
 N2 #> D2, % Second operand - improper fraction
 D1 #= D2, % A common denominator
 D #= D1, % Same denominator in solution
 labeling([], [N1,D1,N2,D2, N,D]), %Generate values for all variables
 \+ cancel(N1,D1,_,_), % First operand in simplest form
 \+ cancel(N2,D2,_,_), % Second operand in simplest form
 N1/D1 + N2/D2 =:= N/D. % Arithmetic expression

Appendix C. Clp(fd) Representation of Problem Classes 144

Question Type PT4: Add two proper fractions of different denominators where the
 denominators are multiples of one another
?- use_module(library(clpfd)).
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D
pt4(N1,D1,N2,D2,N,D):-
 domain([N1,N2], 1,8), % Single digit integers for numerators
 domain([D1,D2], 2, 9), % Single digit integers, start at 2 to avoid 1 in denominator
 domain([N,D,LCM],1,50), % Possible values for answer
 N1 #< D1, % First operand - proper fraction
 N2 #< D2, % Second operand - proper fraction
 D1 #\= D2, % Different denominators
 D #= LCM, % Denominator in answer is the LCM
 labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables
 lcm(D1,D2,LCM), % Calculate LCM
 \+ cancel(N1,D1,_,_), % First operand in simplest form
 \+ cancel(N2,D2,_,_), % Second operand in simplest form
 cancel(D1,D2,_,_), % Denominators are multiples of one another
 N1/D1 + N2/D2 =:= N/D. % Arithmetic expression

Question Type PT5: Add a Proper and an Improper fraction of different denominators where
 the denominators are multiples of one another
?- use_module(library(clpfd)).
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D
pt5(N1,D1,N2,D2,N,D):-
 domain([N1,N2], 1,8), % Single digit integers for numerators
 domain([D1,D2], 2, 9), % Single digit integers, start at 2 to avoid 1 in denominator
 domain([N,D],1,50), % Possible values for answer
 N1 #< D1, % First operand - proper fraction
 N2 #> D2, % Second operand - improper fraction
 D1 #\= D2, % Different denominators
 D #= LCM, % Denominator in answer is the LCM
 labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables
 lcm(D1,D2,LCM), % Calculate LCM
 \+ cancel(N1,D1,_,_), % First operand in simplest form
 \+ cancel(N2,D2,_,_), % Second operand in simplest form
 cancel(D1,D2,_,_), %Denominators are multiples of one another
 N1/D1 + N2/D2 =:= N/D. % Arithmetic expression

Appendix C. Clp(fd) Representation of Problem Classes 145

Question Type PT6: Add Two Improper fractions of different denominators where the
 denominators are multiples of one another
?- use_module(library(clpfd)).
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D
pt6(N1,D1,N2,D2,N,D):-
 domain([N1,N2], 1,8), % Single digit integers for numerators
 domain([D1,D2], 2, 9), % Single digit integers, start at 2
 % to avoid 1 in denominator
 domain([N,D],1,50), % Possible values for answer
 N1 #> D1, % First operand - improper fraction
 N2 #> D2, % Second operand - improper fraction
 D1 #\= D2, % Different denominators
 D #= LCM, % Denominator in answer is the LCM
 labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables
 lcm(D1,D2,LCM), % Calculate LCM
 \+ cancel(N1,D1,_,_), % First operand in simplest form
 \+ cancel(N2,D2,_,_), % Second operand in simplest form
 cancel(D1,D2,_,_), % Denominators are multiples of one another
 N1/D1 + N2/D2 =:= N/D. % Arithmetic expression

Question Type PT7: Add two proper fractions of different denominators where the
 denominators are not multiples of one another
?- use_module(library(clpfd)).
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D
pt7(N1,D1,N2,D2,N,D):-
 domain([N1,N2], 1,8), % Single digit integers for numerators
 domain([D1,D2], 2, 9), % Single digit integers, start at 2 to avoid 1 in denominator
 domain([N,D,LCM],1,50), % Possible values for answer
 N1 #< D1, % First operand - proper fraction
 N2 #< D2, % Second operand - proper fraction
 D1 #\= D2, % Different denominators
 D #= LCM, % Denominator in answer is the LCM
 labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables
 lcm(D1,D2,LCM), % Calculate LCM
 \+ cancel(N1,D1,_,_), % First operand in simplest form
 \+ cancel(N2,D2,_,_), % Second operand in simplest form
 \+ cancel(D1,D2,_,_), % Denominators are not multiples of one another
 N1/D1 + N2/D2 =:= N/D. % Arithmetic expression

Appendix C. Clp(fd) Representation of Problem Classes 146

Question Type PT8: Add a proper fraction and an improper fraction of different where the
 denominators are not multiples of one another
?- use_module(library(clpfd)).
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D
pt8(N1,D1,N2,D2,N,D):-
 domain([N1,N2], 1,8), % Single digit integers for numerators
 domain([D1,D2], 2, 9), % Single digit integers, start at 2 to avoid 1 in denominator
 domain([N,D,LCM],1,50), % Possible values for answer
 N1 #< D1, % First operand - proper fraction
 N2 #> D2, % Second operand - improper fraction
 D1 #\= D2, % Different denominators
 D #= LCM, % Denominator in answer is the LCM
 labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables
 lcm(D1,D2,LCM), % Calculate LCM
 \+ cancel(N1,D1,_,_), % First operand in simplest form
 \+ cancel(N2,D2,_,_), % Second operand in simplest form
 \+ cancel(D1,D2,_,_), % Denominators are not multiples of one another
 N1/D1 + N2/D2 =:= N/D. % Arithmetic expression

Question Type PT9: Add two improper fractions of different denominators where the
 denominators are not multiples of one another
?- use_module(library(clpfd)).
% Invoke all possible answer types for N1/D1 + N2/D2 = N/D
pt9(N1,D1,N2,D2,N,D):-
 domain([N1,N2], 1,8), % Single digit integers for numerators
 domain([D1,D2], 2, 9), % Single digit integers, start at 2 to avoid 1 in denominator
 domain([N,D,LCM],1,50), % Possible values for answer
 N1 #> D1, % First operand - improper fraction
 N2 #> D2, % Second operand - improper fraction
 D1 #\= D2, % Different denominators
 D #= LCM, % Denominator in answer is the LCM
 labeling([], [N1,D1,N2,D2, N,D]), % Generate values for all variables
 lcm(D1,D2,LCM), % Calculate LCM
 \+ cancel(N1,D1,_,_), % First operand in simplest form
 \+ cancel(N2,D2,_,_), % Second operand in simplest form
 \+ cancel(D1,D2,_,_), % Denominators are not multiples of one another
 N1/D1 + N2/D2 =:= N/D. % Arithmetic expression

% COMMON PREDICATES
cancel(N,D,X,Y) :- % Cancel fraction e.g. N/D into lowest form X/Y
 domain([N,D,X,Y,F], 1,99), % F is the highest common factor
 F*X #= N,
 F*Y #= D,
 maximize(labeling([], [F,X,Y]), F),
 F \== 1. % To ensure cancel fraction has taken place
lcm(D1,D2, LCM) :- % Calculate LCM Lowest Common Multiple
 Prod is D1*D2, gcd(D1,D2,GCD),
 LCM is Prod//GCD.
gcd(X,X,X). % calculate greatest common denominator
gcd(X,Y,D) :- X<Y, Y1 is Y-X, gcd(X,Y1,D).
gcd(X,Y,D) :- Y<X, gcd(Y,X,D).

Appendix D. Problem Classes of Fraction Additions 147

Appendix D. Problem Classes of Fraction Additions

This appendix contains a list of problem classes characterised by possible response types for

the domain of fraction additions. This was discussed in Section 3.6.2.

Problem Class PT1: Add Two Proper Fractions with Common Denominators
PT1_RT1: PT1 where response type is a proper fraction in simplest form
PT1_RT2: PT1 where response type is a whole number 1

PT1_RT3: PT1 where response type is a proper fraction not in simplest form
PT1_RT4: PT1 where response type is an improper fraction in simplest form

PT1_RT5: PT1 where response type is an improper fraction not in simplest form

Problem Class PT2: Add Two Improper Fractions with Common Denominators
PT2_RT4: PT2 where response type is an improper fraction in simplest form
PT2_RT5: PT2 where response type is an improper fraction not in simplest form

PT2_RT6: PT2 where response type is a whole number greater than 1

Problem Class PT3: Add a Proper Fraction and an Improper Fraction with Common
Denominators
PT3_RT4: PT3 where response type is an improper fraction in simplest form
PT3_RT5: PT3 where response type is an improper fraction not in simplest form

PT3_RT6: PT3 where response type is a whole number greater than 1

Appendix D. Problem Classes of Fraction Additions 148

Problem Class PT4: Add Two Proper Fractions of Different Denominators which are
multiples of one another
PT4_RT1: PT4 where response type is a proper fraction in simplest form
PT4_RT3: PT4 where response type is a proper fraction not in simplest form
PT4_RT4: PT4 where response type is an improper fraction in simplest form

PT4_RT5: PT4 where response type is an improper fraction not in simplest form

Problem Class PT5: Add Two Improper Fractions of Different Denominators which are
multiples of one another
PT5_RT4: PT5 where response type is an improper fraction in simplest form

PT5_RT5: PT5 where response type is an improper fraction not in simplest form

Problem Class PT6: Add a Proper Fraction and an Improper Fraction of Different
Denominators which are multiples of one another
PT6_RT4: PT6 where response type is an improper fraction in simplest form

PT6_RT5: PT6 where response type is an improper fraction not in simplest form

Problem Class PT7: Add Two Proper Fractions of Different Denominators which are
not multiples of one another
PT7_RT1: PT7 where response type is a proper fraction in simplest form
PT7_RT4: PT7 where response type is an improper fraction in simplest form

Problem Class PT8: Add Two Improper Fractions of Different Denominators which are
not multiples of one another
PT8_RT4: PT8 where response type is an improper fraction in simplest form

Problem Class PT9: Add a Proper Fraction and an Improper Fraction of Different
Denominators which are not multiples of one another
PT9_RT4: PT9 where response type is an improper fraction in simplest form

Appendix E. Fixed-Item Test in Fraction Additions 149

Appendix E. Fixed-Item Test in Fraction Additions

This appendix contains a fixed-item test which was administered to students. This was
discussed in Section 4.2.1.3.

Appendix E. Fixed-Item Test in Fraction Additions 150

Assessment Test Paper

Date: ____________ Time now : ___________

Please answer all questions. At the start, please state the current time. When you

finish, please state the new time on the last page.

Write down your working at all times.

1. Simplify the following fractions into its lowest form

Q1. =4
2

Q2. =8
8

Q3. =5
10

Q4. =3
7

Q5. =4
10

2. Find the Least Common Denominator for each pair of numbers. If you can’t, then

just give a common denominator for each pair.

Q6. 3 and 4 =

Q7. 5 and 7 =

Q8. 6 and 8 =

Q9. 4 and 6 =

Appendix E. Fixed-Item Test in Fraction Additions 151

3. Find an equivalent fraction for each of the following. For example, 4
2

2
1 =

Q10. =4
3

Q11. =3
7

4. The following questions are addition of fractions. Please answer each question and

give the answer in its lowest form. For example:

3
1

6
2

6
1

6
1 ==+ 2

1
4
2

4
6

4
3

4
3 11 ===+ 13

3
3
1

3
2 ==+

Please show your working, if any, at all times in the space provided and write your

answer in the box.

 Working Answer

Q12. =+ 3
1

3
1

Q13. =+ 7
2

7
5

Appendix E. Fixed-Item Test in Fraction Additions 152

 Working Answer

Q14. =+ 9
2

9
4

Q15. =+ 7
6

7
5

Q16. =+ 9
4

9
8

Q17. =+ 7
8

7
4

Q18. =+ 8
9

8
5

Q19. =+ 3
5

3
1

Appendix E. Fixed-Item Test in Fraction Additions 153

 Working Answer

Q20. =+ 5
6

5
8

Q21. =+ 4
5

4
5

Q22. =+ 2
5

2
3

Q23. =+ 4
1

2
1

Q24. =+ 8
1

6
5

Q25. =+ 6
1

2
1

Appendix E. Fixed-Item Test in Fraction Additions 154

 Working Answer

Q26. =+ 4
3

8
3

Q27. =+ 6
5

3
2

Q28. =+ 4
7

8
1

Q29. =+ 6
7

2
1

Q30. =+ 6
7

3
5

Q31. =+ 6
7

3
4

Appendix E. Fixed-Item Test in Fraction Additions 155

 Working Answer

Q32. =+ 5
1

2
1

Q33. =+ 5
3

3
2

Q34. =+ 3
7

2
1

Q35. =+ 5
8

2
5

End of Test

Please write the time now:________

Appendix F. Diagnosing Student Answers 157

Appendix F. Diagnosing Student Answers

This appendix presents the diagnosis of student answers in two modes – evaluating final
answers and inspecting intermediate steps. This was discussed in Section 4.2.1.4. Table 4
shows each question corresponding to a problem class and a set of problem solving skills
which are expected to be used to solve a problem of a class. The skills are labelled in the
following way:

a: add equivalent fractions
b: cancel or simplify fraction into lowest form
c: make proper
d: find common multiple or lowest common multiple
e: find equivalent fraction

Table 5 shows the results of the first mode of diagnosis and Table 6 shows the results of the
second mode of diagnosis. In both tables, labels A to L correspond to each of the twelve
students who undertook the test while labels Q1 to Q35 correspond to the test of thirty-five
questions which is given in Appendix E. The following legend is used:

1 correct
0 incorrect
w incorrect
na not attempted
cbnw correct but no working given
cbmsw correct but missed some working
cs possible careless slip
sc possible copying
pc partially correct
mq possible misunderstanding of question
mr1 added denominators for the resultant denominator (for common denominator problems)
mr2 for non-common denominator problems, added numerators for resultant numerator and added

denominators for resultant denominator
mr3 add numerators but subtract denominators (for non-common denominator problems)
mr4 added numerators and multiplied denominators (for non-common denominator problems)

Appendix F. Diagnosing Student Answers 158

Question Problem Class Skills likely to be applied
Q1 b

Q2 b

Q3 b

Q4 c

Q5 b,c

Q6 d

Q7 d

Q8 d

Q9 d

Q10 e

Q11 e

Q12 PT1_RT1 a

Q13 PT1_RT2 a,b

Q14 PT1_RT3 a,b

Q15 PT1_RT4 a,c

Q16 PT1_RT5 a,b,c

Q17 PT2_RT4 a,c

Q18 PT2_RT5 a,b,c

Q19 PT2_RT6 a,b

Q20 PT3_RT4 a,c

Q21 PT3_RT5 a,b,c

Q22 PT3_RT6 a,b

Q23 PT4_RT1 a,d,e

Q24 PT4_RT1 a,d,e

Q25 PT4_RT3 a,b,d,e

Q26 PT4_RT4 a,c,d,e

Q27 PT4_RT5 a,b,c,d,e

Q28 PT5_RT4 a,c,d,e

Q29 PT5_RT5 a,b,c,d,e

Q30 PT6_RT4 a,c,d,e

Q31 PT6_RT5 a,b,c,d,e

Q32 PT7_RT1 a,d,e

Q33 PT7_RT4 a,c,d,e

Q34 PT8_RT4 a,c,d,e

Q35 PT9_RT4 a,c,d,e

 Table 4. Test Questions categorised by Problem Class and Skills

Appendix F. Diagnosing Student Answers 159

 A B C D E F G H I J K L
Q1 1 1 1 1 1 1 1 1 1 1 1 1
Q2 1 0 1 1 1 1 1 1 1 1 1 1
Q3 0 0 1 1 1 1 1 0 1 1 1 1
Q4 0 0 0 1 0 1 1 1 1 1 1 1
Q5 0 0 0 1 0 1 1 1 1 1 1 1
Q6 0 0 1 0 1 1 1 1 0 1 1 1
Q7 0 0 1 0 1 1 1 1 0 1 1 1
Q8 0 0 1 0 0 1 1 1 0 1 1 1
Q9 0 0 0 0 0 1 1 1 0 1 1 1
Q10 1 0 0 0 0 1 0 1 1 1 1 1
Q11 0 0 0 0 0 0 0 1 0 1 1 1
Q12 0 0 1 1 1 1 0 1 1 1 1 1
Q13 0 0 1 1 1 1 1 1 1 1 1 1
Q14 0 0 0 1 1 1 1 1 1 1 1 1
Q15 0 0 0 1 1 1 1 1 1 1 1 1
Q16 0 0 0 1 1 1 1 1 1 1 1 1
Q17 0 0 0 1 1 1 1 1 0 1 1 1
Q18 0 0 0 0 1 1 1 1 1 1 1 1
Q19 0 0 0 1 1 1 0 1 1 1 1 1
Q20 0 0 0 1 1 1 1 1 0 1 1 1
Q21 0 0 0 1 1 1 0 1 1 0 1 1
Q22 0 0 0 1 1 1 1 1 1 1 1 1
Q23 0 0 0 1 1 1 1 1 1 1 1 1
Q24 0 0 0 0 0 1 1 1 1 1 1 1
Q25 0 0 0 0 0 1 1 1 1 1 1 1
Q26 0 0 0 0 0 1 1 1 1 1 1 1
Q27 0 0 0 0 0 1 1 1 1 1 1 1
Q28 0 0 0 0 0 1 1 1 1 1 1 1
Q29 0 0 0 0 0 0 1 1 1 1 1 1
Q30 0 0 0 0 0 1 1 1 1 1 1 1
Q31 0 0 0 0 0 0 1 1 1 1 1 1
Q32 0 0 0 0 0 0 1 1 1 1 1 1
Q33 0 0 0 0 0 0 1 1 1 0 1 1
Q34 0 0 0 0 0 0 1 1 1 1 1 1
Q35 0 0 0 0 0 0 1 1 1 1 1 1

Table 5. Evaluating Final Answers only

Appendix F. Diagnosing Student Answers 160

 A B C D E F G H I J K L
Q1 1 1 1 1 1 1 1 1 1 1 1 1
Q2 1 w 1 1 1 1 1 1 1 1 1 1
Q3 na w 1 1 1 1 1 w 1 1 1 1
Q4 na w W 1 w 1 1 1 1 1 1 1
Q5 na w W 1 pc 1 1 1 1 1 1 1
Q6 w na 1 na 1 1 1 1 w 1 1 1
Q7 w na 1 na 1 1 1 1 w 1 1 1
Q8 w na 1 na w 1 1 1 w 1 1 1
Q9 w na W na w 1 1 1 w 1 1 1
Q10 1 na W mq w 1 w 1 1 1 1 1
Q11 na na W mq w w w 1 w 1 1 1
Q12 mr1 na 1 1 1 1 w 1 1 1 1 1
Q13 mr1 na 1 1 1 1 1 1 1 1 1 1
Q14 mr1 na W 1 1 1 1 1 1 1 1 1
Q15 mr1 na W 1 1 1 cbnw 1 1 1 1 1
Q16 mr1 na W 1 1 1 cbnw 1 cbmsw 1 1 1
Q17 mr1 na W 1 1 1 cbnw 1 pc 1 1 1
Q18 na na W cs 1 1 cbmsw 1 cbmsw 1 1 1
Q19 na na W 1 1 1 pc 1 1 1 1 1
Q20 na na W 1 1 1 1 1 pc 1 1 1
Q21 na na W 1 1 1 na 1 1 w 1 1
Q22 na na W 1 1 1 1 1 1 1 1 1
Q23 na na W cbnw cbnw 1 1 1 1 1 1 1
Q24 na na W w w 1 1 1 cbnw/sc 1 1 1
Q25 na na W w w 1 1 1 cbnw/sc 1 1 1
Q26 na na W mr2 w 1 1 1 cbnw/sc 1 1 1
Q27 na na W mr2 w 1 1 1 cbnw/sc 1 1 1
Q28 na na W mr2 w 1 1 1 cbnw/sc 1 1 1
Q29 na na W mr2 mr3 cs 1 1 cbnw/sc 1 1 1
Q30 na na W mr2 mr3 1 1 1 cbnw/sc 1 1 1
Q31 na na W mr2 mr3 na 1 1 cbnw/sc 1 1 1
Q32 na na W mr2 mr4 na 1 1 cbnw/sc 1 1 1
Q33 na na W mr2 mr4 na 1 1 cbnw/sc cs 1 1
Q34 Na na W mr2 mr4 na 1 1 cbnw/sc 1 1 1
Q35 Na na W mr2 mr4 na 1 1 cbnw/sc 1 1 1

Table 6. Inspecting Solution Paths and Final Answers

Appendix G. Simulated Students 161

Appendix G. Simulated Students

This appendix presents two pieces of information. Firstly, a list of instances of simulated
students of Sam1, Sam2, Sam3, Sam4 and Sam5 types, as discussed in Section 6.3, is
presented in Table 7 and Table 8. The last three columns of the tables list the names of the
output files generated from running the steps of the evaluation - “generate logfiles” and
“running the assessor”, as described in Sections 6.4 and 6.5 respectively.

The second piece of information is a list of the instantiations of the simulated students – see
Figure 36. The instantiations are represented as a Prolog predicate, simStudents(X,Y), where
X is the name of the simulated student and Y is a three-phase structure, Prepare-Add-Tidy,
where each phase contains one or more mastered skill or malrule.

Appendix G. Simulated Students 162

Type Student Prepare Phase Process Phase Tidy Phase Logfiles Run XP Run ST

sam1a makeVulgar, makeCommon checkAndAdd cancel, makeProper, makeWhole log1a xp_1a st_1a

sam1b makeCommon, makeVulgar checkAndAdd cancel, makeProper, makeWhole log1b xp _1b st _1b

sam1c makeVulgar, makeCommon checkAndAdd makeProper, makeWhole,cancel log1c xp _1c st _1c

sam1d makeVulgar, makeCommon checkAndAdd makeWhole,cancel, makeProper log1d xp _1d st _1d

sam1e makeVulgar, makeCommon checkAndAdd cancel, makeWhole makeProper log1e xp _1e st _1e

sam1f makeCommon, makeVulgar checkAndAdd makeProper, makeWhole,cancel log1f xp _1f st _1f

sam1g makeCommon, makeVulgar checkAndAdd makeWhole,cancel, makeProper log1g xp _1g st _1g

Sam1

(knows all

the skills)

sam1h makeCommon, makeVulgar checkAndAdd cancel, makeWhole makeProper log1h xp _1h st _1h

sam2a makeVulgar checkAndAdd cancel, makeProper, makeWhole log2a xp _2a st _2a

sam2b makeCommon checkAndAdd cancel, makeProper, makeWhole log2b xp _2b st _2b

sam2c makeVulgar, makeCommon checkAndAdd makeProper, makeWhole log2c xp _2c st _2c

sam2d makeVulgar, makeCommon checkAndAdd cancel, makeWhole log2d xp _2d st _2d

sam2e makeVulgar, makeCommon checkAndAdd cancel, makeProper log2e xp _2e st _2e

Sam2

(gaps in

knowledge)

sam2f makeCommon checkAndAdd - log2f xp _2f st _2f

Table 7. Simulated Students with overlay knowledge

Appendix G. Simulated Students 163

Type Student Prepare Phase Process Phase Tidy Phase Logfiles Run XP Run ST

sam3a makeVulgar, makeCommon checkAndAdd malCancel, makeProper, makeWhole log3a xp_ 3a st _ 3a

sam3b makeVulgar, makeCommon malAdd1 cancel, makeProper, makeWhole log3b xp _ 3b st _ 3b

sam3c MakeVulgar malAdd2 cancel, makeProper, makeWhole log3c xp _3c st _3c

sam3d MakeVulgar malAdd3 cancel, makeProper, makeWhole log3d xp _ 3d st _ 3d

Sam3

(malrules)

sam3e makeVulgar malAdd1 malCancel, makeProper, makeWhole log3e xp _ 3e st _ 3e

sam4a makeCommon checkAndAdd - log4a xp _ 4a st _ 4a

sam4b makeCommon checkAndAdd - log4b xp _ 4b st _ 4b

sam4c makeCommon checkAndAdd - log4c xp _ 4c st _ 4c

sam4d makeVulgar checkAndAdd cancel, makeProper, makeWhole log4d xp _4d st _4d

Sam4

(guesses)

sam4e makeVulgar, makeCommon checkAndAdd makeProper, makeWhole log4e xp _4e st _4e

sam5a makeVulgar, makeCommon checkAndAdd cancel, makeProper, makeWhole log5a xp _ 5a st _ 5a

sam5b makeVulgar, makeCommon checkAndAdd cancel, makeProper, makeWhole log5b xp _ 5b st _ 5b

sam5c makeVulgar, makeCommon checkAndAdd makeProper, makeWhole,cancel log5c xp _5c st _5c

Sam5

(slips)

sam5d MakeCommon checkAndAdd cancel, makeProper, makeWhole log5d xp _5d st _5d

Table 8. Simulated Students with noisy data

Appendix G. Simulated Students 164

/* simStudents(X,Y) where X is the simulated student and Y is the three-phase structure of student X */

% Sam1 - students who knows all the relevant skills - differing orders

simStudents(sam1a, [[sam1a-[[makeVulgar, makeCommon],[checkAndAdd],[cancel, makeProper, makeWhole]]]]).

simStudents(sam1b, [[sam1b-[[makeCommon, makeVulgar],[checkAndAdd],[cancel, makeProper, makeWhole]]]]).

simStudents(sam1c, [[sam1c-[[makeVulgar, makeCommon],[checkAndAdd],[makeProper, makeWhole, cancel]]]]).

simStudents(sam1d, [[sam1d-[[makeVulgar, makeCommon],[checkAndAdd],[makeWhole, cancel, makeProper]]]]).

simStudents(sam1e, [[sam1e-[[makeVulgar, makeCommon],[checkAndAdd],[cancel, makeWhole, makeProper]]]]).

simStudents(sam1f, [[sam1f-[[makeCommon,makeVulgar],[checkAndAdd],[makeProper, makeWhole, cancel]]]]).

simStudents(sam1g, [[sam1g-[[makeCommon,makeVulgar],[checkAndAdd],[makeWhole, cancel, makeProper]]]]).

simStudents(sam1h, [[sam1h-[[makeCommon,makeVulgar],[checkAndAdd],[cancel, makeWhole, makeProper]]]]).

% Sam2 - students with gaps in knowledge

simStudents(sam2a, [[sam2a-[[makeVulgar],[checkAndAdd],[cancel,makeProper,makeWhole]]]]).

simStudents(sam2b, [[sam2b-[[makeCommon],[checkAndAdd],[cancel, makeProper, makeWhole]]]]).

simStudents(sam2c, [[sam2c-[[makeVulgar, makeCommon],[checkAndAdd],[makeProper, makeWhole]]]]).

simStudents(sam2d, [[sam2d-[[makeVulgar, makeCommon],[checkAndAdd],[cancel, makeWhole]]]]).

simStudents(sam2e, [[sam2e-[[makeVulgar, makeCommon],[checkAndAdd],[cancel, makeProper]]]]).

simStudents(sam2f, [[sam2f-[[makeCommon],[checkAndAdd],[]]]]).

% Sam3 - students with malrules

simStudents(sam3a,[[sam3a-[[makeVulgar, makeCommon],[checkAndAdd],[malCancel, makeProper, makeWhole]]]]).

simStudents(sam3b,[[sam3b-[[makeVulgar, makeCommon],[malAdd1],[cancel, makeProper, makeWhole]]]]).

simStudents(sam3c,[[sam3c-[[makeVulgar],[malAdd2],[cancel, makeProper, makeWhole]]]]).

simStudents(sam3d,[[sam3d-[[makeVulgar],[malAdd3],[cancel, makeProper, makeWhole]]]]).

simStudents(sam3e,[[sam3e-[[makeVulgar],[malAdd1],[malCancel, makeProper, makeWhole]]]]).

% Sam4 - students with lucky guesses

simStudents(sam4a,[[sam4a-[[makeCommon],[checkAndAdd],[]]]]).

simStudents(sam4b,[[sam4b-[[makeCommon],[checkAndAdd],[]]]]).

simStudents(sam4c,[[sam4c-[[makeCommon],[checkAndAdd],[]]]]).

simStudents(sam4d,[[sam4d-[[makeVulgar],[checkAndAdd],[cancel,makeProper, makeWhole]]]]).

simStudents(sam4e,[[sam4e-[[makeVulgar,makeCommon],[checkAndAdd],[makeProper, makeWhole]]]]).

% Sam5 - students with careless slips

simStudents(sam5a,[[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper, makeWhole]]]]).

simStudents(sam5b,[[sam5b-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper, makeWhole]]]]).

simStudents(sam5c,[[sam5c-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper, makeWhole]]]]).

simStudents(sam5d,[[sam5d-[[makeCommon],[checkAndAdd],[cancel,makeProper, makeWhole]]]]).

 Figure 36. Prolog Instantiations of Simulated Students

Appendix H. Set of Fraction Additions Problems 165

Appendix H. Set of Fraction Additions Problems

This appendix contains a database of 68 problems in fraction additions used during the
evaluation of the XP assessor, as discussed in Sections 6.4 and 6.5. Some of the questions
are drawn from the DSA experiment (Section 4.2.1).

1 skill problems:

question(1,[c], q_c_1, fr(1/3,1/3), fr(2/3)).
question(1,[c], q_c_2, fr(3/5,1/5), fr(4/5)).

2 skill problems:
question(2,[b,c], q_bc_1, fr(1/2,1/5), fr(7/10)).
question(2,[b,c], q_bc_2, fr(1/3,1/5), fr(8/15)).
question(2,[b,c], q_bc_3, fr(5/8,1/6), fr(19/24)).
question(2,[c,d], q_cd_1, fr(4/9,2/9), fr(2/3)).
question(2,[c,d], q_cd_2, fr(12/64,4/64), fr(1/4)).
question(2,[c,d], q_cd_3, fr(9/24,3/24), fr(1/2)).
question(2,[c,d], q_cd_4, fr(9/16,3/16), fr(3/4)).
question(2,[c,d], q_cd_5, fr(1/6,1/6), fr(1/3)).
question(2,[c,d], q_cd_6, fr(3/8,1/8), fr(1/2)).
question(2,[c,e], q_ce_1, fr(5/7,6/7), fr(1:4/7)).
question(2,[c,e], q_ce_2, fr(4/7,8/7), fr(1:5/7)).
question(2,[c,e], q_ce_3, fr(8/5,6/5), fr(2:4/5)).
question(2,[c,e], q_ce_4, fr(2/3,2/3), fr(1:1/3)).
question(2,[c,e], q_ce_5, fr(5/6,2/6), fr(1:1/6)).
question(2,[c,e], q_ce_6, fr(7/5,2/5), fr(1:4/5)).

3 skill problems:
question(3,[a,c,e], q_ace_1, fr(1:1/5,2/5), fr(1:3/5)).
question(3,[a,c,e], q_ace_2, fr(2:3/7,2/7), fr(2:5/7)).
question(3,[a,c,e], q_ace_3, fr(1:1/5,3/5), fr(1:4/5)).
question(3,[b,c,d], q_bcd_1, fr(1/2,1/4), fr(3/4)).
question(3,[b,c,d], q_bcd_2, fr(5/6,1/8), fr(23/24)).
question(3,[b,c,d], q_bcd_3, fr(1/2,1/6), fr(2/3)).
question(3,[b,c,d], q_bcd_4, fr(1/12,1/6), fr(1/4)).
question(3,[b,c,d], q_bcd_5, fr(2/15,1/5), fr(1/3)).

Appendix H. Set of Fraction Additions Problems 166

question(3,[b,c,e], q_bce_1, fr(2/3,3/5), fr(1:4/15)).
question(3,[b,c,e], q_bce_2, fr(1/2,7/3), fr(2:5/6)).
question(3,[b,c,e], q_bce_3, fr(5/2,8/5), fr(4:1/10)).
question(3,[b,c,e], q_bce_4, fr(4/5,3/4), fr(1:11/20)).
question(3,[b,c,e], q_bce_5, fr(5/6,1/3), fr(1:1/6)).
question(3,[b,c,e], q_bce_6, fr(6/7,3/8), fr(1:13/56)).
question(3,[b,c,e], q_bce_7, fr(6/7,5/8), fr(1:27/56)).
question(3,[b,c,e], q_bce_8, fr(5/8,4/5), fr(1:17/40)).
question(3,[b,c,e], q_bce_9, fr(5/8,5/6), fr(1:11/24)).
question(3,[b,c,e], q_bce_10, fr(3/8,5/6), fr(1:5/24)).
question(3,[b,c,e], q_bce_11, fr(8/9,3/5), fr(1:22/45)).
question(3,[c,d,e], q_cde_1, fr(5/8,9/8), fr(1:3/4)).
question(3,[c,d,e], q_cde_2, fr(8/9,4/9), fr(1:1/3)).
question(3,[c,d,e], q_cde_3, fr(5/4,5/4), fr(2:1/2)).
question(3,[c,d,f], q_cdf_1, fr(5/7,2/7), fr(1)).
question(3,[c,d,f], q_cdf_2, fr(4/5,1/5), fr(1)).
question(3,[c,d,f], q_cdf_3, fr(1/2,1/2), fr(1)).
question(3,[c,d,f], q_cdf_4, fr(4/5,1/5), fr(1)).
question(3,[c,d,f], q_cdf_5, fr(1/2,1/2), fr(1)).

4 skill problems:
question(4,[a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), fr(3:4/15)).
question(4,[a,b,c,e], q_abce_2, fr(2:1/2,7/3), fr(4:5/6)).
question(4,[a,b,c,e], q_abce_3, fr(1/4,2:1/8), fr(2:3/8)).
question(4,[a,b,c,e], q_abce_4, fr(1:3/8,1/2), fr(1:7/8)).
question(4,[a,b,c,e], q_abce_5, fr(1/5,1:5/7), fr(1:32/35)).
question(4,[a,c,e,f], q_acef_1, fr(1:1/3,2/3), fr(2)).
question(4,[a,c,e,f], q_acef_2, fr(1:1/5,4/5), fr(2)).
question(4,[c,d,e,f], q_cdef_1, fr(1/3,5/3), fr(2)).
question(4,[c,d,e,f], q_cdef_2, fr(3/2,5/2), fr(4)).
question(4,[b,c,d,e], q_bcde_1, fr(3/8,3/4), fr(1:1/8)).
question(4,[b,c,d,e], q_bcde_2, fr(2/3,5/6), fr(1:1/2)).
question(4,[b,c,d,e], q_bcde_3, fr(1/8,7/4), fr(1:7/8)).
question(4,[b,c,d,e], q_bcde_4, fr(1/2,7/6), fr(1:2/3)).
question(4,[b,c,d,e], q_bcde_5, fr(5/3,7/6), fr(2:5/6)).
question(4,[b,c,d,e], q_bcde_6, fr(4/3,7/6), fr(2:1/2)).
question(4,[b,c,d,e], q_bcde_7, fr(3/8,5/6), fr(1:5/24)).
question(4,[b,c,d,e], q_bcde_8, fr(4/5,3/10), fr(1:1/10)).
question(4,[b,c,d,e], q_bcde_9, fr(7/8,3/4), fr(1:5/8)).
question(4,[b,c,d,f], q_bcdf_1, fr(3/6,2/4), fr(1)).
question(4,[b,c,d,f], q_bcdf_2, fr(5/10,4/8), fr(1)).
question(4,[a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), fr(2:1/2)).
question(4,[a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), fr(3:1/3)).

5 skill problems:
question(5,[a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), fr(2:1/6)).
question(5,[a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), fr(2:1/3)).

Appendix I. Generated Logfiles 167

Appendix I. Generated Logfiles

This appendix contains a selected list of logfiles, generated for different student types. This was
described in Section 6.4. The logfiles use the following legend to represent the different skills
and malrules:

a makeVulgar
b makeCommon
c checkAndAdd
d cancel
e makeProper
f makeWhole
mg malCancel
mh malAdd1
mi malAdd2
mj malAdd3

Appendix I. Generated Logfiles 168

Logfile: log1a

simStudents([[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]).

sam(sam1a,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok).
sam(sam1a,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok).
sam(sam1a,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok).
sam(sam1a,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok).
sam(sam1a,[b,c,d],q_bc_3,fr(5/8,1/6),fr(19/24),ok).
sam(sam1a,[c,d],q_cd_1,fr(4/9,2/9),fr(2/3),ok).
sam(sam1a,[c,d],q_cd_2,fr(12/64,4/64),fr(1/4),ok).
sam(sam1a,[c,d],q_cd_3,fr(9/24,3/24),fr(1/2),ok).
sam(sam1a,[c,d],q_cd_4,fr(9/16,3/16),fr(3/4),ok).
sam(sam1a,[c,d],q_cd_5,fr(1/6,1/6),fr(1/3),ok).
sam(sam1a,[c,d],q_cd_6,fr(3/8,1/8),fr(1/2),ok).
sam(sam1a,[c,e],q_ce_1,fr(5/7,6/7),fr(1:4/7),ok).
sam(sam1a,[c,e],q_ce_2,fr(4/7,8/7),fr(1:5/7),ok).
sam(sam1a,[c,e],q_ce_3,fr(8/5,6/5),fr(2:4/5),ok).
sam(sam1a,[c,e],q_ce_4,fr(2/3,2/3),fr(1:1/3),ok).
sam(sam1a,[c,e],q_ce_5,fr(5/6,2/6),fr(1:1/6),ok).
sam(sam1a,[c,e],q_ce_6,fr(7/5,2/5),fr(1:4/5),ok).
sam(sam1a,[a,c,e],q_ace_1,fr(1:1/5,2/5),fr(1:3/5),ok).
sam(sam1a,[a,c,e],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok).
sam(sam1a,[a,c,e],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok).
sam(sam1a,[b,c,d],q_bcd_1,fr(1/2,1/4),fr(3/4),ok).
sam(sam1a,[b,c,d],q_bcd_2,fr(5/6,1/8),fr(23/24),ok).
sam(sam1a,[b,c,d],q_bcd_3,fr(1/2,1/6),fr(2/3),ok).
sam(sam1a,[b,c,d],q_bcd_4,fr(1/12,1/6),fr(1/4),ok).
sam(sam1a,[b,c,d],q_bcd_5,fr(2/15,1/5),fr(1/3),ok).
sam(sam1a,[b,c,e],q_bce_1,fr(2/3,3/5),fr(1:4/15),ok).
sam(sam1a,[b,c,e],q_bce_2,fr(1/2,7/3),fr(2:5/6),ok).
sam(sam1a,[b,c,e],q_bce_3,fr(5/2,8/5),fr(4:1/10),ok).
sam(sam1a,[b,c,e],q_bce_4,fr(4/5,3/4),fr(1:11/20),ok).
sam(sam1a,[b,c,d,e],q_bce_5,fr(5/6,1/3),fr(1:1/6),ok).
sam(sam1a,[b,c,e],q_bce_6,fr(6/7,3/8),fr(1:13/56),ok).
sam(sam1a,[b,c,e],q_bce_7,fr(6/7,5/8),fr(1:27/56),ok).
sam(sam1a,[b,c,e],q_bce_8,fr(5/8,4/5),fr(1:17/40),ok).
sam(sam1a,[b,c,d,e],q_bce_9,fr(5/8,5/6),fr(1:11/24),ok).
sam(sam1a,[b,c,d,e],q_bce_10,fr(3/8,5/6),fr(1:5/24),ok).
sam(sam1a,[b,c,e],q_bce_11,fr(8/9,3/5),fr(1:22/45),ok).
sam(sam1a,[c,d,e],q_cde_1,fr(5/8,9/8),fr(1:3/4),ok).
sam(sam1a,[c,d,e],q_cde_2,fr(8/9,4/9),fr(1:1/3),ok).
sam(sam1a,[c,d,e],q_cde_3,fr(5/4,5/4),fr(2:1/2),ok).
sam(sam1a,[c,d,f],q_cdf_1,fr(5/7,2/7),fr(1),ok).
sam(sam1a,[c,d,f],q_cdf_2,fr(4/5,1/5),fr(1),ok).
sam(sam1a,[c,d,f],q_cdf_3,fr(1/2,1/2),fr(1),ok).
sam(sam1a,[c,d,f],q_cdf_4,fr(4/5,1/5),fr(1),ok).
sam(sam1a,[c,d,f],q_cdf_5,fr(1/2,1/2),fr(1),ok).
sam(sam1a,[a,b,c,e],q_abce_1,fr(1:2/3,1:3/5),fr(3:4/15),ok).
sam(sam1a,[a,b,c,e],q_abce_2,fr(2:1/2,7/3),fr(4:5/6),ok).
sam(sam1a,[a,b,c,d,e],q_abce_3,fr(1/4,2:1/8),fr(2:3/8),ok).
sam(sam1a,[a,b,c,d,e],q_abce_4,fr(1:3/8,1/2),fr(1:7/8),ok).

Appendix I. Generated Logfiles 169

sam(sam1a,[a,b,c,e],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok).
sam(sam1a,[a,c,d,e,f],q_acef_1,fr(1:1/3,2/3),fr(2),ok).
sam(sam1a,[a,c,d,e,f],q_acef_2,fr(1:1/5,4/5),fr(2),ok).
sam(sam1a,[c,d,e,f],q_cdef_1,fr(1/3,5/3),fr(2),ok).
sam(sam1a,[c,d,e,f],q_cdef_2,fr(3/2,5/2),fr(4),ok).
sam(sam1a,[b,c,d,e],q_bcde_1,fr(3/8,3/4),fr(1:1/8),ok).
sam(sam1a,[b,c,d,e],q_bcde_2,fr(2/3,5/6),fr(1:1/2),ok).
sam(sam1a,[b,c,d,e],q_bcde_3,fr(1/8,7/4),fr(1:7/8),ok).
sam(sam1a,[b,c,d,e],q_bcde_4,fr(1/2,7/6),fr(1:2/3),ok).
sam(sam1a,[b,c,d,e],q_bcde_5,fr(5/3,7/6),fr(2:5/6),ok).
sam(sam1a,[b,c,d,e],q_bcde_6,fr(4/3,7/6),fr(2:1/2),ok).
sam(sam1a,[b,c,d,e],q_bcde_7,fr(3/8,5/6),fr(1:5/24),ok).
sam(sam1a,[b,c,d,e],q_bcde_8,fr(4/5,3/10),fr(1:1/10),ok).
sam(sam1a,[b,c,d,e],q_bcde_9,fr(7/8,3/4),fr(1:5/8),ok).
sam(sam1a,[b,c,d,f],q_bcdf_1,fr(3/6,2/4),fr(1),ok).
sam(sam1a,[b,c,d,f],q_bcdf_2,fr(5/10,4/8),fr(1),ok).
sam(sam1a,[a,c,d,e],q_acde_1,fr(1:1/8,1:3/8),fr(2:1/2),ok).
sam(sam1a,[a,c,d,e],q_acde_2,fr(1:1/6,2:1/6),fr(3:1/3),ok).
sam(sam1a,[a,b,c,d,e],q_abcde_1,fr(1/3,1:5/6),fr(2:1/6),ok).
sam(sam1a,[a,b,c,d,e],q_abcde_2,fr(1/4,2:1/12),fr(2:1/3),ok).

Logfile: log2e

simStudents([[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]]).

sam(sam2e,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok).
sam(sam2e,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok).
sam(sam2e,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok).
sam(sam2e,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok).
sam(sam2e,[b,c,d],q_bc_3,fr(5/8,1/6),fr(19/24),ok).
sam(sam2e,[c,d],q_cd_1,fr(4/9,2/9),fr(2/3),ok).
sam(sam2e,[c,d],q_cd_2,fr(12/64,4/64),fr(1/4),ok).
sam(sam2e,[c,d],q_cd_3,fr(9/24,3/24),fr(1/2),ok).
sam(sam2e,[c,d],q_cd_4,fr(9/16,3/16),fr(3/4),ok).
sam(sam2e,[c,d],q_cd_5,fr(1/6,1/6),fr(1/3),ok).
sam(sam2e,[c,d],q_cd_6,fr(3/8,1/8),fr(1/2),ok).
sam(sam2e,[c,e],q_ce_1,fr(5/7,6/7),fr(1:4/7),ok).
sam(sam2e,[c,e],q_ce_2,fr(4/7,8/7),fr(1:5/7),ok).
sam(sam2e,[c,e],q_ce_3,fr(8/5,6/5),fr(2:4/5),ok).
sam(sam2e,[c,e],q_ce_4,fr(2/3,2/3),fr(1:1/3),ok).
sam(sam2e,[c,e],q_ce_5,fr(5/6,2/6),fr(1:1/6),ok).
sam(sam2e,[c,e],q_ce_6,fr(7/5,2/5),fr(1:4/5),ok).
sam(sam2e,[a,c,e],q_ace_1,fr(1:1/5,2/5),fr(1:3/5),ok).
sam(sam2e,[a,c,e],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok).
sam(sam2e,[a,c,e],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok).
sam(sam2e,[b,c,d],q_bcd_1,fr(1/2,1/4),fr(3/4),ok).
sam(sam2e,[b,c,d],q_bcd_2,fr(5/6,1/8),fr(23/24),ok).
sam(sam2e,[b,c,d],q_bcd_3,fr(1/2,1/6),fr(2/3),ok).
sam(sam2e,[b,c,d],q_bcd_4,fr(1/12,1/6),fr(1/4),ok).
sam(sam2e,[b,c,d],q_bcd_5,fr(2/15,1/5),fr(1/3),ok).
sam(sam2e,[b,c,e],q_bce_1,fr(2/3,3/5),fr(1:4/15),ok).
sam(sam2e,[b,c,e],q_bce_2,fr(1/2,7/3),fr(2:5/6),ok).

Appendix I. Generated Logfiles 170

sam(sam2e,[b,c,e],q_bce_3,fr(5/2,8/5),fr(4:1/10),ok).
sam(sam2e,[b,c,e],q_bce_4,fr(4/5,3/4),fr(1:11/20),ok).
sam(sam2e,[b,c,d,e],q_bce_5,fr(5/6,1/3),fr(1:1/6),ok).
sam(sam2e,[b,c,e],q_bce_6,fr(6/7,3/8),fr(1:13/56),ok).
sam(sam2e,[b,c,e],q_bce_7,fr(6/7,5/8),fr(1:27/56),ok).
sam(sam2e,[b,c,e],q_bce_8,fr(5/8,4/5),fr(1:17/40),ok).
sam(sam2e,[b,c,d,e],q_bce_9,fr(5/8,5/6),fr(1:11/24),ok).
sam(sam2e,[b,c,d,e],q_bce_10,fr(3/8,5/6),fr(1:5/24),ok).
sam(sam2e,[b,c,e],q_bce_11,fr(8/9,3/5),fr(1:22/45),ok).
sam(sam2e,[c,d,e],q_cde_1,fr(5/8,9/8),fr(1:3/4),ok).
sam(sam2e,[c,d,e],q_cde_2,fr(8/9,4/9),fr(1:1/3),ok).
sam(sam2e,[c,d,e],q_cde_3,fr(5/4,5/4),fr(2:1/2),ok).
sam(sam2e,[c,d],q_cdf_1,fr(5/7,2/7),fr(1/1),no).
sam(sam2e,[c,d],q_cdf_2,fr(4/5,1/5),fr(1/1),no).
sam(sam2e,[c,d],q_cdf_3,fr(1/2,1/2),fr(1/1),no).
sam(sam2e,[c,d],q_cdf_4,fr(4/5,1/5),fr(1/1),no).
sam(sam2e,[c,d],q_cdf_5,fr(1/2,1/2),fr(1/1),no).
sam(sam2e,[a,b,c,e],q_abce_1,fr(1:2/3,1:3/5),fr(3:4/15),ok).
sam(sam2e,[a,b,c,e],q_abce_2,fr(2:1/2,7/3),fr(4:5/6),ok).
sam(sam2e,[a,b,c,d,e],q_abce_3,fr(1/4,2:1/8),fr(2:3/8),ok).
sam(sam2e,[a,b,c,d,e],q_abce_4,fr(1:3/8,1/2),fr(1:7/8),ok).
sam(sam2e,[a,b,c,e],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok).
sam(sam2e,[a,c,d,e],q_acef_1,fr(1:1/3,2/3),fr(2:0/1),no).
sam(sam2e,[a,c,d,e],q_acef_2,fr(1:1/5,4/5),fr(2:0/1),no).
sam(sam2e,[c,d,e],q_cdef_1,fr(1/3,5/3),fr(2:0/1),no).
sam(sam2e,[c,d,e],q_cdef_2,fr(3/2,5/2),fr(4:0/1),no).
sam(sam2e,[b,c,d,e],q_bcde_1,fr(3/8,3/4),fr(1:1/8),ok).
sam(sam2e,[b,c,d,e],q_bcde_2,fr(2/3,5/6),fr(1:1/2),ok).
sam(sam2e,[b,c,d,e],q_bcde_3,fr(1/8,7/4),fr(1:7/8),ok).
sam(sam2e,[b,c,d,e],q_bcde_4,fr(1/2,7/6),fr(1:2/3),ok).
sam(sam2e,[b,c,d,e],q_bcde_5,fr(5/3,7/6),fr(2:5/6),ok).
sam(sam2e,[b,c,d,e],q_bcde_6,fr(4/3,7/6),fr(2:1/2),ok).
sam(sam2e,[b,c,d,e],q_bcde_7,fr(3/8,5/6),fr(1:5/24),ok).
sam(sam2e,[b,c,d,e],q_bcde_8,fr(4/5,3/10),fr(1:1/10),ok).
sam(sam2e,[b,c,d,e],q_bcde_9,fr(7/8,3/4),fr(1:5/8),ok).
sam(sam2e,[b,c,d],q_bcdf_1,fr(3/6,2/4),fr(1/1),no).
sam(sam2e,[b,c,d],q_bcdf_2,fr(5/10,4/8),fr(1/1),no).
sam(sam2e,[a,c,d,e],q_acde_1,fr(1:1/8,1:3/8),fr(2:1/2),ok).
sam(sam2e,[a,c,d,e],q_acde_2,fr(1:1/6,2:1/6),fr(3:1/3),ok).
sam(sam2e,[a,b,c,d,e],q_abcde_1,fr(1/3,1:5/6),fr(2:1/6),ok).
sam(sam2e,[a,b,c,d,e],q_abcde_2,fr(1/4,2:1/12),fr(2:1/3),ok).

Logfile: log2f

simStudents([[sam2f-[[makeCommon],[checkAndAdd],[]]]]).

sam(sam2f,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok).
sam(sam2f,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok).
sam(sam2f,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok).
sam(sam2f,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok).
sam(sam2f,[b,c],q_bc_3,fr(5/8,1/6),fr(38/48),no).
sam(sam2f,[c],q_cd_1,fr(4/9,2/9),fr(6/9),no).
sam(sam2f,[c],q_cd_2,fr(12/64,4/64),fr(16/64),no).

Appendix I. Generated Logfiles 171

sam(sam2f,[c],q_cd_3,fr(9/24,3/24),fr(12/24),no).
sam(sam2f,[c],q_cd_4,fr(9/16,3/16),fr(12/16),no).
sam(sam2f,[c],q_cd_5,fr(1/6,1/6),fr(2/6),no).
sam(sam2f,[c],q_cd_6,fr(3/8,1/8),fr(4/8),no).
sam(sam2f,[c],q_ce_1,fr(5/7,6/7),fr(11/7),no).
sam(sam2f,[c],q_ce_2,fr(4/7,8/7),fr(12/7),no).
sam(sam2f,[c],q_ce_3,fr(8/5,6/5),fr(14/5),no).
sam(sam2f,[c],q_ce_4,fr(2/3,2/3),fr(4/3),no).
sam(sam2f,[c],q_ce_5,fr(5/6,2/6),fr(7/6),no).
sam(sam2f,[c],q_ce_6,fr(7/5,2/5),fr(9/5),no).
sam(sam2f,[c],q_ace_1,fr(1:1/5,2/5),fr(1:3/5),ok).
sam(sam2f,[c],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok).
sam(sam2f,[c],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok).
sam(sam2f,[b,c],q_bcd_1,fr(1/2,1/4),fr(6/8),no).
sam(sam2f,[b,c],q_bcd_2,fr(5/6,1/8),fr(46/48),no).
sam(sam2f,[b,c],q_bcd_3,fr(1/2,1/6),fr(8/12),no).
sam(sam2f,[b,c],q_bcd_4,fr(1/12,1/6),fr(18/72),no).
sam(sam2f,[b,c],q_bcd_5,fr(2/15,1/5),fr(25/75),no).
sam(sam2f,[b,c],q_bce_1,fr(2/3,3/5),fr(19/15),no).
sam(sam2f,[b,c],q_bce_2,fr(1/2,7/3),fr(17/6),no).
sam(sam2f,[b,c],q_bce_3,fr(5/2,8/5),fr(41/10),no).
sam(sam2f,[b,c],q_bce_4,fr(4/5,3/4),fr(31/20),no).
sam(sam2f,[b,c],q_bce_5,fr(5/6,1/3),fr(21/18),no).
sam(sam2f,[b,c],q_bce_6,fr(6/7,3/8),fr(69/56),no).
sam(sam2f,[b,c],q_bce_7,fr(6/7,5/8),fr(83/56),no).
sam(sam2f,[b,c],q_bce_8,fr(5/8,4/5),fr(57/40),no).
sam(sam2f,[b,c],q_bce_9,fr(5/8,5/6),fr(70/48),no).
sam(sam2f,[b,c],q_bce_10,fr(3/8,5/6),fr(58/48),no).
sam(sam2f,[b,c],q_bce_11,fr(8/9,3/5),fr(67/45),no).
sam(sam2f,[c],q_cde_1,fr(5/8,9/8),fr(14/8),no).
sam(sam2f,[c],q_cde_2,fr(8/9,4/9),fr(12/9),no).
sam(sam2f,[c],q_cde_3,fr(5/4,5/4),fr(10/4),no).
sam(sam2f,[c],q_cdf_1,fr(5/7,2/7),fr(7/7),no).
sam(sam2f,[c],q_cdf_2,fr(4/5,1/5),fr(5/5),no).
sam(sam2f,[c],q_cdf_3,fr(1/2,1/2),fr(2/2),no).
sam(sam2f,[c],q_cdf_4,fr(4/5,1/5),fr(5/5),no).
sam(sam2f,[c],q_cdf_5,fr(1/2,1/2),fr(2/2),no).
sam(sam2f,[b,c],q_abce_1,fr(1:2/3,1:3/5),fr(2:19/15),no).
sam(sam2f,[b,c],q_abce_2,fr(2:1/2,7/3),fr(2:17/6),no).
sam(sam2f,[b,c],q_abce_3,fr(1/4,2:1/8),fr(2:12/32),no).
sam(sam2f,[b,c],q_abce_4,fr(1:3/8,1/2),fr(1:14/16),no).
sam(sam2f,[b,c],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok).
sam(sam2f,[c],q_acef_1,fr(1:1/3,2/3),fr(1:3/3),no).
sam(sam2f,[c],q_acef_2,fr(1:1/5,4/5),fr(1:5/5),no).
sam(sam2f,[c],q_cdef_1,fr(1/3,5/3),fr(6/3),no).
sam(sam2f,[c],q_cdef_2,fr(3/2,5/2),fr(8/2),no).
sam(sam2f,[b,c],q_bcde_1,fr(3/8,3/4),fr(36/32),no).
sam(sam2f,[b,c],q_bcde_2,fr(2/3,5/6),fr(27/18),no).
sam(sam2f,[b,c],q_bcde_3,fr(1/8,7/4),fr(60/32),no).
sam(sam2f,[b,c],q_bcde_4,fr(1/2,7/6),fr(20/12),no).
sam(sam2f,[b,c],q_bcde_5,fr(5/3,7/6),fr(51/18),no).
sam(sam2f,[b,c],q_bcde_6,fr(4/3,7/6),fr(45/18),no).
sam(sam2f,[b,c],q_bcde_7,fr(3/8,5/6),fr(58/48),no).
sam(sam2f,[b,c],q_bcde_8,fr(4/5,3/10),fr(55/50),no).

Appendix I. Generated Logfiles 172

sam(sam2f,[b,c],q_bcde_9,fr(7/8,3/4),fr(52/32),no).
sam(sam2f,[b,c],q_bcdf_1,fr(3/6,2/4),fr(24/24),no).
sam(sam2f,[b,c],q_bcdf_2,fr(5/10,4/8),fr(80/80),no).
sam(sam2f,[c],q_acde_1,fr(1:1/8,1:3/8),fr(2:4/8),no).
sam(sam2f,[c],q_acde_2,fr(1:1/6,2:1/6),fr(3:2/6),no).
sam(sam2f,[b,c],q_abcde_1,fr(1/3,1:5/6),fr(1:21/18),no).
sam(sam2f,[b,c],q_abcde_2,fr(1/4,2:1/12),fr(2:16/48),no).

Logfile: log3a

simStudents([[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]]).

sam(sam3a,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok).
sam(sam3a,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok).
sam(sam3a,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok).
sam(sam3a,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok).
sam(sam3a,[b,c],q_bc_3,fr(5/8,1/6),fr(38/48),no).
sam(sam3a,[c],q_cd_1,fr(4/9,2/9),fr(6/9),no).
sam(sam3a,[c,mg],q_cd_2,fr(12/64,4/64),fr(1/4),ok).
sam(sam3a,[c,mg],q_cd_3,fr(9/24,3/24),fr(1/4),no).
sam(sam3a,[c,mg],q_cd_4,fr(9/16,3/16),fr(2/6),no).
sam(sam3a,[c],q_cd_5,fr(1/6,1/6),fr(2/6),no).
sam(sam3a,[c],q_cd_6,fr(3/8,1/8),fr(4/8),no).
sam(sam3a,[c,e],q_ce_1,fr(5/7,6/7),fr(1:4/7),ok).
sam(sam3a,[c,e],q_ce_2,fr(4/7,8/7),fr(1:5/7),ok).
sam(sam3a,[c,e],q_ce_3,fr(8/5,6/5),fr(2:4/5),ok).
sam(sam3a,[c,e],q_ce_4,fr(2/3,2/3),fr(1:1/3),ok).
sam(sam3a,[c,e],q_ce_5,fr(5/6,2/6),fr(1:1/6),ok).
sam(sam3a,[c,e],q_ce_6,fr(7/5,2/5),fr(1:4/5),ok).
sam(sam3a,[a,c,e],q_ace_1,fr(1:1/5,2/5),fr(1:3/5),ok).
sam(sam3a,[a,c,e],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok).
sam(sam3a,[a,c,e],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok).
sam(sam3a,[b,c],q_bcd_1,fr(1/2,1/4),fr(6/8),no).
sam(sam3a,[b,c],q_bcd_2,fr(5/6,1/8),fr(46/48),no).
sam(sam3a,[b,c],q_bcd_3,fr(1/2,1/6),fr(8/12),no).
sam(sam3a,[b,c],q_bcd_4,fr(1/12,1/6),fr(18/72),no).
sam(sam3a,[b,c],q_bcd_5,fr(2/15,1/5),fr(25/75),no).
sam(sam3a,[b,c,e],q_bce_1,fr(2/3,3/5),fr(1:4/15),ok).
sam(sam3a,[b,c,e],q_bce_2,fr(1/2,7/3),fr(2:5/6),ok).
sam(sam3a,[b,c,e],q_bce_3,fr(5/2,8/5),fr(4:1/10),ok).
sam(sam3a,[b,c,e],q_bce_4,fr(4/5,3/4),fr(1:11/20),ok).
sam(sam3a,[b,c,e],q_bce_5,fr(5/6,1/3),fr(1:3/18),no).
sam(sam3a,[b,c,e],q_bce_6,fr(6/7,3/8),fr(1:13/56),ok).
sam(sam3a,[b,c,e],q_bce_7,fr(6/7,5/8),fr(1:27/56),ok).
sam(sam3a,[b,c,e],q_bce_8,fr(5/8,4/5),fr(1:17/40),ok).
sam(sam3a,[b,c,e],q_bce_9,fr(5/8,5/6),fr(1:22/48),no).
sam(sam3a,[b,c,e],q_bce_10,fr(3/8,5/6),fr(1:10/48),no).
sam(sam3a,[b,c,e],q_bce_11,fr(8/9,3/5),fr(1:22/45),ok).
sam(sam3a,[c,e],q_cde_1,fr(5/8,9/8),fr(1:6/8),no).
sam(sam3a,[c,e],q_cde_2,fr(8/9,4/9),fr(1:3/9),no).
sam(sam3a,[c,e],q_cde_3,fr(5/4,5/4),fr(2:2/4),no).
sam(sam3a,[c],q_cdf_1,fr(5/7,2/7),fr(7/7),no).
sam(sam3a,[c],q_cdf_2,fr(4/5,1/5),fr(5/5),no).

Appendix I. Generated Logfiles 173

sam(sam3a,[c],q_cdf_3,fr(1/2,1/2),fr(2/2),no).
sam(sam3a,[c],q_cdf_4,fr(4/5,1/5),fr(5/5),no).
sam(sam3a,[c],q_cdf_5,fr(1/2,1/2),fr(2/2),no).
sam(sam3a,[a,b,c,e],q_abce_1,fr(1:2/3,1:3/5),fr(3:4/15),ok).
sam(sam3a,[a,b,c,e],q_abce_2,fr(2:1/2,7/3),fr(4:5/6),ok).
sam(sam3a,[a,b,c,e],q_abce_3,fr(1/4,2:1/8),fr(2:12/32),no).
sam(sam3a,[a,b,c,e],q_abce_4,fr(1:3/8,1/2),fr(1:14/16),no).
sam(sam3a,[a,b,c,e],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok).
sam(sam3a,[a,c,e],q_acef_1,fr(1:1/3,2/3),fr(2:0/3),no).
sam(sam3a,[a,c,e],q_acef_2,fr(1:1/5,4/5),fr(2:0/5),no).
sam(sam3a,[c,e],q_cdef_1,fr(1/3,5/3),fr(2:0/3),no).
sam(sam3a,[c,e],q_cdef_2,fr(3/2,5/2),fr(4:0/2),no).
sam(sam3a,[b,c,e],q_bcde_1,fr(3/8,3/4),fr(1:4/32),no).
sam(sam3a,[b,c,e],q_bcde_2,fr(2/3,5/6),fr(1:9/18),no).
sam(sam3a,[b,c,e],q_bcde_3,fr(1/8,7/4),fr(1:28/32),no).
sam(sam3a,[b,c,e],q_bcde_4,fr(1/2,7/6),fr(1:8/12),no).
sam(sam3a,[b,c,e],q_bcde_5,fr(5/3,7/6),fr(2:15/18),no).
sam(sam3a,[b,c,e],q_bcde_6,fr(4/3,7/6),fr(2:9/18),no).
sam(sam3a,[b,c,e],q_bcde_7,fr(3/8,5/6),fr(1:10/48),no).
sam(sam3a,[b,c,e],q_bcde_8,fr(4/5,3/10),fr(1:5/50),no).
sam(sam3a,[b,c,e],q_bcde_9,fr(7/8,3/4),fr(1:20/32),no).
sam(sam3a,[b,c],q_bcdf_1,fr(3/6,2/4),fr(24/24),no).
sam(sam3a,[b,c],q_bcdf_2,fr(5/10,4/8),fr(80/80),no).
sam(sam3a,[a,c,e],q_acde_1,fr(1:1/8,1:3/8),fr(2:4/8),no).
sam(sam3a,[a,c,e],q_acde_2,fr(1:1/6,2:1/6),fr(3:2/6),no).
sam(sam3a,[a,b,c,e],q_abcde_1,fr(1/3,1:5/6),fr(2:3/18),no).
sam(sam3a,[a,b,c,e],q_abcde_2,fr(1/4,2:1/12),fr(2:16/48),no).

Logfile: log4a

simStudents([[sam4a-[[makeCommon],[checkAndAdd],[]]]]).

sam(sam4a,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok).
sam(sam4a,[c],q_c_2,fr(3/5,1/5),fr(4/5),ok).
sam(sam4a,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok).
sam(sam4a,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok).
sam(sam4a,[b,c],q_bc_3,fr(5/8,1/6),fr(38/48),no).
sam(sam4a,[c],q_cd_1,fr(4/9,2/9),fr(2/3),ok). %tweaked
sam(sam4a,[c],q_cd_2,fr(12/64,4/64),fr(1/4),ok). %tweaked
sam(sam4a,[c],q_cd_3,fr(9/24,3/24),fr(12/24),no).
sam(sam4a,[c],q_cd_4,fr(9/16,3/16),fr(12/16),no).
sam(sam4a,[c],q_cd_5,fr(1/6,1/6),fr(2/6),no).
sam(sam4a,[c],q_cd_6,fr(3/8,1/8),fr(4/8),no).
sam(sam4a,[c],q_ce_1,fr(5/7,6/7),fr(1:4/7),ok). %tweaked
sam(sam4a,[c],q_ce_2,fr(4/7,8/7),fr(1:5/7),ok). %tweaked
sam(sam4a,[c],q_ce_3,fr(8/5,6/5),fr(14/5),no).
sam(sam4a,[c],q_ce_4,fr(2/3,2/3),fr(4/3),no).
sam(sam4a,[c],q_ce_5,fr(5/6,2/6),fr(7/6),no).
sam(sam4a,[c],q_ce_6,fr(7/5,2/5),fr(9/5),no).
sam(sam4a,[c],q_ace_1,fr(1:1/5,2/5),fr(1:3/5),ok).
sam(sam4a,[c],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok).
sam(sam4a,[c],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok).

Appendix I. Generated Logfiles 174

sam(sam4a,[b,c],q_bcd_1,fr(1/2,1/4),fr(3/4),ok). %tweaked
sam(sam4a,[b,c],q_bcd_2,fr(5/6,1/8),fr(23/24),ok). %tweaked
sam(sam4a,[b,c],q_bcd_3,fr(1/2,1/6),fr(8/12),no).
sam(sam4a,[b,c],q_bcd_4,fr(1/12,1/6),fr(18/72),no).
sam(sam4a,[b,c],q_bcd_5,fr(2/15,1/5),fr(25/75),no).
sam(sam4a,[b,c],q_bce_1,fr(2/3,3/5),fr(1:4/15),ok). %tweaked
sam(sam4a,[b,c],q_bce_2,fr(1/2,7/3),fr(2:5/6),ok). %tweaked
sam(sam4a,[b,c],q_bce_3,fr(5/2,8/5),fr(41/10),no).
sam(sam4a,[b,c],q_bce_4,fr(4/5,3/4),fr(31/20),no).
sam(sam4a,[b,c],q_bce_5,fr(5/6,1/3),fr(21/18),no).
sam(sam4a,[b,c],q_bce_6,fr(6/7,3/8),fr(69/56),no).
sam(sam4a,[b,c],q_bce_7,fr(6/7,5/8),fr(83/56),no).
sam(sam4a,[b,c],q_bce_8,fr(5/8,4/5),fr(57/40),no).
sam(sam4a,[b,c],q_bce_9,fr(5/8,5/6),fr(70/48),no).
sam(sam4a,[b,c],q_bce_10,fr(3/8,5/6),fr(58/48),no).
sam(sam4a,[b,c],q_bce_11,fr(8/9,3/5),fr(67/45),no).
sam(sam4a,[c],q_cde_1,fr(5/8,9/8),fr(1:3/4),ok). %tweaked
sam(sam4a,[c],q_cde_2,fr(8/9,4/9),fr(1:1/3),ok). %tweaked
sam(sam4a,[c],q_cde_3,fr(5/4,5/4),fr(10/4),no).
sam(sam4a,[c],q_cdf_1,fr(5/7,2/7),fr(1),ok). %tweaked
sam(sam4a,[c],q_cdf_2,fr(4/5,1/5),fr(1),ok). %tweaked
sam(sam4a,[c],q_cdf_3,fr(1/2,1/2),fr(2/2),no).
sam(sam4a,[c],q_cdf_4,fr(4/5,1/5),fr(5/5),no).
sam(sam4a,[c],q_cdf_5,fr(1/2,1/2),fr(2/2),no).
sam(sam4a,[b,c],q_abce_1,fr(1:2/3,1:3/5),fr(3:4/15),ok). %tweaked
sam(sam4a,[b,c],q_abce_2,fr(2:1/2,7/3),fr(4:5/6),ok). %tweaked
sam(sam4a,[b,c],q_abce_3,fr(1/4,2:1/8),fr(2:12/32),no).
sam(sam4a,[b,c],q_abce_4,fr(1:3/8,1/2),fr(1:14/16),no).
sam(sam4a,[b,c],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok).
sam(sam4a,[c],q_acef_1,fr(1:1/3,2/3),fr(2),ok). %tweaked
sam(sam4a,[c],q_acef_2,fr(1:1/5,4/5),fr(2),ok). %tweaked
sam(sam4a,[c],q_cdef_1,fr(1/3,5/3),fr(2),ok). %tweaked
sam(sam4a,[c],q_cdef_2,fr(3/2,5/2),fr(4),ok). %tweaked
sam(sam4a,[b,c],q_bcde_1,fr(3/8,3/4),fr(1:1/8),ok). %tweaked
sam(sam4a,[b,c],q_bcde_2,fr(2/3,5/6),fr(1:1/2),ok). %tweaked
sam(sam4a,[b,c],q_bcde_3,fr(1/8,7/4),fr(60/32),no).
sam(sam4a,[b,c],q_bcde_4,fr(1/2,7/6),fr(20/12),no).
sam(sam4a,[b,c],q_bcde_5,fr(5/3,7/6),fr(51/18),no).
sam(sam4a,[b,c],q_bcde_6,fr(4/3,7/6),fr(45/18),no).
sam(sam4a,[b,c],q_bcde_7,fr(3/8,5/6),fr(58/48),no).
sam(sam4a,[b,c],q_bcde_8,fr(4/5,3/10),fr(55/50),no).
sam(sam4a,[b,c],q_bcde_9,fr(7/8,3/4),fr(52/32),no).
sam(sam4a,[b,c],q_bcdf_1,fr(3/6,2/4),fr(1),ok). %tweaked
sam(sam4a,[b,c],q_bcdf_2,fr(5/10,4/8),fr(1),ok). %tweaked
sam(sam4a,[c],q_acde_1,fr(1:1/8,1:3/8),fr(2:1/2),ok). %tweaked
sam(sam4a,[c],q_acde_2,fr(1:1/6,2:1/6),fr(3:1/3),ok). %tweaked
sam(sam4a,[b,c],q_abcde_1,fr(1/3,1:5/6),fr(2:1/6),ok). %tweaked
sam(sam4a,[b,c],q_abcde_2,fr(1/4,2:1/12),fr(2:1/3),ok). %tweaked

Appendix I. Generated Logfiles 175

Logfile: log5a

simStudents([[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]).

sam(sam1a,[c],q_c_1,fr(1/3,1/3),fr(2/3),ok).
sam(sam1a,[c],q_c_2,fr(3/5,1/5),fr(x),no). %tweaked
sam(sam1a,[b,c],q_bc_1,fr(1/2,1/5),fr(7/10),ok).
sam(sam1a,[b,c],q_bc_2,fr(1/3,1/5),fr(8/15),ok).
sam(sam1a,[b,c,d],q_bc_3,fr(5/8,1/6),fr(19/24),ok).
sam(sam1a,[c,d],q_cd_1,fr(4/9,2/9),fr(x),no). %tweaked
sam(sam1a,[c,d],q_cd_2,fr(12/64,4/64),fr(1/4),ok).
sam(sam1a,[c,d],q_cd_3,fr(9/24,3/24),fr(1/2),ok).
sam(sam1a,[c,d],q_cd_4,fr(9/16,3/16),fr(3/4),ok).
sam(sam1a,[c,d],q_cd_5,fr(1/6,1/6),fr(1/3),ok).
sam(sam1a,[c,d],q_cd_6,fr(3/8,1/8),fr(1/2),ok).
sam(sam1a,[c,e],q_ce_1,fr(5/7,6/7),fr(x),no). %tweaked
sam(sam1a,[c,e],q_ce_2,fr(4/7,8/7),fr(1:5/7),ok).
sam(sam1a,[c,e],q_ce_3,fr(8/5,6/5),fr(2:4/5),ok).
sam(sam1a,[c,e],q_ce_4,fr(2/3,2/3),fr(1:1/3),ok).
sam(sam1a,[c,e],q_ce_5,fr(5/6,2/6),fr(1:1/6),ok).
sam(sam1a,[c,e],q_ce_6,fr(7/5,2/5),fr(1:4/5),ok).
sam(sam1a,[a,c,e],q_ace_1,fr(1:1/5,2/5),fr(x),no). %tweaked
sam(sam1a,[a,c,e],q_ace_2,fr(2:3/7,2/7),fr(2:5/7),ok).
sam(sam1a,[a,c,e],q_ace_3,fr(1:1/5,3/5),fr(1:4/5),ok).
sam(sam1a,[b,c,d],q_bcd_1,fr(1/2,1/4),fr(3/4),ok).
sam(sam1a,[b,c,d],q_bcd_2,fr(5/6,1/8),fr(23/24),ok).
sam(sam1a,[b,c,d],q_bcd_3,fr(1/2,1/6),fr(2/3),ok).
sam(sam1a,[b,c,d],q_bcd_4,fr(1/12,1/6),fr(1/4),ok).
sam(sam1a,[b,c,d],q_bcd_5,fr(2/15,1/5),fr(1/3),ok).
sam(sam1a,[b,c,e],q_bce_1,fr(2/3,3/5),fr(x),no). %tweaked
sam(sam1a,[b,c,e],q_bce_2,fr(1/2,7/3),fr(2:5/6),ok).
sam(sam1a,[b,c,e],q_bce_3,fr(5/2,8/5),fr(4:1/10),ok).
sam(sam1a,[b,c,e],q_bce_4,fr(4/5,3/4),fr(1:11/20),ok).
sam(sam1a,[b,c,d,e],q_bce_5,fr(5/6,1/3),fr(1:1/6),ok).
sam(sam1a,[b,c,e],q_bce_6,fr(6/7,3/8),fr(1:13/56),ok).
sam(sam1a,[b,c,e],q_bce_7,fr(6/7,5/8),fr(1:27/56),ok).
sam(sam1a,[b,c,e],q_bce_8,fr(5/8,4/5),fr(1:17/40),ok).
sam(sam1a,[b,c,d,e],q_bce_9,fr(5/8,5/6),fr(1:11/24),ok).
sam(sam1a,[b,c,d,e],q_bce_10,fr(3/8,5/6),fr(1:5/24),ok).
sam(sam1a,[b,c,e],q_bce_11,fr(8/9,3/5),fr(1:22/45),ok).
sam(sam1a,[c,d,e],q_cde_1,fr(5/8,9/8),fr(1:3/4),ok).
sam(sam1a,[c,d,e],q_cde_2,fr(8/9,4/9),fr(1:1/3),ok).
sam(sam1a,[c,d,e],q_cde_3,fr(5/4,5/4),fr(2:1/2),ok).
sam(sam1a,[c,d,f],q_cdf_1,fr(5/7,2/7),fr(1),ok).
sam(sam1a,[c,d,f],q_cdf_2,fr(4/5,1/5),fr(1),ok).
sam(sam1a,[c,d,f],q_cdf_3,fr(1/2,1/2),fr(1),ok).
sam(sam1a,[c,d,f],q_cdf_4,fr(4/5,1/5),fr(1),ok).
sam(sam1a,[c,d,f],q_cdf_5,fr(1/2,1/2),fr(1),ok).
sam(sam1a,[a,b,c,e],q_abce_1,fr(1:2/3,1:3/5),fr(3:4/15),ok).
sam(sam1a,[a,b,c,e],q_abce_2,fr(2:1/2,7/3),fr(4:5/6),ok).
sam(sam1a,[a,b,c,d,e],q_abce_3,fr(1/4,2:1/8),fr(2:3/8),ok).
sam(sam1a,[a,b,c,d,e],q_abce_4,fr(1:3/8,1/2),fr(1:7/8),ok).

Appendix I. Generated Logfiles 176

sam(sam1a,[a,b,c,e],q_abce_5,fr(1/5,1:5/7),fr(1:32/35),ok).
sam(sam1a,[a,c,d,e,f],q_acef_1,fr(1:1/3,2/3),fr(2),ok).
sam(sam1a,[a,c,d,e,f],q_acef_2,fr(1:1/5,4/5),fr(2),ok).
sam(sam1a,[c,d,e,f],q_cdef_1,fr(1/3,5/3),fr(2),ok).
sam(sam1a,[c,d,e,f],q_cdef_2,fr(3/2,5/2),fr(4),ok).
sam(sam1a,[b,c,d,e],q_bcde_1,fr(3/8,3/4),fr(1:1/8),ok).
sam(sam1a,[b,c,d,e],q_bcde_2,fr(2/3,5/6),fr(1:1/2),ok).
sam(sam1a,[b,c,d,e],q_bcde_3,fr(1/8,7/4),fr(1:7/8),ok).
sam(sam1a,[b,c,d,e],q_bcde_4,fr(1/2,7/6),fr(1:2/3),ok).
sam(sam1a,[b,c,d,e],q_bcde_5,fr(5/3,7/6),fr(2:5/6),ok).
sam(sam1a,[b,c,d,e],q_bcde_6,fr(4/3,7/6),fr(2:1/2),ok).
sam(sam1a,[b,c,d,e],q_bcde_7,fr(3/8,5/6),fr(1:5/24),ok).
sam(sam1a,[b,c,d,e],q_bcde_8,fr(4/5,3/10),fr(1:1/10),ok).
sam(sam1a,[b,c,d,e],q_bcde_9,fr(7/8,3/4),fr(1:5/8),ok).
sam(sam1a,[b,c,d,f],q_bcdf_1,fr(3/6,2/4),fr(1),ok).
sam(sam1a,[b,c,d,f],q_bcdf_2,fr(5/10,4/8),fr(1),ok).
sam(sam1a,[a,c,d,e],q_acde_1,fr(1:1/8,1:3/8),fr(2:1/2),ok).
sam(sam1a,[a,c,d,e],q_acde_2,fr(1:1/6,2:1/6),fr(3:1/3),ok).
sam(sam1a,[a,b,c,d,e],q_abcde_1,fr(1/3,1:5/6),fr(2:1/6),ok).
sam(sam1a,[a,b,c,d,e],q_abcde_2,fr(1/4,2:1/12),fr(2:1/3),ok).

Appendix J. Running XP Adaptive Test 177

Appendix J. Running XP Adaptive Test

This appendix contains the results from running XP for a selected list of simulated students.
This was described in Section 6.5. The following legend to represent the different skills:

a makeVulgar
b makeCommon
c checkAndAdd
d cancel
e makeProper
f makeWhole

Appendix J. Running XP Adaptive Test 178

% XP ADAPTIVE TEST output xp_1a

Student=[[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).

Selected Node : 5
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).

Selected Node : 6
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).

% Summary - XP ADAPTIVE TEST output
problems_presented(7,68).
opportunities_presented([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]).
opportunities_correctly_applied([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]).

Appendix J. Running XP Adaptive Test 179

% XP ADAPTIVE TEST output xp_2e

Student = [[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).

Selected Node : 3
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).

% Summary - XP1 ADAPTIVE TEST output
problems_presented(11,68).
opportunities_presented([(a,4),(b,5),(c,11),(d,7),(e,8),(f,4)]).
opportunities_correctly_applied([(a,3),(b,4),(c,7),(d,4),(e,6),(f,0)]).

Appendix J. Running XP Adaptive Test 180

% XP ADAPTIVE TEST output xp_2f

Student = [[sam2f-[[makeCommon],[checkAndAdd],[]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).

Selected Node : 3
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).

Selected Node : 2
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong).

Selected Node : 1
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).

Appendix J. Running XP Adaptive Test 181

visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong).
visited(1, [c], q_c_1, fr(1/3,1/3), correct).

% Summary - XP1 ADAPTIVE TEST output
problems_presented(15,68).
opportunities_presented([(a,4),(b,6),(c,15),(d,8),(e,9),(f,4)]).
opportunities_correctly_applied([(a,1),(b,1),(c,3),(d,0),(e,1),(f,0)]).

% XP ADAPTIVE TEST output xp_3a

Student = [[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).

Selected Node : 3
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).

Selected Node : 2
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).

Appendix J. Running XP Adaptive Test 182

visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), correct).

% Summary - XP1 ADAPTIVE TEST output
problems_presented(14,68).
opportunities_presented([(a,4),(b,6),(c,14),(d,8),(e,9),(f,4)]).
opportunities_correctly_applied([(a,2),(b,3),(c,5),(d,0),(e,4),(f,0)]).

% XP ADAPTIVE TEST output xp_4a

Student = [[sam4a-[[makeCommon],[checkAndAdd],[]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).

Selected Node : 5
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).

Selected Node : 6
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).

% Summary - XP1 ADAPTIVE TEST output
problems_presented(7,68).
opportunities_presented([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]).
opportunities_correctly_applied([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]).

Appendix J. Running XP Adaptive Test 183

% XP ADAPTIVE TEST output xp_5a

Student = [[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).

Selected Node : 5
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).

Selected Node : 6
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).

% Summary - XP1 ADAPTIVE TEST output
problems_presented(7,68).
opportunities_presented([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]).
opportunities_correctly_applied([(a,4),(b,4),(c,7),(d,5),(e,6),(f,3)]).

Appendix K. Running ST Sequential Test 184

Appendix K. Running ST Sequential Test

This appendix contains the results from running ST for a selected list of simulated students.
This was described in Section 6.5. The following legend to represent the different skills:

a makeVulgar
b makeCommon
c checkAndAdd
d cancel
e makeProper
f makeWhole

Appendix K. Running ST Sequential Test 185

% ST ADAPTIVE TEST output st_1a

Student = [[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]

visited(q_c_1, [c], ok).
visited(q_c_2, [c], ok).
visited(q_bc_1, [b,c], ok).
visited(q_bc_2, [b,c], ok).
visited(q_bc_3, [b,c,d], ok).
visited(q_cd_1, [c,d], ok).
visited(q_cd_2, [c,d], ok).
visited(q_cd_3, [c,d], ok).
visited(q_cd_4, [c,d], ok).
visited(q_cd_5, [c,d], ok).
visited(q_cd_6, [c,d], ok).
visited(q_ce_1, [c,e], ok).
visited(q_ce_2, [c,e], ok).
visited(q_ce_3, [c,e], ok).
visited(q_ce_4, [c,e], ok).
visited(q_ce_5, [c,e], ok).
visited(q_ce_6, [c,e], ok).
visited(q_ace_1, [a,c,e], ok).
visited(q_ace_2, [a,c,e], ok).
visited(q_ace_3, [a,c,e], ok).
visited(q_bcd_1, [b,c,d], ok).
visited(q_bcd_2, [b,c,d], ok).
visited(q_bcd_3, [b,c,d], ok).
visited(q_bcd_4, [b,c,d], ok).
visited(q_bcd_5, [b,c,d], ok).
visited(q_bce_1, [b,c,e], ok).
visited(q_bce_2, [b,c,e], ok).
visited(q_bce_3, [b,c,e], ok).
visited(q_bce_4, [b,c,e], ok).
visited(q_bce_5, [b,c,d,e], ok).
visited(q_bce_6, [b,c,e], ok).
visited(q_bce_7, [b,c,e], ok).
visited(q_bce_8, [b,c,e], ok).
visited(q_bce_9, [b,c,d,e], ok).
visited(q_bce_10, [b,c,d,e], ok).
visited(q_bce_11, [b,c,e], ok).
visited(q_cde_1, [c,d,e], ok).
visited(q_cde_2, [c,d,e], ok).
visited(q_cde_3, [c,d,e], ok).
visited(q_cdf_1, [c,d,f], ok).
visited(q_cdf_2, [c,d,f], ok).
visited(q_cdf_3, [c,d,f], ok).
visited(q_cdf_4, [c,d,f], ok).
visited(q_cdf_5, [c,d,f], ok).
visited(q_abce_1, [a,b,c,e], ok).
visited(q_abce_2, [a,b,c,e], ok).
visited(q_abce_3, [a,b,c,d,e], ok).
visited(q_abce_4, [a,b,c,d,e], ok).
visited(q_abce_5, [a,b,c,e], ok).

Appendix K. Running ST Sequential Test 186

visited(q_acef_1, [a,c,d,e,f], ok).
visited(q_acef_2, [a,c,d,e,f], ok).
visited(q_cdef_1, [c,d,e,f], ok).
visited(q_cdef_2, [c,d,e,f], ok).
visited(q_bcde_1, [b,c,d,e], ok).
visited(q_bcde_2, [b,c,d,e], ok).
visited(q_bcde_3, [b,c,d,e], ok).
visited(q_bcde_4, [b,c,d,e], ok).
visited(q_bcde_5, [b,c,d,e], ok).
visited(q_bcde_6, [b,c,d,e], ok).
visited(q_bcde_7, [b,c,d,e], ok).
visited(q_bcde_8, [b,c,d,e], ok).
visited(q_bcde_9, [b,c,d,e], ok).
visited(q_bcdf_1, [b,c,d,f], ok).
visited(q_bcdf_2, [b,c,d,f], ok).
visited(q_acde_1, [a,c,d,e], ok).
visited(q_acde_2, [a,c,d,e], ok).
visited(q_abcde_1, [a,b,c,d,e], ok).
visited(q_abcde_2, [a,b,c,d,e], ok).

% Summary - ST Sequential Test output
problems_presented(68,68).
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]).
opportunities_correctly_applied([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]).

% ST ADAPTIVE TEST output st_2e

Student = [[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]]

visited(q_c_1, [c], ok).
visited(q_c_2, [c], ok).
visited(q_bc_1, [b,c], ok).
visited(q_bc_2, [b,c], ok).
visited(q_bc_3, [b,c,d], ok).
visited(q_cd_1, [c,d], ok).
visited(q_cd_2, [c,d], ok).
visited(q_cd_3, [c,d], ok).
visited(q_cd_4, [c,d], ok).
visited(q_cd_5, [c,d], ok).
visited(q_cd_6, [c,d], ok).
visited(q_ce_1, [c,e], ok).
visited(q_ce_2, [c,e], ok).
visited(q_ce_3, [c,e], ok).
visited(q_ce_4, [c,e], ok).
visited(q_ce_5, [c,e], ok).
visited(q_ce_6, [c,e], ok).
visited(q_ace_1, [a,c,e], ok).
visited(q_ace_2, [a,c,e], ok).
visited(q_ace_3, [a,c,e], ok).
visited(q_bcd_1, [b,c,d], ok).
visited(q_bcd_2, [b,c,d], ok).

Appendix K. Running ST Sequential Test 187

visited(q_bcd_3, [b,c,d], ok).
visited(q_bcd_4, [b,c,d], ok).
visited(q_bcd_5, [b,c,d], ok).
visited(q_bce_1, [b,c,e], ok).
visited(q_bce_2, [b,c,e], ok).
visited(q_bce_3, [b,c,e], ok).
visited(q_bce_4, [b,c,e], ok).
visited(q_bce_5, [b,c,d,e], ok).
visited(q_bce_6, [b,c,e], ok).
visited(q_bce_7, [b,c,e], ok).
visited(q_bce_8, [b,c,e], ok).
visited(q_bce_9, [b,c,d,e], ok).
visited(q_bce_10, [b,c,d,e], ok).
visited(q_bce_11, [b,c,e], ok).
visited(q_cde_1, [c,d,e], ok).
visited(q_cde_2, [c,d,e], ok).
visited(q_cde_3, [c,d,e], ok).
visited(q_cdf_1, [c,d,f], no).
visited(q_cdf_2, [c,d,f], no).
visited(q_cdf_3, [c,d,f], no).
visited(q_cdf_4, [c,d,f], no).
visited(q_cdf_5, [c,d,f], no).
visited(q_abce_1, [a,b,c,e], ok).
visited(q_abce_2, [a,b,c,e], ok).
visited(q_abce_3, [a,b,c,d,e], ok).
visited(q_abce_4, [a,b,c,d,e], ok).
visited(q_abce_5, [a,b,c,e], ok).
visited(q_acef_1, [a,c,d,e,f], no).
visited(q_acef_2, [a,c,d,e,f], no).
visited(q_cdef_1, [c,d,e,f], no).
visited(q_cdef_2, [c,d,e,f], no).
visited(q_bcde_1, [b,c,d,e], ok).
visited(q_bcde_2, [b,c,d,e], ok).
visited(q_bcde_3, [b,c,d,e], ok).
visited(q_bcde_4, [b,c,d,e], ok).
visited(q_bcde_5, [b,c,d,e], ok).
visited(q_bcde_6, [b,c,d,e], ok).
visited(q_bcde_7, [b,c,d,e], ok).
visited(q_bcde_8, [b,c,d,e], ok).
visited(q_bcde_9, [b,c,d,e], ok).
visited(q_bcdf_1, [b,c,d,f], no).
visited(q_bcdf_2, [b,c,d,f], no).
visited(q_acde_1, [a,c,d,e], ok).
visited(q_acde_2, [a,c,d,e], ok).
visited(q_abcde_1, [a,b,c,d,e], ok).
visited(q_abcde_2, [a,b,c,d,e], ok).

% Summary - ST Sequential Test output
problems_presented(68,68).
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]).
opportunities_correctly_applied([(a,12),(b,35),(c,57),(d,33),(e,41),(f,0)]).

Appendix K. Running ST Sequential Test 188

% ST ADAPTIVE TEST output st_2f

Student = [[sam2f-[[makeCommon],[checkAndAdd],[]]]]

visited(q_c_1, [c], ok).
visited(q_c_2, [c], ok).
visited(q_bc_1, [b,c], ok).
visited(q_bc_2, [b,c], ok).
visited(q_bc_3, [b,c,d], no).
visited(q_cd_1, [c,d], no).
visited(q_cd_2, [c,d], no).
visited(q_cd_3, [c,d], no).
visited(q_cd_4, [c,d], no).
visited(q_cd_5, [c,d], no).
visited(q_cd_6, [c,d], no).
visited(q_ce_1, [c,e], no).
visited(q_ce_2, [c,e], no).
visited(q_ce_3, [c,e], no).
visited(q_ce_4, [c,e], no).
visited(q_ce_5, [c,e], no).
visited(q_ce_6, [c,e], no).
visited(q_ace_1, [a,c,e], ok).
visited(q_ace_2, [a,c,e], ok).
visited(q_ace_3, [a,c,e], ok).
visited(q_bcd_1, [b,c,d], no).
visited(q_bcd_2, [b,c,d], no).
visited(q_bcd_3, [b,c,d], no).
visited(q_bcd_4, [b,c,d], no).
visited(q_bcd_5, [b,c,d], no).
visited(q_bce_1, [b,c,e], no).
visited(q_bce_2, [b,c,e], no).
visited(q_bce_3, [b,c,e], no).
visited(q_bce_4, [b,c,e], no).
visited(q_bce_5, [b,c,d,e], no).
visited(q_bce_6, [b,c,e], no).
visited(q_bce_7, [b,c,e], no).
visited(q_bce_8, [b,c,e], no).
visited(q_bce_9, [b,c,d,e], no).
visited(q_bce_10, [b,c,d,e], no).
visited(q_bce_11, [b,c,e], no).
visited(q_cde_1, [c,d,e], no).
visited(q_cde_2, [c,d,e], no).
visited(q_cde_3, [c,d,e], no).
visited(q_cdf_1, [c,d,f], no).
visited(q_cdf_2, [c,d,f], no).
visited(q_cdf_3, [c,d,f], no).
visited(q_cdf_4, [c,d,f], no).
visited(q_cdf_5, [c,d,f], no).
visited(q_abce_1, [a,b,c,e], no).
visited(q_abce_2, [a,b,c,e], no).
visited(q_abce_3, [a,b,c,d,e], no).
visited(q_abce_4, [a,b,c,d,e], no).
visited(q_abce_5, [a,b,c,e], ok).
visited(q_acef_1, [a,c,d,e,f], no).

Appendix K. Running ST Sequential Test 189

visited(q_acef_2, [a,c,d,e,f], no).
visited(q_cdef_1, [c,d,e,f], no).
visited(q_cdef_2, [c,d,e,f], no).
visited(q_bcde_1, [b,c,d,e], no).
visited(q_bcde_2, [b,c,d,e], no).
visited(q_bcde_3, [b,c,d,e], no).
visited(q_bcde_4, [b,c,d,e], no).
visited(q_bcde_5, [b,c,d,e], no).
visited(q_bcde_6, [b,c,d,e], no).
visited(q_bcde_7, [b,c,d,e], no).
visited(q_bcde_8, [b,c,d,e], no).
visited(q_bcde_9, [b,c,d,e], no).
visited(q_bcdf_1, [b,c,d,f], no).
visited(q_bcdf_2, [b,c,d,f], no).
visited(q_acde_1, [a,c,d,e], no).
visited(q_acde_2, [a,c,d,e], no).
visited(q_abcde_1, [a,b,c,d,e], no).
visited(q_abcde_2, [a,b,c,d,e], no).

% Summary - ST Sequential Test output
problems_presented(68,68).
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]).
opportunities_correctly_applied([(a,4),(b,3),(c,8),(d,0),(e,4),(f,0)]).

% ST ADAPTIVE TEST output st_3a

Student = [[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]]

visited(q_c_1, [c], ok).
visited(q_c_2, [c], ok).
visited(q_bc_1, [b,c], ok).
visited(q_bc_2, [b,c], ok).
visited(q_bc_3, [b,c,d], no).
visited(q_cd_1, [c,d], no).
visited(q_cd_2, [c,d], ok).
visited(q_cd_3, [c,d], no).
visited(q_cd_4, [c,d], no).
visited(q_cd_5, [c,d], no).
visited(q_cd_6, [c,d], no).
visited(q_ce_1, [c,e], ok).
visited(q_ce_2, [c,e], ok).
visited(q_ce_3, [c,e], ok).
visited(q_ce_4, [c,e], ok).
visited(q_ce_5, [c,e], ok).
visited(q_ce_6, [c,e], ok).
visited(q_ace_1, [a,c,e], ok).
visited(q_ace_2, [a,c,e], ok).
visited(q_ace_3, [a,c,e], ok).
visited(q_bcd_1, [b,c,d], no).
visited(q_bcd_2, [b,c,d], no).
visited(q_bcd_3, [b,c,d], no).
visited(q_bcd_4, [b,c,d], no).
visited(q_bcd_5, [b,c,d], no).

Appendix K. Running ST Sequential Test 190

visited(q_bce_1, [b,c,e], ok).
visited(q_bce_2, [b,c,e], ok).
visited(q_bce_3, [b,c,e], ok).
visited(q_bce_4, [b,c,e], ok).
visited(q_bce_5, [b,c,d,e], no).
visited(q_bce_6, [b,c,e], ok).
visited(q_bce_7, [b,c,e], ok).
visited(q_bce_8, [b,c,e], ok).
visited(q_bce_9, [b,c,d,e], no).
visited(q_bce_10, [b,c,d,e], no).
visited(q_bce_11, [b,c,e], ok).
visited(q_cde_1, [c,d,e], no).
visited(q_cde_2, [c,d,e], no).
visited(q_cde_3, [c,d,e], no).
visited(q_cdf_1, [c,d,f], no).
visited(q_cdf_2, [c,d,f], no).
visited(q_cdf_3, [c,d,f], no).
visited(q_cdf_4, [c,d,f], no).
visited(q_cdf_5, [c,d,f], no).
visited(q_abce_1, [a,b,c,e], ok).
visited(q_abce_2, [a,b,c,e], ok).
visited(q_abce_3, [a,b,c,d,e], no).
visited(q_abce_4, [a,b,c,d,e], no).
visited(q_abce_5, [a,b,c,e], ok).
visited(q_acef_1, [a,c,d,e,f], no).
visited(q_acef_2, [a,c,d,e,f], no).
visited(q_cdef_1, [c,d,e,f], no).
visited(q_cdef_2, [c,d,e,f], no).
visited(q_bcde_1, [b,c,d,e], no).
visited(q_bcde_2, [b,c,d,e], no).
visited(q_bcde_3, [b,c,d,e], no).
visited(q_bcde_4, [b,c,d,e], no).
visited(q_bcde_5, [b,c,d,e], no).
visited(q_bcde_6, [b,c,d,e], no).
visited(q_bcde_7, [b,c,d,e], no).
visited(q_bcde_8, [b,c,d,e], no).
visited(q_bcde_9, [b,c,d,e], no).
visited(q_bcdf_1, [b,c,d,f], no).
visited(q_bcdf_2, [b,c,d,f], no).
visited(q_acde_1, [a,c,d,e], no).
visited(q_acde_2, [a,c,d,e], no).
visited(q_abcde_1, [a,b,c,d,e], no).
visited(q_abcde_2, [a,b,c,d,e], no).

% Summary - ST Sequential Test output
problems_presented(68,68).
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]).
opportunities_correctly_applied([(a,6),(b,13),(c,25),(d,1),(e,20),(f,0)]).

Appendix K. Running ST Sequential Test 191

% ST ADAPTIVE TEST output st_4a

Student = [[sam4a-[[makeCommon],[checkAndAdd],[]]]]

visited(q_c_1, [c], ok).
visited(q_c_2, [c], ok).
visited(q_bc_1, [b,c], ok).
visited(q_bc_2, [b,c], ok).
visited(q_bc_3, [b,c,d], no).
visited(q_cd_1, [c,d], ok).
visited(q_cd_2, [c,d], ok).
visited(q_cd_3, [c,d], no).
visited(q_cd_4, [c,d], no).
visited(q_cd_5, [c,d], no).
visited(q_cd_6, [c,d], no).
visited(q_ce_1, [c,e], ok).
visited(q_ce_2, [c,e], ok).
visited(q_ce_3, [c,e], no).
visited(q_ce_4, [c,e], no).
visited(q_ce_5, [c,e], no).
visited(q_ce_6, [c,e], no).
visited(q_ace_1, [a,c,e], ok).
visited(q_ace_2, [a,c,e], ok).
visited(q_ace_3, [a,c,e], ok).
visited(q_bcd_1, [b,c,d], ok).
visited(q_bcd_2, [b,c,d], ok).
visited(q_bcd_3, [b,c,d], no).
visited(q_bcd_4, [b,c,d], no).
visited(q_bcd_5, [b,c,d], no).
visited(q_bce_1, [b,c,e], ok).
visited(q_bce_2, [b,c,e], ok).
visited(q_bce_3, [b,c,e], no).
visited(q_bce_4, [b,c,e], no).
visited(q_bce_5, [b,c,d,e], no).
visited(q_bce_6, [b,c,e], no).
visited(q_bce_7, [b,c,e], no).
visited(q_bce_8, [b,c,e], no).
visited(q_bce_9, [b,c,d,e], no).
visited(q_bce_10, [b,c,d,e], no).
visited(q_bce_11, [b,c,e], no).
visited(q_cde_1, [c,d,e], ok).
visited(q_cde_2, [c,d,e], ok).
visited(q_cde_3, [c,d,e], no).
visited(q_cdf_1, [c,d,f], ok).
visited(q_cdf_2, [c,d,f], ok).
visited(q_cdf_3, [c,d,f], no).
visited(q_cdf_4, [c,d,f], no).
visited(q_cdf_5, [c,d,f], no).
visited(q_abce_1, [a,b,c,e], ok).
visited(q_abce_2, [a,b,c,e], ok).
visited(q_abce_3, [a,b,c,d,e], no).
visited(q_abce_4, [a,b,c,d,e], no).
visited(q_abce_5, [a,b,c,e], ok).

Appendix K. Running ST Sequential Test 192

visited(q_acef_1, [a,c,d,e,f], ok).
visited(q_acef_2, [a,c,d,e,f], ok).
visited(q_cdef_1, [c,d,e,f], ok).
visited(q_cdef_2, [c,d,e,f], ok).
visited(q_bcde_1, [b,c,d,e], ok).
visited(q_bcde_2, [b,c,d,e], ok).
visited(q_bcde_3, [b,c,d,e], no).
visited(q_bcde_4, [b,c,d,e], no).
visited(q_bcde_5, [b,c,d,e], no).
visited(q_bcde_6, [b,c,d,e], no).
visited(q_bcde_7, [b,c,d,e], no).
visited(q_bcde_8, [b,c,d,e], no).
visited(q_bcde_9, [b,c,d,e], no).
visited(q_bcdf_1, [b,c,d,f], ok).
visited(q_bcdf_2, [b,c,d,f], ok).
visited(q_acde_1, [a,c,d,e], ok).
visited(q_acde_2, [a,c,d,e], ok).
visited(q_abcde_1, [a,b,c,d,e], ok).
visited(q_abcde_2, [a,b,c,d,e], ok).

% Summary - ST Sequential Test output
problems_presented(68,68).
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]).
opportunities_correctly_applied([(a,12),(b,15),(c,34),(d,20),(e,22),(f,8)]).

% ST ADAPTIVE TEST output st_5a

Student = [[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]

visited(q_c_1, [c], ok).
visited(q_c_2, [c], no).
visited(q_bc_1, [b,c], ok).
visited(q_bc_2, [b,c], ok).
visited(q_bc_3, [b,c,d], ok).
visited(q_cd_1, [c,d], no).
visited(q_cd_2, [c,d], ok).
visited(q_cd_3, [c,d], ok).
visited(q_cd_4, [c,d], ok).
visited(q_cd_5, [c,d], ok).
visited(q_cd_6, [c,d], ok).
visited(q_ce_1, [c,e], no).
visited(q_ce_2, [c,e], ok).
visited(q_ce_3, [c,e], ok).
visited(q_ce_4, [c,e], ok).
visited(q_ce_5, [c,e], ok).
visited(q_ce_6, [c,e], ok).
visited(q_ace_1, [a,c,e], no).
visited(q_ace_2, [a,c,e], ok).
visited(q_ace_3, [a,c,e], ok).
visited(q_bcd_1, [b,c,d], ok).
visited(q_bcd_2, [b,c,d], ok).

Appendix K. Running ST Sequential Test 193

visited(q_bcd_3, [b,c,d], ok).
visited(q_bcd_4, [b,c,d], ok).
visited(q_bcd_5, [b,c,d], ok).
visited(q_bce_1, [b,c,e], no).
visited(q_bce_2, [b,c,e], ok).
visited(q_bce_3, [b,c,e], ok).
visited(q_bce_4, [b,c,e], ok).
visited(q_bce_5, [b,c,d,e], ok).
visited(q_bce_6, [b,c,e], ok).
visited(q_bce_7, [b,c,e], ok).
visited(q_bce_8, [b,c,e], ok).
visited(q_bce_9, [b,c,d,e], ok).
visited(q_bce_10, [b,c,d,e], ok).
visited(q_bce_11, [b,c,e], ok).
visited(q_cde_1, [c,d,e], ok).
visited(q_cde_2, [c,d,e], ok).
visited(q_cde_3, [c,d,e], ok).
visited(q_cdf_1, [c,d,f], ok).
visited(q_cdf_2, [c,d,f], ok).
visited(q_cdf_3, [c,d,f], ok).
visited(q_cdf_4, [c,d,f], ok).
visited(q_cdf_5, [c,d,f], ok).
visited(q_abce_1, [a,b,c,e], ok).
visited(q_abce_2, [a,b,c,e], ok).
visited(q_abce_3, [a,b,c,d,e], ok).
visited(q_abce_4, [a,b,c,d,e], ok).
visited(q_abce_5, [a,b,c,e], ok).
visited(q_acef_1, [a,c,d,e,f], ok).
visited(q_acef_2, [a,c,d,e,f], ok).
visited(q_cdef_1, [c,d,e,f], ok).
visited(q_cdef_2, [c,d,e,f], ok).
visited(q_bcde_1, [b,c,d,e], ok).
visited(q_bcde_2, [b,c,d,e], ok).
visited(q_bcde_3, [b,c,d,e], ok).
visited(q_bcde_4, [b,c,d,e], ok).
visited(q_bcde_5, [b,c,d,e], ok).
visited(q_bcde_6, [b,c,d,e], ok).
visited(q_bcde_7, [b,c,d,e], ok).
visited(q_bcde_8, [b,c,d,e], ok).
visited(q_bcde_9, [b,c,d,e], ok).
visited(q_bcdf_1, [b,c,d,f], ok).
visited(q_bcdf_2, [b,c,d,f], ok).
visited(q_acde_1, [a,c,d,e], ok).
visited(q_acde_2, [a,c,d,e], ok).
visited(q_abcde_1, [a,b,c,d,e], ok).
visited(q_abcde_2, [a,b,c,d,e], ok).

% Summary - ST Sequential Test output
problems_presented(68,68).
opportunities_presented([(a,14),(b,37),(c,68),(d,44),(e,45),(f,11)]).
opportunities_correctly_applied([(a,13),(b,36),(c,63),(d,43),(e,42),(f,11)]).

Appendix L. Running XP1 Adaptive Test 194

Appendix L. Running XP1 Adaptive Test

This appendix contains the results from running XP1 for a selected list of simulated students, as
described in Section 6.8. The following legend to represent the different skills:

a makeVulgar
b makeCommon
c checkAndAdd
d cancel
e makeProper
f makeWhole

Appendix L. Running XP1 Adaptive Test 195

% XP1 ADAPTIVE TEST output xp1_1a

Student = [[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).

Selected Node : 5
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Appendix L. Running XP1 Adaptive Test 196

% Summary - XP1 ADAPTIVE TEST output xp1_1a
problems_presented(14,68).
opportunities_presented([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]).
opportunities_correctly_applied([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]).

% XP1 ADAPTIVE TEST output xp1_2e

Student = [[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).

Selected Node : 3
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).

% Summary - XP1 ADAPTIVE TEST output xp1_2e
problems_presented(22,68).
opportunities_presented([(a,8),(b,10),(c,22),(d,14),(e,16),(f,8)]).
opportunities_correctly_applied([(a,6),(b,8),(c,14),(d,8),(e,12),(f,0)]).

Appendix L. Running XP1 Adaptive Test 197

% XP1 ADAPTIVE TEST output xp1_2f

Student = [[sam2f-[[makeCommon],[checkAndAdd],[]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), wrong).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong).

Selected Node : 3
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), wrong).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).

Selected Node : 2
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), wrong).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).

Appendix L. Running XP1 Adaptive Test 198

visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct).
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,d], q_cd_2, fr(12/64,4/64), wrong).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong).
visited(2, [c,e], q_ce_2, fr(4/7,8/7), wrong).

Selected Node : 1
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), wrong).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), wrong).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct).
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,d], q_cd_2, fr(12/64,4/64), wrong).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong).
visited(2, [c,e], q_ce_2, fr(4/7,8/7), wrong).

Appendix L. Running XP1 Adaptive Test 199

visited(1, [c], q_c_1, fr(1/3,1/3), correct).
visited(1, [c], q_c_2, fr(3/5,1/5), correct).

% Summary - XP1 ADAPTIVE TEST output xp1_2f
problems_presented(30,68).
opportunities_presented([(a,8),(b,12),(c,30),(d,16),(e,18),(f,8)]).
opportunities_correctly_applied([(a,2),(b,2),(c,6),(d,0),(e,2),(f,0)]).

% XP1 ADAPTIVE TEST output xp1_3a

Student = [[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong).

Selected Node : 3
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).

Appendix L. Running XP1 Adaptive Test 200

Selected Node : 2
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), wrong).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), wrong).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), wrong).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), wrong).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), wrong).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), wrong).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), wrong).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), wrong).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), wrong).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), wrong).
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct).
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,d], q_cd_2, fr(12/64,4/64), correct).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), correct).
visited(2, [c,e], q_ce_2, fr(4/7,8/7), correct).

% Summary - XP1 ADAPTIVE TEST output xp1_3a
problems_presented(28,68).
opportunities_presented([(a,8),(b,12),(c,28),(d,16),(e,18),(f,8)]).
opportunities_correctly_applied([(a,4),(b,6),(c,11),(d,1),(e,8),(f,0)]).

% XP1 ADAPTIVE TEST output xp1_4a

Student = [[sam4a-[[makeCommon],[checkAndAdd],[]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).

Appendix L. Running XP1 Adaptive Test 201

visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).

Selected Node : 5
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

% Summary - XP1 ADAPTIVE TEST output xp1_4a
problems_presented(14,68).
opportunities_presented([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]).
opportunities_correctly_applied([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]).

% XP1 ADAPTIVE TEST output xp1_5a

Student = [[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]

Selected Node : 4
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct).

Appendix L. Running XP1 Adaptive Test 202

visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).

Selected Node : 5
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(4, [a,b,c,e], q_abce_1, fr(1:2/3,1:3/5), correct).
visited(4, [a,b,c,e], q_abce_2, fr(2:1/2,7/3), correct).
visited(4, [a,c,e,f], q_acef_1, fr(1:1/3,2/3), correct).
visited(4, [a,c,e,f], q_acef_2, fr(1:1/5,4/5), correct).
visited(4, [c,d,e,f], q_cdef_1, fr(1/3,5/3), correct).
visited(4, [c,d,e,f], q_cdef_2, fr(3/2,5/2), correct).
visited(4, [b,c,d,e], q_bcde_1, fr(3/8,3/4), correct).
visited(4, [b,c,d,e], q_bcde_2, fr(2/3,5/6), correct).
visited(4, [b,c,d,f], q_bcdf_1, fr(3/6,2/4), correct).
visited(4, [b,c,d,f], q_bcdf_2, fr(5/10,4/8), correct).
visited(4, [a,c,d,e], q_acde_1, fr(1:1/8,1:3/8), correct).
visited(4, [a,c,d,e], q_acde_2, fr(1:1/6,2:1/6), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

% Summary - XP1 ADAPTIVE TEST output xp1_5a
problems_presented(14,68).
opportunities_presented([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]).
opportunities_correctly_applied([(a,8),(b,8),(c,14),(d,10),(e,12),(f,6)]).

Appendix M. Running XP2 Adaptive Test 203

Appendix M. Running XP2 Adaptive Test

This appendix contains the results from running XP2 for a selected list of simulated students, as
described in Section 6.8. The following legend to represent the different skills:

a makeVulgar
b makeCommon
c checkAndAdd
d cancel
e makeProper
f makeWhole

Appendix M. Running XP2 Adaptive Test 204

% XP2 ADAPTIVE TEST output xp2_1a

Student = [[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).

Selected Node : 5
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

% Summary - XP2 ADAPTIVE TEST output
problems_presented(12,68).
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).

Appendix M. Running XP2 Adaptive Test 205

% XP2 ADAPTIVE TEST output xp2_2e

Student = [[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).

Selected Node : 5
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

% Summary - XP2 ADAPTIVE TEST output
problems_presented(12,68).
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,4),(b,6),(c,10),(d,6),(e,8),(f,0)]).

Appendix M. Running XP2 Adaptive Test 206

% XP2 ADAPTIVE TEST output xp2_2f

Student = [[sam2f-[[makeCommon],[checkAndAdd],[]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).

Selected Node : 1
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(1, [c], q_c_1, fr(1/3,1/3), correct).
visited(1, [c], q_c_2, fr(3/5,1/5), correct).

Selected Node : 2
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(1, [c], q_c_1, fr(1/3,1/3), correct).
visited(1, [c], q_c_2, fr(3/5,1/5), correct).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct).
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,d], q_cd_2, fr(12/64,4/64), wrong).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong).
visited(2, [c,e], q_ce_2, fr(4/7,8/7), wrong).

Appendix M. Running XP2 Adaptive Test 207

% Summary - XP2 ADAPTIVE TEST output
problems_presented(18,68).
opportunities_presented([(a,2),(b,6),(c,18),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,2),(b,2),(c,6),(d,0),(e,2),(f,0)]).

% XP2 ADAPTIVE TEST output xp2_3a

Student = [[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).

Selected Node : 1
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(1, [c], q_c_1, fr(1/3,1/3), correct).
visited(1, [c], q_c_2, fr(3/5,1/5), correct).

Selected Node : 2
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(1, [c], q_c_1, fr(1/3,1/3), correct).
visited(1, [c], q_c_2, fr(3/5,1/5), correct).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct).

Appendix M. Running XP2 Adaptive Test 208

visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,d], q_cd_2, fr(12/64,4/64), correct).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), correct).
visited(2, [c,e], q_ce_2, fr(4/7,8/7), correct).

% Summary - XP2 ADAPTIVE TEST output
problems_presented(18,68).
opportunities_presented([(a,2),(b,6),(c,18),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,2),(b,4),(c,11),(d,1),(e,6),(f,0)]).

% XP2 ADAPTIVE TEST output xp2_4a

Student = [[sam4a-[[makeCommon],[checkAndAdd],[]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).

Selected Node : 5
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).

Appendix M. Running XP2 Adaptive Test 209

visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

% Summary - XP2 ADAPTIVE TEST output
problems_presented(12,68).
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).

% XP2 ADAPTIVE TEST output xp2_5a

Student = [[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).

Selected Node : 5
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).

Appendix M. Running XP2 Adaptive Test 210

visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

% Summary - XP2 ADAPTIVE TEST output
problems_presented(12,68).
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,3),(b,5),(c,10),(d,8),(e,6),(f,2)]).

Appendix N. Running XP3 Adaptive Test 211

Appendix N. Running XP3 Adaptive Test

This appendix contains the results from running XP3 for a selected list of simulated students, as
described in Section 6.8. The following legend to represent the different skills:

a makeVulgar
b makeCommon
c checkAndAdd
d cancel
e makeProper
f makeWhole

Appendix N. Running XP3 Adaptive Test 212

% XP3 ADAPTIVE TEST output xp3_1a

Student = [[sam1a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).

Selected Node : 5
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

% Summary - XP3 ADAPTIVE TEST output xp3_1a
problems_presented(12,68).
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).

Appendix N. Running XP3 Adaptive Test 213

% XP3 ADAPTIVE TEST output xp3_2e

Student = [[sam2e-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).

Selected Node : 5
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

% Summary - XP3 ADAPTIVE TEST output xp3_2e
problems_presented(12,68).
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,4),(b,6),(c,10),(d,6),(e,8),(f,0)]).

Appendix N. Running XP3 Adaptive Test 214

% XP3 ADAPTIVE TEST output xp3_2f

Student = [[sam2f-[[makeCommon],[checkAndAdd],[]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).

Selected Node : 1
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(1, [c], q_c_1, fr(1/3,1/3), correct).
visited(1, [c], q_c_2, fr(3/5,1/5), correct).

Selected Node : 2
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), wrong).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(1, [c], q_c_1, fr(1/3,1/3), correct).
visited(1, [c], q_c_2, fr(3/5,1/5), correct).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct).
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,d], q_cd_2, fr(12/64,4/64), wrong).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), wrong).
visited(2, [c,e], q_ce_2, fr(4/7,8/7), wrong).

Appendix N. Running XP3 Adaptive Test 215

% Summary - XP3 ADAPTIVE TEST output xp3_2f
problems_presented(18,68).
opportunities_presented([(a,2),(b,6),(c,18),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,2),(b,2),(c,6),(d,0),(e,2),(f,0)]).

% XP3 ADAPTIVE TEST output xp3_3a

Student = [[sam3a-[[makeVulgar,makeCommon],[checkAndAdd],[malCancel,makeProper,makeWhole]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).

Selected Node : 1
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(1, [c], q_c_1, fr(1/3,1/3), correct).
visited(1, [c], q_c_2, fr(3/5,1/5), correct).

Selected Node : 2
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), wrong).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), wrong).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), wrong).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), wrong).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), wrong).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), wrong).
visited(1, [c], q_c_1, fr(1/3,1/3), correct).

Appendix N. Running XP3 Adaptive Test 216

visited(1, [c], q_c_2, fr(3/5,1/5), correct).
visited(2, [b,c], q_bc_1, fr(1/2,1/5), correct).
visited(2, [b,c], q_bc_2, fr(1/3,1/5), correct).
visited(2, [c,d], q_cd_1, fr(4/9,2/9), wrong).
visited(2, [c,d], q_cd_2, fr(12/64,4/64), correct).
visited(2, [c,e], q_ce_1, fr(5/7,6/7), correct).
visited(2, [c,e], q_ce_2, fr(4/7,8/7), correct).

% Summary - XP3 ADAPTIVE TEST output xp3_3a
problems_presented(18,68).
opportunities_presented([(a,2),(b,6),(c,18),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,2),(b,4),(c,11),(d,1),(e,6),(f,0)]).

% XP3 ADAPTIVE TEST output xp3_4a

Student = [[sam4a-[[makeCommon],[checkAndAdd],[]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).

Selected Node : 5
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), correct).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), correct).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).

Appendix N. Running XP3 Adaptive Test 217

visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

% Summary - XP3 ADAPTIVE TEST output xp3_4a
problems_presented(12,68).
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).

% XP3 ADAPTIVE TEST output xp3_5a

Student = [[sam5a-[[makeVulgar,makeCommon],[checkAndAdd],[cancel,makeProper,makeWhole]]]]

Selected Node : 3
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).

Selected Node : 5
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).
visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

Selected Node : 6
Visited list :
visited(3, [a,c,e], q_ace_1, fr(1:1/5,2/5), wrong).
visited(3, [a,c,e], q_ace_2, fr(2:3/7,2/7), correct).
visited(3, [b,c,d], q_bcd_1, fr(1/2,1/4), correct).
visited(3, [b,c,d], q_bcd_2, fr(5/6,1/8), correct).
visited(3, [b,c,e], q_bce_1, fr(2/3,3/5), wrong).
visited(3, [b,c,e], q_bce_2, fr(1/2,7/3), correct).

Appendix N. Running XP3 Adaptive Test 218

visited(3, [c,d,e], q_cde_1, fr(5/8,9/8), correct).
visited(3, [c,d,e], q_cde_2, fr(8/9,4/9), correct).
visited(3, [c,d,f], q_cdf_1, fr(5/7,2/7), correct).
visited(3, [c,d,f], q_cdf_2, fr(4/5,1/5), correct).
visited(5, [a,b,c,d,e], q_abcde_1, fr(1/3,1:5/6), correct).
visited(5, [a,b,c,d,e], q_abcde_2, fr(1/4,2:1/12), correct).

% Summary - XP3 ADAPTIVE TEST output xp3_5a
problems_presented(12,68).
opportunities_presented([(a,4),(b,6),(c,12),(d,8),(e,8),(f,2)]).
opportunities_correctly_applied([(a,3),(b,5),(c,10),(d,8),(e,6),(f,2)]).

Appendix O. Tabulated Results of Different Students 219

Appendix O. Tabulated Results of Different Students

This appendix contains the tabulated results of running different assessors for a selected list of
simulated students, as discussed in Chapter 9. The assessors are XP, ST, XP1, XP2 and XP3. The
table identifier is given at the top left hand corner of each table. For example ‘XP_1a’ means the
tabulated results of running XP for simulated student sam1a. The shaded skills are the skills
mastered by the student and instantiated during the creation of each simulated student (see Section
6.3).

Appendix O. Tabulated Results of Different Students 220

Table XP _1a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 4 0 1.00 -
b. makeCommon 37 4 4 0 1.00 -
c. checkAndAdd 68 7 7 0 1.00 -
d. cancel 44 5 5 0 1.00 -
e. makeProper 45 6 6 0 1.00 -
f. makeWhole 11 3 3 0 1.00 -

Total: 219 29 29 0
Average: 1.00 -

Table XP_2e

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 3 1 0.75 -
b. makeCommon 37 5 4 1 0.80 -
c. checkAndAdd 68 11 7 4 0.64 -
d. cancel 44 7 4 3 0.57 -
e. makeProper 45 8 6 2 0.75 -
f. makeWhole 11 4 0 4 - 1.00

Total: 219 39 24 15
Average: 0.70 1.00

Table XP_2f

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 1 3 - 0.75
b. makeCommon 37 6 1 5 0.17 -
c. checkAndAdd 68 15 3 12 0.20 -
d. cancel 44 8 0 8 - 1.00
e. makeProper 45 9 1 8 - 0.89
f. makeWhole 11 4 0 4 - 1.00

Total: 219 46 6 40
Average: 0.18 0.91

Appendix O. Tabulated Results of Different Students 221

Table XP_3a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 2 2 0.50 -
b. makeCommon 37 6 3 3 0.50 -
c. checkAndAdd 68 14 5 9 0.36 -
d. cancel 44 8 0 8 - 1.00
e. makeProper 45 9 4 5 0.44 -
f. makeWhole 11 4 0 4 0.00 -

Total: 219 45 14 31
Average: 0.36 1.00

Table XP_4a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 4 0 - 0.00
b. makeCommon 37 4 4 0 1.00 -
c. checkAndAdd 68 7 7 0 1.00 -
d. cancel 44 5 5 0 - 0.00
e. makeProper 45 6 6 0 - 0.00
f. makeWhole 11 3 3 0 - 0.00

Total: 219 29 29 0
Average: 1.00 0.00

Table XP_5a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 4 0 1.00 -
b. makeCommon 37 4 4 0 1.00 -
c. checkAndAdd 68 7 7 0 1.00 -
d. cancel 44 5 5 0 1.00 -
e. makeProper 45 6 6 0 1.00 -
f. makeWhole 11 3 3 0 1.00 -

Total: 219 29 29 0
Average: 1.00 -

Appendix O. Tabulated Results of Different Students 222

Table XP1_1a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 8 8 0 1.00 -
b. makeCommon 37 8 8 0 1.00 -
c. checkAndAdd 68 14 14 0 1.00 -
d. cancel 44 10 10 0 1.00 -
e. makeProper 45 12 12 0 1.00 -
f. makeWhole 11 6 6 0 1.00 -

Total: 219 58 58 0
Average: 1.00 -

Table XP2_2e

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 8 6 2 0.75 -
b. makeCommon 37 10 8 2 0.80 -
c. checkAndAdd 68 22 14 8 0.64 -
d. cancel 44 14 8 6 0.57 -
e. makeProper 45 16 12 4 0.75 -
f. makeWhole 11 8 0 8 - 1.00

Total: 219 78 48 30
Average: 0.70 1.00

Table XP1_2f

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 8 2 6 - 0.75
b. makeCommon 37 12 2 10 0.17 -
c. checkAndAdd 68 30 6 24 0.20 -
d. cancel 44 16 0 16 - 1.00
e. makeProper 45 18 2 16 - 0.89
f. makeWhole 11 8 0 8 - 1.00

Total: 219 92 12 80
Average: 0.18 0.91

Appendix O. Tabulated Results of Different Students 223

Table XP1_3a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 8 4 4 0.50 -
b. makeCommon 37 12 6 6 0.50 -
c. checkAndAdd 68 28 11 17 0.39 -
d. cancel 44 16 1 15 - 0.94
e. makeProper 45 18 8 10 0.44 -
f. makeWhole 11 8 0 8 0.00 -

Total: 219 90 30 60
Average: 0.37 0.94

Table XP1_4a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 8 8 0 - 0.00
b. makeCommon 37 8 8 0 1.00 -
c. checkAndAdd 68 14 14 0 1.00 -
d. cancel 44 10 10 0 - 0.00
e. makeProper 45 12 12 0 - 0.00
f. makeWhole 11 6 6 0 - 0.00

Total: 219 58 58 0
Average: 1.00 0.00

Table XP1_5a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 8 8 0 1.00 -
b. makeCommon 37 8 8 0 1.00 -
c. checkAndAdd 68 14 14 0 1.00 -
d. cancel 44 10 10 0 1.00 -
e. makeProper 45 12 12 0 1.00 -
f. makeWhole 11 6 6 0 1.00 -

Total: 219 58 58 0
Average: 1.00 -

Appendix O. Tabulated Results of Different Students 224

Table XP2_1a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy on
unmastered

skill

a. makeVulgar 14 4 4 0 1.00 -
b. makeCommon 37 6 6 0 1.00 -
c. checkAndAdd 68 12 12 0 1.00 -
d. cancel 44 8 8 0 1.00 -
e. makeProper 45 8 8 0 1.00 -
f. makeWhole 11 2 2 0 1.00 -

Total: 219 40 40 0
Average: 1.00 -

Table XP2_2e

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy on
unmastered

skill

a. makeVulgar 14 4 4 0 1.00 -
b. makeCommon 37 6 6 0 1.00 -
c. checkAndAdd 68 12 10 2 0.83 -
d. cancel 44 8 6 2 0.75 -
e. makeProper 45 8 8 0 1.00 -
f. makeWhole 11 2 0 2 - 1.00

Total: 219 40 34 6
Average: 0.92 1.00

Table XP2_2f

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 2 2 0 - 0.00
b. makeCommon 37 6 2 4 0.33 -
c. checkAndAdd 68 18 6 12 0.33 -
d. cancel 44 8 0 8 - 1.00
e. makeProper 45 8 2 6 - 0.75
f. makeWhole 11 2 0 2 - 1.00

Total: 219 44 12 32
Average: 0.33 0.69

Appendix O. Tabulated Results of Different Students 225

Table XP2_3a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 2 2 0 1.00 -
b. makeCommon 37 6 4 2 0.67 -
c. checkAndAdd 68 18 11 7 0.61 -
d. cancel 44 8 1 7 - 0.88
e. makeProper 45 8 6 2 0.75 -
f. makeWhole 11 2 0 2 0.00 -

Total: 219 44 24 20
Average: 0.61 0.88

Table XP2_4a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 4 0 - 0.00
b. makeCommon 37 6 6 0 1.00 -
c. checkAndAdd 68 12 12 0 1.00 -
d. cancel 44 8 8 0 - 0.00
e. makeProper 45 8 8 0 - 0.00
f. makeWhole 11 2 2 0 - 0.00

Total: 219 40 40 0
Average: 1.00 0.00

Table XP2_5a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 3 1 0.75 -
b. makeCommon 37 6 5 1 0.83 -
c. checkAndAdd 68 12 10 2 0.83 -
d. cancel 44 8 8 0 1.00 -
e. makeProper 45 8 6 2 0.75 -
f. makeWhole 11 2 2 0 1.00 -

Total: 219 40 34 6
Average: 0.86 -

Appendix O. Tabulated Results of Different Students 226

Table XP3_1a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 4 0 1.00 -
b. makeCommon 37 6 6 0 1.00 -
c. checkAndAdd 68 12 12 0 1.00 -
d. cancel 44 8 8 0 1.00 -
e. makeProper 45 8 8 0 1.00 -
f. makeWhole 11 2 2 0 1.00 -

Total: 219 40 40 0
Average: 1.00 -

Table XP3_2e

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 4 0 1.00 -
b. makeCommon 37 6 6 0 1.00 -
c. checkAndAdd 68 12 10 2 0.83 -
d. cancel 44 8 6 2 0.75 -
e. makeProper 45 8 8 0 1.00 -
f. makeWhole 11 2 0 2 - 1.00

Total: 219 40 34 6
Average: 0.92 1.00

Table XP3_2f

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 2 2 0 - 0.00
b. makeCommon 37 6 2 4 0.33 -
c. checkAndAdd 68 18 6 12 0.33 -
d. cancel 44 8 0 8 - 1.00
e. makeProper 45 8 2 6 - 0.75
f. makeWhole 11 2 0 2 - 1.00

Total: 219 44 12 32
Average: 0.33 0.69

Appendix O. Tabulated Results of Different Students 227

Table XP3_3a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 2 2 0 1.00 -
b. makeCommon 37 6 4 2 0.67 -
c. checkAndAdd 68 18 11 7 0.61 -
d. cancel 44 8 1 7 - 0.88
e. makeProper 45 8 6 2 0.75 -
f. makeWhole 11 2 0 2 0.00 -

Total: 219 44 24 20
Average: 0.61 0.88

Table XP3_4a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 4 0 - 0.00
b. makeCommon 37 6 6 0 1.00 -
c. checkAndAdd 68 12 12 0 1.00 -
d. cancel 44 8 8 0 - 0.00
e. makeProper 45 8 8 0 - 0.00
f. makeWhole 11 2 2 0 - 0.00

Total: 219 40 40 0
Average: 1.00 0.00

Table XP3_5a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 4 3 1 0.75 -
b.
makeCommon

37 6 5 1 0.83 -

c. checkAndAdd 68 12 10 2 0.83 -
d. cancel 44 8 8 0 1.00 -
e. makeProper 45 8 6 2 0.75 -
f. makeWhole 11 2 2 0 1.00 -

Total: 219 40 34 6
Average: 0.86 -

Appendix O. Tabulated Results of Different Students 228

Table ST_1a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 14 14 0 1.00 -
b. makeCommon 37 37 37 0 1.00 -
c. checkAndAdd 68 68 68 0 1.00 -
d. cancel 44 44 44 0 1.00 -
e. makeProper 45 45 45 0 1.00 -
f. makeWhole 11 11 11 0 1.00 -

Total: 219 219 219 0
Average: 1.00 -

Table ST_2e

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 14 12 2 0.86 -
b. makeCommon 37 37 35 2 0.95 -
c. checkAndAdd 68 68 57 11 0.84 -
d. cancel 44 44 33 11 0.75 -
e. makeProper 45 45 41 4 0.91 -
f. makeWhole 11 11 0 11 - 1.00

Total: 219 219 178 41
Average: 0.86 1.00

Table ST_2f

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 14 4 10 - 0.71
b. makeCommon 37 37 3 34 0.08 -
c. checkAndAdd 68 68 8 60 0.12 -
d. cancel 44 44 0 44 - 1.00
e. makeProper 45 45 4 41 - 0.91
f. makeWhole 11 11 0 11 - 1.00

Total: 219 219 19 200
Average: 0.10 0.91

Appendix O. Tabulated Results of Different Students 229

Table ST_3a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy on
unmastered

skill

a. makeVulgar 14 14 6 8 0.43 -
b. makeCommon 37 37 13 24 0.35 -
c. checkAndAdd 68 68 25 43 0.37 -
d. cancel 44 44 1 43 - 0.98
e. makeProper 45 45 20 25 0.44 -
f. makeWhole 11 11 0 11 0.00 -

Total: 219 219 65 154
Average: 0.32 0.98

Table ST_4a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 14 12 2 - 0.14
b. makeCommon 37 37 15 22 0.41 -
c. checkAndAdd 68 68 34 34 0.50 -
d. cancel 44 44 20 24 - 0.55
e. makeProper 45 45 22 23 - 0.51
f. makeWhole 11 11 8 3 - 0.27

Total: 219 219 111 108
Average: 0.45 0.37

Table ST_5a

Skills Total no.of
opportunities

No. of
opportunities

presented

No. of
opportunities

correctly
applied

No. of
opportunities

wrongly
applied

Accuracy
on

mastered
skill

Accuracy
on

unmastered
skill

a. makeVulgar 14 14 13 1 0.93 -
b. makeCommon 37 37 36 1 0.97 -
c. checkAndAdd 68 68 63 5 0.93 -
d. cancel 44 44 43 1 0.98 -
e. makeProper 45 45 42 3 0.93 -
f. makeWhole 11 11 11 0 1.00 -

Total: 219 219 208 11
Average: 0.96 -

Appendix P. Summary of Performance of Assessors 230

Appendix P. Summary of Performance of Assessors

A summary of results from running all five assessors – XP, ST, XP1, XP2 and XP3 – for different
types of simulated students is given in the following table.

Appendix P. Summary of Performance of Assessors 231

 Skills Presented Skills Correctly Assessed Accuracy in Assessment

 Mastered Unmastered Total Mastered Unmastered Total Mastered Unmastered Overall

ST 1752 0 1752 1506 - 1506 0.86 - 0.86

XP 292 0 292 202 - 202 0.69 - 0.69

XP1 584 0 584 404 - 404 0.69 - 0.69

XP2 320 0 320 284 - 284 0.89 - 0.89

Sam1

XP3 320 0 320 284 - 284 0.89 - 0.89

ST 1049 265 1314 573 245 818 0.55 0.92 0.62

XP 188 55 243 99 50 149 0.53 0.91 0.61

XP1 376 110 486 198 100 298 0.53 0.91 0.61

XP2 246 54 300 164 46 210 0.67 0.85 0.70

Sam2

XP3 208 48 256 150 40 190 0.72 0.83 0.74

ST 735 360 1095 172 297 469 0.23 0.83 0.43

XP 147 68 215 44 56 100 0.30 0.82 0.47

XP1 294 136 430 89 111 200 0.30 0.82 0.47

XP2 198 86 284 83 61 144 0.42 0.71 0.51

Sam3

XP3 122 74 196 55 49 104 0.45 0.66 0.53

ST 672 423 1095 271 300 571 0.40 0.71 0.52

XP 95 70 165 74 17 91 0.78 0.24 0.55

XP1 210 154 364 121 73 194 0.58 0.47 0.53

XP2 226 122 348 137 53 190 0.61 0.43 0.55

Sam4

XP3 140 76 216 104 28 132 0.74 0.37 0.61

ST 862 14 876 738 4 742 0.86 0.29 0.85

XP 138 4 142 76 2 78 0.55 0.50 0.55

XP1 244 8 252 169 4 173 0.69 0.50 0.69

XP2 246 10 256 182 4 186 0.74 0.40 0.73

Sam5

XP3 202 2 204 158 0 158 0.78 0.00 0.77

Table 9. Comparing Five Assessors for Five types of Simulated Students

Appendix Q. List of Publications 232

Appendix Q. List of Publications

This appendix contains a list of publications of the author.

a) Premodelling for Examination Revision through Adaptive Testing. Chua Abdullah, S. In

Proceedings of the 3rd Human Centred Technology Postgraduate Workshop “Interacting

through/with Technology: Increasing the Potential for Communicating and Learning?”,

HCT'99, 30th September - 1st October 1999, Brighton, UK, organised by the University of

Sussex, School of Cognitive and Computing Sciences.

b) Using Constraints to Develop and Deliver Adaptive Tests. Chua Abdullah, S. and Cooley, R.E.

In H. Cooper and S. Clowes, editors, Proceedings of the Fourth International Computer

Assisted Assessment Conference, Loughborough University, UK, pages 93-101, June 2000.

c) Modelling Human Testing Strategies: A Computer-Aided Approach to Knowledge Acquisition.

Chua Abdullah, S. and Cooley, R.E. In Proceedings of Workshop W1 on Modeling Human

Teaching Tactics and Strategies, held as part of the Fifth International Conference on

Intelligent Tutoring Systems, ITS'2000, Montréal, Canada, page 17, June 2000.

d) The Use of Constraint Logic Programming in the Development of Adaptive Tests. Chua

Abdullah, S. and Cooley, R.E. In G. Gauthier, C. Frasson and K. VanLehn, editors, Lecture

Notes in Computer Science 1839, Proceedings of the Fifth International Conference on

Intelligent Tutoring Systems, ITS 2000, Montréal, Canada, page 650. Springer-Verlag, June

2000.

e) Controlling Problem Progression in Adaptive Testing. Cooley, R.E. and Chua Abdullah, S.

Proceedings of the International Conference on Computers in Education and the International

Conference on Computer Assisted Instruction, ICCE/ICCAI 2000, Taiwan, November 2000.

f) Using Simulated Students to Evaluate an Adaptive Testing System. Chua Abdullah, S. and

Cooley, R.E. (2002). Proceedings of the International Conference on Computers in Education,

ICCE 2002, New Zealand, December 2002.

Bibliography 233

Bibliography

Abbott,J. (1995). A Matter of Constraint. Unix News (82), pp.18-19.

Anderson,J.R. (1983). The Architecture of Cognition. Harvard University Press, Cambridge,
Massachusetts, London.

Anderson,J.R. (1992). Intelligent Tutoring and High School Mathematics. In: Frasson,C.,
Gauthier,G., McCalla,G.I., (Eds.), Lecture Notes in Computer Science 608. Intelligent
Tutoring Systems. Second International Conference, ITS'92, Montreal, Canada, June 1992
Proceedings. Springer-Verlag, Berlin Heidelberg New York.

Anderson,J.R. (1998a). Applications and Misapplications of Cognitive Psychology to Mathematics
Education. http://act.psy.cmu.edu/personal/ja/misapplied.html

Anderson,J.R. (1998b). Instructional Applications of ACT: Past, Present, and Future. In:
Goettl,B.P., Halff,H.M., Redfield,C.L., Shute,V., (Eds.), Intelligent Tutoring Systems:
Proceedings of 4th International Conference, ITS'98, San Antonio, Texas, USA, August
1998, No.1452 Lectures Notes in Computer Science. Springer, Berlin, Heidelberg, p.1.

Anderson,J.R. (1988c). The Expert Module. In: Polson,M.C., Richardson,J.J., (Eds.), Foundations
of Intelligent Tutoring Systems. Lawrence Erlbaum Associates, Hillsdale, New Jersey, Hove
and London, pp. 21-53.

Anderson,J.R., Boyle,C.F., Corbett,A.T., Lewis,M.W. (1990). Cognitive Modeling and Intelligent
Tutoring. Artificial Intelligence 42 (1), pp. 7-49.

Anderson,J.R., Boyle,C.F., Yost,G. (1985). The Geometry Tutor. In: Morgan Kaufmann, (Ed.), Los
Angeles, pp. 1-7.

Anderson,J.R., Corbett,A.T., Koedinger,K., Pelletier,R. (1995. Cognitive tutors: Lessons Learned.
The Journal of Learning Sciences 4, pp.167-207.

Anderson, J.R., Reiser, B.J. (1985). The LISP Tutor. BYTE April 1985, pp. 159-175.

Arroyo, I., Conejo, R., Guzman, E., Woolf, B.P. (2001) An adaptive web-based component for
cognitive ability estimation. Proceedings of the Tenth International Conference on Artificial
Intelligence in Education. San Antonio, Texas, May 2001. pp. 456-466, IOS Press.

http://act.psy.cmu.edu/personal/ja/misapplied.html
http://ccbit.cs.umass.edu/People/Ivon/AIED2001.pdf
http://ccbit.cs.umass.edu/People/Ivon/AIED2001.pdf
http://www.iospress.nl/

Bibliography 234

Baffes,P., Mooney,R. (1996). Refinement-Based Student Modeling and Automated Bug Library
Construction. Journal of Artificial Intelligence in Education 7 (1), pp.75-117.

Barr,A., Feigenbaum,E.A. (1981). The Handbook of Artificial Intelligence, Volume 2. Pitman,
London.

Baumunk,K., Dowling,C.K. (1997). Validity of Spaces for Assessing Knowledge about Fractions.
Journal of Mathematical Psychology 41, pp.99-105.

Bayes, Rev. T. (1753). An Essay toward solving a Problem in the Doctrine of Chances, Philos.
Trans. R. Soc. London, 53, pp.370-418, reprinted in Biometrika, 45, 1958, pp.293-315.

Beck,J., Stern,M., Haugsjaa,E. (1998). Applications of AI in Education. ACM CrossRoads.
http://www.acm.org/crossroads/xrds3-1/aied.html

Beck,J., Stern,M., Woolf,B.P. (1997). Using the Student Model to Control Problem Difficulty. In:
Jameson,A., Paris,C., Tasso,C., (Eds.), CISM Courses and Lectures no.383. International
Centre for Mechanical Sciences. User Modeling. Proceedings of the Sixth International
Conference UM97. SpringerWien, New York, pp. 277-289.

Bloom,B.S. (1984). The 2 sigma problem: The search for methods of group instruction as effective
as one-to-one tutoring. Educational Researcher 13 (6), pp.4-16.

Borasi,R. (1994). Capitalizing on Errors as "Springboards for Inquiry": A Teaching Experiment.
Journal for Research in Mathematics Education 25 (2), pp. 166-208.

Boy,G. (1996). Learning Evolution and Software Agents Emergence. In: Frasson,C., Gauthier,G.,
Lesgold,A., (Eds.), Intelligent Tutoring Systems. Third International Conference, ITS'96,
Montreal, Canada, June 1996 Proceedings. Lecture Notes in Computer Science 1086.
Springer-Verlag, Berlin Heidelberg, pp. 10-25.

Brown,J.S., Burton,R.R. (1978). Diagnostic Models for Procedural Bugs in Basic Mathematical
Skills. Cognitive Science 2, pp.155-192.

Brown,J.S., Burton,R.R., Bell,A.G. (1975). SOPHIE: A Step Toward Creating a Reactive Learning
Environment. International Journal Man-Machine Studies 7, pp. 675-696.

Brown,J.S., VanLehn,K. (1980). Repair Theory: A Generative Theory of Bugs in Procedural Skills.
Cognitive Science 4, pp. 379-426.

Brusilovskiy,P.L. (1994). The Construction and Application of Student Models in Intelligent
Tutoring Systems. Journal of Computer and Systems Sciences International 32 (1), pp.70-89.

Bull,S., Shurville,S. (1999). Cooperative Writer Modelling: Facilitating Reader-Based Writing
with SCRAWL. pp. 1-9.

Burton,R.R., Brown,J.S. (1985). An Investigation of Computer Coaching for Informal Learning
Activities. International Journal Man-Machine Studies 23 (1).

http://www.acm.org/crossroads/xrds3-1/aied.html

Bibliography 235

Carbonell,J.R. (1970). AI in CAI: An Artificial-Intelligence Approach to Computer-Assisted
Instruction. IEEE Transactions on Man-Machine Systems MMS-11, December 1970, 4.

Carlsson,M., Ottosson,G., Carlson,B. (1997). An Open-Ended Finite Constraint Solver. In: Proc.
Programming Languages: Implementations, Logic and Programs.

Chan,T.W. (1992). Curriculum Tree - A Knowledge-Based Architecture for Intelligent Tutoring
Systems. Lecture Notes in Computer Science 608, pp.140-147.

Chan, T.W. and Baskin, A.B. (1990). Learning companion systems. In: Frasson, C. & Gauthier,
G., (Eds.), Intelligent Tutoring Systems: At the crossroads of Artificial Intelligence and
Education, Ablex, N.J.

Chan, T.W. and Chou, C.Y. (1995). Simulating a Learning Companion in Reciprocal Tutoring
Systems. Proceedings of Computer Support for Collaborative Learning '95, Indiana
University, Bloomington, IN.

Charniak,E. (1991). Bayesian Networks Without Tears.. AI Magazine 12 (4), Winter 91, pp.50-63.

Chi,M.T.H., Bassok,M., Lewis,M.W., Reimann,P., Glaser,R. (1989). Self-Explanations - How
Students Study and Use Examples in Learning to Solve Problems. Cognitive Science 13 (2),
pp.145-182.

Chi,M.T.H., Feltovich,P.J., Glaser,R. (1981). Categorization and Representation of Physics
Problems by Experts and Novices. Cognitive Science 5 (2), pp.121-152.

Clancey,W.J. (1979). Tutoring Rules for Guiding a Case Method Dialogue. International Journal
Man-Machine Studies 11, pp.25-49.

Clancey,W.J. (1986). Qualitative Student Models. Annual Review of Computer Science 1, pp.381-
450.

Clancey,W.J. (1987). Knowledge-Based Tutoring: The GUIDON Program. MIT Press, Cambridge,
MA.

Clancey,W.J., Soloway,E. (1990). Artificial Intelligence and Learning Environment. Artificial
Intelligence 41, pp.1-6.

Cohen,J. (1990). Constraint Logic Programming Languages. Communications of the ACM 33 (7),
pp.52-68.

Cohen,P. (1996). Logic Programming and Constraint Logic Programming. ACM Computing
Surveys 28 (1), pp.257-259.

Collins,J.A., Greer,J.E., Huang,S.X. (1996). Adaptive Assessment Using Granularity Hierarchies
and Bayesian Nets. In: Frasson,C., Gauthier,G., Lesgold,A., (Eds.), Lecture Notes in
Computer Science 1086. Intelligent Tutoring Systems. Third International Conference,
ITS'96, Montréal, Canada, June 1996 Proceedings. Springer-Verlag, Berlin Heidelberg,
pp.569-577.

Bibliography 236

COMPASS (2000). COMPASS - Computerized Adaptive Placement Assessment and Support
System. http://www.act.org/compass/index.html

Constraint Programming (2000). http://www.aiai.ed.ac.uk/links/constr.html

Cooper,B., Dunne,M. (2000). Assessing Children's Mathematical Knowledge. Open University
Press, Buckingham, Philadelphia.

Covington,M.V., Omelich,C.L. (1987). "I knew it cold before the exam": A test of the anxiety-
blockage hypothesis. Journal of Educational Psychology 79 (4), pp.393-400.

Darmoni,S.J.,Fajner,A.,Mahe,N.,Leforestier,A.,Vondracek,M.,Stelian,O.,Baldenweck,M.(2000).
Horoplan: Computer-Assisted Nurse Scheduling using Constraint-based Programming.
http://www.chu-rouen.fr/dsii/publi/plao.html

Davis,R.B. (1984). Learning Mathematics - The Cognitive Science Approach to Mathematics
Education. Croom Helm, London, Sydney.

Deboys,M., Pitt,E. (1988). Lines of Development in Primary Mathematics. The Blackstaff Press,
Belfast.

Desmoulins,C., van Labeke,N. (1996). Towards Student Modelling in Geometry with Inductive
Logic Programming. www.loria.fr/~vanlabek/Papers/Euro-AIED96.html

Doignon,J.P., Falmagne,J.C. (1985). Spaces for the Assessment of Knowledge. International
Journal of Man-Machine Studies 23 (2), pp.175-196.

Doignon,J.P., Falmagne,J.C. (1998). Knowledge Spaces. Springer-Verlag, Berlin.

Dowling,C.E. (1993). Applying the Basis of a Knowledge Space for Controlling the Questioning of
an Expert. Journal of Mathematical Psychology 37, pp.21-48.

Dowling,C.E., Hockemeyer,C., Ludwig,A.H. (1996). Adaptive Assessment and Training Using the
Neighbourhood of Knowledge States. In: Frasson,C., Gauthier,G., Lesgold,A., (Eds.),
Intelligent Tutoring Systems, Third International Conference, ITS '96, Montréal, Canada,
June12-14, 1996, Proceedings Lecture Notes in Computer Science, Vol.1086. Springer,
Berlin, Heidelberg, pp. 578-587.

Dowling,C.E., Kaluscha,R. (1995). Prerequisite Relationships for the Adaptive Assessment of
Knowledge. In: J.Greer, (Ed.), Proceedings of AI-ED'95, 7th World Conference on Artificial
Intelligence in Education, Washington, DC, 16-19 August 1995, AACE. pp. 43-50.

du Boulay,B. (2000a). Workshop W1 on Modeling Human Teaching Tactics and Strategies, held
as part of the Fifth International Conference on Intelligent Tutoring Systems, ITS'2000, June
19, Montréal, Canada.

du Boulay,B. (2000b). Can we learn from ITSs? In: Gauthier,G., Frasson,C., VanLehn,K., (Eds.),
Intelligent Tutoring Systems: Proceedings of 5th International Conference, ITS 2000,
Montreal, Canada, No.1839 in Lectures Notes in Computer Science. Springer, Berlin,

http://www.act.org/compass/index.html
http://www.aiai.ed.ac.uk/links/constr.html
http://www.chu-rouen.fr/dsii/publi/plao.html
http://www.loria.fr/~vanlabek/Papers/Euro-AIED96.html

Bibliography 237

Heidelberg, New York, pp.9-17.

Educational Testing Service (1999). http://www.ets.org/.

Elsom-Cook,M. (1988). Guided Discovery Tutoring and Bounded User Modelling. In: Self,J.,
(Ed.), Artificial Intelligence and Human Learning - Intelligent Computer-aided Instruction.
Chapman and Hall, London, New York, pp. 165-178.

Falmagne,J.C., Doignon,J.P., Koppen,M., Villano,M., Johannesen,L. (1990). Introduction to
Knowledge Spaces - How to Build, Test, and Search Them. Psychological Review 97 (2),
pp.201-224.

Frasson,C., Mengelle,T., Aimeur,E., Gouarderes,G. (1996). An Actor-Based Architecture for
Intelligent Tutoring Systems. In: Frasson,C., Gauthier,G., Lesgold,A., (Eds.), Intelligent
Tutoring Systems. Third International Conference, ITS'96, Montreal, Canada, June 1996
Proceedings. Lecture Notes in Computer Science 1086. Springer, Berlin Heidelberg, pp. 57-
65.

Frederiksen,J.R., White,B.Y. (1990). Intelligent Tutors as Intelligent Testers. In: Frederiksen,N.,
Glaser,R., Lesgold,A., Shafto,M.G., (Eds.), Diagnostic Monitoring of Skill and Knowledge
Acquisition. Lawrence Erlbaum Associates, Publishers, Hillsdale, New Jersey, Hove,
London, pp.1-26.

Frosini,G., Lazzerini,B., Marcelloni,F. (1998). Performing automatic exams. Computers &
Education 31 (3), pp.281-300.

Gemini (2000). White Paper. http://www.gemini.com/swift/whitepap.htm

Gilmore,D., Self,J. (1988). The Application of Machine Learning to Intelligent Tutoring Systems.
In: Self,J., (Ed.), Artificial Intelligence and Human Learning - Intelligent Computer-aided
Instruction. Chapman and Hall, London, New York, pp. 179-196.

Glass,M., Kim,J.H., Evens,M.W., Michael,J.A., Rovick,A.A. (1999). Novice vs. Expert Tutors: A
Comparison of Style. Tenth Midwest Artificial Intelligence and Cognitive Science
Conference (MAICS '99), Bloomington, Indiana.

GMAT (2000). http://testprep.embark.com/gmat/freeinfo/gmat_article_overview.asp

Goldstein,I.P. (1982). The Genetic Graph: A Representation for the Evolution of Procedural
Knowledge. In: Sleeman,D.H., Brown,J.S., (Eds.), Intelligent Tutoring Systems. Academic
Press, London.

GRE (2000). http://www.gre.org

Greer,J., McCalla,G.I. (1991). Student Modelling: The Key to Individualized Knowledge-Based
Instruction, Springer-Verlag, Berlin, Heidelberg, New York.

Gugerty,L. (1997). Non-diagnostic intelligent tutoring systems: Learning collaboratively without
student models. Instructional Science 25, pp.409-432.

http://www.ets.org/
http://www.gemini.com/swift/whitepap.htm
http://testprep.embark.com/gmat/freeinfo/gmat_article_overview.asp
http://www.gre.org/

Bibliography 238

Gutwin,C., Jones,M., Brackett,P., Massie Adolphe,K. (2000). Bringing ITS to the Marketplace: A
Successful Experiment in Minimalist Design.
http://www.iicm.edu/jucs_1_3/bringing_its_to_the/html/paper.htm

Halff,H.M. (1988). Curriculum and Instruction in Automated Tutors. In: Polson,M.C.,
Richardson,J.J., (Eds.), Foundations of Intelligent Tutoring Systems. Lawrence Erlbaum
Associates, Hillsdale, New Jersey, Hove and London, pp. 79-108.

Hall, R. (2002). Thought Processes in Simplifying an Algebraic Expression, Philosophy of
Mathematics Education Journal, 15, http://www.ex.ac.uk/~PErnest/pome15/processes.htm.

Hirashima,T., Kashihara,A., Toyoda,J. (1996). Toward a Learning Environment Allowing Learner-
Directed Problem Practice - Helping Problem-Solving by Using Problem Simplification. In:
Frasson,C., Gauthier,G., Lesgold,A., (Eds.), Intelligent Tutoring Systems. Third
International Conference, ITS'96, Montréal, Canada, June 1996 Proceedings. Lecture Notes
in Computer Science 1086. Springer, Berlin Heidelberg, pp. 466-474.

Hockemeyer,C., Dietrich,A.(1999). The adaptive tutoring RATH: a prototype. International
Workshop Interactive Computer aided Learning ICL'99. Villach, Austria.

Holt,P., Dubs,S., Jones,M., Greer,J.(1994). The State of Student Modelling. In: Greer,J.E.,
McCalla,G.I., (Eds.), Student Modelling: The Key to Individualized Knowledge-Based
Instruction. Springer-Verlag, Berlin Heidelberg, pp. 3-35.

Huang,S.X. (1996). A Content-Balanced Adaptive Testing Algorithm for Computer-Based
Training Systems. In: Frasson,C., Gauthier,G., Lesgold,A., (Eds.), Intelligent Tutoring
Systems. Third International Conference, ITS'96, Montréal, Canada, June 1996 Proceedings.
Lecture Notes in Computer Science 1086. Springer, Berlin Heidelberg, pp. 306-314.

Jaffar,J., Lassez,J.-L. (1987). Constraint logic programming. Fourteenth Annual ACM SIGACT-
SIGPLAN Symposium on Principles of programming languages, pp. 111-119.

Jensen,F.V. (1996). An Introduction to Bayesian Networks. UCL Press, London.

Johnson, W.L. (1990). Understanding and debugging novice programs. Artificial Intelligence, 42,
pp.51-97.

Kambouri,M., Koppen,M., Villano,M., Falmagne,J.C. (1994). Knowledge Assessment - Tapping
Human Expertise by the Query Routine. International Journal of Human-Computer Studies
40 (1), pp.119-151.

Kashihara,A., Hirashima,T., Toyoda,J. (1994). A Cognitive Load Application in Tutoring. User
Modeling and User-Adapted Interaction 4 (4), pp.279-303.

Kay,J. (2000). Stereotypes, Student Models and Scrutability. In: Gauthier,G., Frasson,C.,
VanLehn,K., (Eds.), Lecture Notes in Computer Science 1839, Proceedings of the Fifth
International Conference on Intelligent Tutoring Systems, ITS 2000, Montréal, Canada.
Springer-Verlag, Berlin, Heidelberg, New York, pp.19-30.

http://www.iicm.edu/jucs_1_3/bringing_its_to_the/html/paper.htm
http://www.ex.ac.uk/~PErnest/pome15/processes.htm
http://www.ex.ac.uk/~PErnest/pome15/processes.htm

Bibliography 239

Kearsley,G. (1987). Artificial Intelligence and Instruction - Applications and Methods. Addison-
Wesley, Reading, Massachusetts.

Koppen,M. (1993). Extracting Human Expertise for Constructing Knowledge Spaces: An
Algorithm. Journal of Mathematical Psychology 37, pp.1-20.

Langley,P., Ohlsson,S. (1984). Automated Cognitive Modelling. Proceedings of the National
Conference on Artificial Intelligence, Austin, Texas.

Lassez,C. (1987). Constraint Logic Programming. BYTE August 1987, pp.171-176.

Lee,F.L. (1996). Electronic Homework: An Intelligent Tutoring System in Mathematics (PhD
Thesis), The Chinese University of Hong Kong.

Levesque,H.J. (1986). Knowledge Representation and Reasoning. Annual Review of Computer
Science 1, pp. 255-287.

Lightfoot,J.M. (1999). Expert knowledge acquisition and the unwilling expert: a knowledge
engineering perspective. Expert Systems 16 (3), pp.141-147.

Linn, R. L., Baker, E. L., & Dunbar, S. B. (1991). Complex, performance-based assessment:
Expectations and validation criteria. Educational Researcher, 20(8), pp.15-21.

Llewellyn,S., Greer,A. (1996). Mathematics - The Basic Skills, Fifth Edition. Stanley Thornes,
Chelternam.

Lord,F.M. (1980). Applications of Item Response Theory to Practical Testing Problems. Lawrence
Erlbaum Associates, Publishers, New Jersey.

Mandl,H., Lesgold,A. (1988). Learning Issues for Intelligent Tutoring Systems. Springer-Verlag,
New York.

Mao,Y., Lin,J. (1992). Intelligent Tutoring System for Symbolic Calculation. In: Frasson,C.,
Gauthier,G., McCalla,G.I., (Eds.), Intelligent Tutoring Systems. Second International
Conference, ITS'92, Montréal, Canada, June 1992 proceedings. Lecture Notes in Computer
Science 608. Springer-Verlag, Berlin, Heidelberg, New York, pp.132-139.

Marriott,K., Stuckey,P. (1998). Programming with Constraints: An Introduction. MIT Press,
Cambridge, MA.

Marshall,S.P. (1981). Sequential Item Selection: Optimal and Heuristic Policies. Journal of
Mathematical Psychology 23, pp.134-152.

Marshall,S.P. (1990). Generating Good Items for Diagnostic Tests. In: Frederiksen,N., Glaser,R.,
Lesgold,A., Shafto,M.G., (Eds.), Diagnostic Monitoring of Skill and Knowledge
Acquisition. Lawrence Erlbaum Associates, Publishers, Hillsdale, New Jersey, Hove,
London, pp. 407-433.

Bibliography 240

Matsubara,Y., Nagamachi,M. (1996). Motivation System and Human Model for Intelligent
Tutoring. In: Frasson,C., Gauthier,G., Lesgold,A., (Eds.), Lecture Notes in Computer
Science 1086. Proceedings of the Third International Conference on Intelligent Tutoring
Systems, ITS'96, Montreal, Canada, June 12-14. Springer, Berlin, Heidelberg, New York,
pp. 139-147.

McArthur,D. (1994). Some Possible Futures For Artificial Intelligence In Mathematics Education.
http://www.rand.org/hot/mcarthur/Papers/future.html

McCalla,G., Greer,J., Barrie,B., Pospisil,P. (1992). Granularity Hierarchies. Computers &
Mathematics with Applications 23 (2-5), pp.363-375.

McCalla,G.I. (1992). The Central Importance of Student Modelling to Intelligent Tutoring. In:
Costa,E., (Ed.), New Directions for Intelligent Tutoring Systems. Springer-Verlag, pp. 107-
131.

McCalla,G.I., Greer,J.E. (1994). Granularity-Based Reasoning and Belief Revision in Student
Models. In: Greer,J.E., McCalla,G.I., (Eds.), Student Modelling: The Key to Individualized
Knowledge-Based Instruction. Springer-Verlag, Berlin Heidelberg, pp. 39-62.

McGraw,K.L., Harbison-Briggs,K. (1989). Knowledge Acquisition, Principles and Guidelines.
Prentice-Hall, Englewood Cliffs, N.J., London.

Mertz, J.S. (1997). Using a simulated student for instructional design, International Journal of
Artificial Intelligence in Education, 8, pp.116-141.

Microsoft (2000). Adaptive Testing.
http://www.windowsgalore.com/cert/adaptive_testing/index.htm

Miller, G.A. (1956). The magical number seven, plus or minus two: Some limits on our capacity
for processing information. Psychological Review, 63, 81-97.

Mitrovic,A. (1998). Experiences in Implementing Constraint-Based Modeling in SQL-TUTOR. In:
Goettl,B.P., Halff,H.M., Redfield,C.L., Shute,V.J., (Eds.), Intelligent Tutoring Systems. 4th
International Conference, ITS'98, San Antonio, Texas, USA, August 1998 Proceedings.
Lecture Notes in Computer Science 1452. Springer, Berlin, Heidelberg.

Mizoguchi,R. (2000). Workshop on Ontological Engineering and its Implications to AIED
Research, held as part of the Fifth International Conference on Intelligent Tutoring Systems,
ITS'2000, June 19, Montréal, Canada.

Mizoguchi,R., Bourdeau,J. (2000). Using Ontological Engineering to Overcome Common AI-ED
Problems. International Journal of Artificial Intelligence in Education 11, pp.107-121.

Morales,R., Pain,H., Conlon,T. (1999). Workshop on Open, Interactive and Other Overt
Approaches to Learner Modelling, held as part of 9th International Conference on Artificial
Intelligence in Education. Open Learning Environments: New Computational Technologies
to Support Learning, Exploration and Collaboration, AI-ED 99, July 19-23, LeMans, France.

http://www.rand.org/hot/mcarthur/Papers/future.html
http://www.windowsgalore.com/cert/adaptive_testing/index.htm

Bibliography 241

Murray, W.R. (1998). A Practical approach to Bayesian Student Modelling. In: Goettl,B.P.,
Halff,H.M., Redfield,C.L. & Shute,V., (Eds.), Intelligent Tutoring Systems: Proceedings of
4th International Conference, ITS'98, San Antonio, Texas, USA, August 1998, No.1452
Lectures Notes in Computer Science. Springer, Berlin, Heidelberg, pp.425-433.

Murray,T. (1999). Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art.
International Journal of Artificial Intelligence in Education 10, pp.98-129.

Murray,T. (2000). Expanding the Knowledge Acquisition Bottleneck for Intelligent Tutoring
Systems. Preface to the IJAIED Special Issues on Authoring Systems for Intelligent Tutoring
Systems.

Neapolitan, R. (1990). Probabilistic Reasoning in Expert Systems. Theory and Algorithms. Wiley
InterScience.

Niedermayer, D. (1998). An Introduction to Bayesian Networks and their Contemporary
Applications, http://www.gpfn.sk.ca/~daryle/papers/bayesian_networks/bayes.html#theorem

Nwana,H.S. (1993). The Anatomy of FITS: A Mathematic Tutor. In: Nwana,H., (Ed.),
Mathematical Intelligent Learning Environments. Intellect Book, pp. 403-408.

Ohlsson,S. (1987). Some Principles of Intelligent Tutoring. In: Lawler, Yazdani, (Eds.), Artificial
Intelligence and Education, Volume 1. Ablex, Norwood, NJ, pp. 203-238.

Ohlsson,S. (1994). Constraint-Based Student Modeling. In: Greer,J.E., McCalla,G.I., (Eds.),
Student Modelling: The Key to Individualized Knowledge-Based Instruction. NATO ASI
Series. Series F: Computer and Systems Sciences, Vol.125. Springer-Verlag, Berlin,
Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, pp. 167-
189.

Okamoto,T. (1994). The Current Situations and Future-Directions of Intelligent CAI
Research/Development. IEICE Transactions on Information and Systems E77D (1), pp. 9-18.

Oseas-Europe (2000). http://www.bibl.u-szeged.hu/oseas/papcomp.html

Paiva,A. (1995). Dynamic User and Learner Modelling (PhD Thesis), University of Lancaster, UK.

Park,O.-C. (1996). Adaptive Instructional Systems. In: Jonassen,D.H., (Ed.), Handbook of
Research for Educational Communications and Technology. A Project of the Association
for Educational Communications and Technology. Simon & Schuster Macmillan, New York,
pp. 634-664.

Parvate,V., Rajan,P., Anjaneyulu,K.S.R. (1998). Mathemagic: An Adaptive Remediation System
for Mathematics. Journal of Computers in Mathematics and Science Teaching 17 (2/3),
pp.265-284.

Payne,S.J., Squibb,H.R. (1990). Algebra Mal-Rules and Cognitive Accounts of Error. Cognitive
Science 14 (3), pp.445-481.

mailto:daryle@gpfn.sk.ca
http://www.gpfn.sk.ca/~daryle/papers/bayesian_networks/bayes.html#theorem
http://www.bibl.u-szeged.hu/oseas/papcomp.html

Bibliography 242

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Morgan Kaufmann.

Polson,M.C., Richardson,J.J. (1988). Foundations of Intelligent Tutoring Systems. Lawrence
Erlbaum Associates, Hillsdale, New Jersey, Hove and London, pp.191-207.

Pountain,D. (1995). Constraint Logic Programming. BYTE , February issue.

Putnam,R.J. (1987). Structuring and Adjusting Content for Student: A Study of Live and Simulated
Tutoring of Addition. American Educational Research Journal 24 (1).

Renkl,A. (1997). Learning from Worked-Out Examples: A Study on Individual Differences.
Cognitive Science 21 (1), pp.1-29.

Ritter,S., Brusilovsky,P., Medvedeva,O. (1998). Creating more versatile intelligent learning
environments with a component-based architecture. Lecture Notes in Computer Science
1452, pp.554-563.

Ritter,S., Koedinger,K.R. (1996). An Architecture for Plug-in Tutor Agents. Journal of Artificial
Intelligence in Education 7 (3/4), pp.315-347.

Ríos,A., Millan,E., Trella,M., Perez-de-la-Cruz, Conejo,R. (1999). Internet Based Evaluation
System. In: Lajoie,S.P., Vivet,M., (Eds.), Artificial Intelligence in Education. Open
Learning Environments: New Computational Technologies to Support Learning, Exploration
and Collaboration. Volume 50 in Frontiers in Artificial Intelligence. IOS Press, Amsterdam,
pp. 387-394.

Rocklin,T., O'Donnell,A.M. (1987). Self-Adapted Testing: A Performance-Improving Variant of
Computerized Adaptive Testing. Journal of Educational Psychology 79 (3), pp.315-319.

Rocklin,T.R. (1994). Self-Adapted Testing. Applied Measurement in Education 7 (1), pp.3-14.

Ross,B.H., Kennedy,P.T. (1990). Generalizing from the Use of Earlier Examples in Problem
Solving. Journal of Experimental Psychology-Learning Memory and Cognition 16 (1),
pp.42-55.

Rudner,L.M. (1998). An On-line, Interactive, Computer Adaptive Testing Mini-Tutorial, 11/98,
http://ericae.net/scripts/cat/catdemo.htm

Russell, S. and Norvig, P. (1995) Artificial Intelligence: A Modern Approach, Prentice Hall.

Seidel,R.J., Park,O.-C. (1994). A Historical Perspective and a Model for Evaluation of Intelligent
Tutoring Systems. Journal of Educational Computing Research 10 (2), pp.103-128.

Self,J.A. (1974). Student Models in Computer-Aided Instruction. International Journal Man-
Machine Studies 6, pp.261-276.

Self,J.A. (1979). Student Models and Artificial Intelligence. Computers & Education 3, pp.309-
312.

http://ericae.net/scripts/cat/catdemo.htm
http://http.cs.berkeley.edu/~russell/aima.html

Bibliography 243

Self,J. (1988a). Artificial Intelligence and Human Learning - Intelligent Computer-aided
Instruction. Chapman and Hall, London, New York.

Self,J. (1988b). Student Models: What use are they? In: Ercoli,P., Lewis,R., (Eds.), Artificial
Intelligence Tools in Education. Elsevier Science Publishers B.V., North Holland, pp. 73-86.

Self,J. (1990). Bypassing the Intractable Problem of Student Modeling. In: Frasson,C., Gauthier,G.,
(Eds.), Intelligent Tutoring Systems: At The Crossroads of Artificial Intelligence and
Education. Ablex Publishing Corporation, Norwood, NJ, pp. 107-123.

Self,J. (1994). Formal Approaches to Student Modelling. In: Greer,J.E., McCalla,G.I., (Eds.),
Student Modelling: The Key to Individualized Knowledge-Based Instruction. Springer-
Verlag, Berlin Heidelberg, pp. 295-352.

Self,J. (1995). Computational Mathetics: Towards a Science of Learning Systems Design.
www.cbl.leeds.ac.uk/~jas/cm.htm

Self,J. (1999a). Open Sesame?: Fifteen Variations on the Theme of Openness in Learning
Environments. International Journal of Artificial Intelligence in Education 10, pp.1020-1029.

Self,J. (1999b). The Defining Characteristics of Intelligent Tutoring Systems Research: ITSs Care,
Precisely. International Journal of Artificial Intelligence in Education 10.

Shute, V.J. (1995). SMART: Student Modeling approach for responsive tutoring. User modeling
and user-adapted instruction, 5, pp.1-44.

Shute,V.J., Psotka,J. (1996). Intelligent Tutoring Systems: Past, Present, and Future. In:
Jonassen,D.H., (Ed.), Handbook of Research for Educational Communications and
Technology. A Project of the Association for Educational Communications and Technology.
Simon & Schuster Macmillan, New York, pp. 570-600.

SICStus (2002). http://www.sics.se/isl/sicstus/docs/3.7.1/html/sicstus_toc.html,
http://www.sics.se/isl/sicstus/docs/3.7.1/html/sicstus_33.html#SEC249.

Skinner,B.F. (1954). The Science of Learning and the Art of Teaching. Harvard Educational
Review 24, pp. 86-97.

Sleeman,D. (1984). An Attempt to Understand Students' Understanding of Basic Algebra.
Cognitive Science 8, pp. 387-412.

Sleeman,D. (1985). Basic Algebra Revisited - A Study with 14-Year-Olds. International Journal of
Man-Machine Studies 22 (2), pp.127-149.

Sleeman,D., Kelly,A.E., Martinak,R., Ward,R.D., Moore,J.L. (1989). Studies of Diagnosis and
Remediation with High School Algebra Students. Cognitive Science 13, pp.551-568.

Sleeman,D.H., Brown,J.S. (1979). Editorial: Intelligent Tutoring Systems. International Journal of
Man-Machine Studies 11, pp.1-3.

http://www.cbl.leeds.ac.uk/~jas/cm.htm
http://www.sics.se/isl/sicstus/docs/3.7.1/html/sicstus_toc.html
http://www.sics.se/isl/sicstus/docs/3.7.1/html/sicstus_33.html#SEC249

Bibliography 244

Sleeman,D.H., Brown,J.S. (1982). Intelligent Tutoring Systems. Academic Press, London.

Sleeman,D.H., Smith,M.J. (1981). Modelling Student's Problem Solving. Artificial Intelligence 16,
pp.171-188.

Soloway,E.M., Johnson,W.L. (1984). Remembrance of Blunders Past: A Retrospective on the
Development of PROUST. Proceedings of the Sixth Cognitive Science Society Conference,
Boulder, CO 57.

Stern,M., Beck,J., Woolf,B.P. (1996). Adaptation of Problem Presentation and Feedback in an
Intelligent Mathematics Tutor. In: Frasson,C., Gauthier,G., Lesgold,A., (Eds.), Lecture Notes
in Computer Science 1086. Intelligent Tutoring Systems - Third International Conference,
ITS '96, Montreal, Canada, June 1996 proceedings. Springer, Berlin, Heidelberg, pp. 605-
613.

Suppes,P. (1966). The Uses of Computers in Education. Scientific American 215 (2), pp.206-220.

Sweller,J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cognitive Science
12, pp. 257-285.

Syang,A., Dale,N.B. (1993). Computerized adaptive testing in computer science: assessing student
programming abilities. Proceedings of the twenty-fourth SIGCSE technical symposium on
Computer Science Education.February 18-19 1993.Indianapolis USA, pp.53-56.

Taylor,J.A. (1998). Self Test: a flexible self assessment package for distance and other learners.
Computers & Education 31 (3), pp.319-328.

Thissen,D., Mislevy,R.J. (1990). Testing Algorithms. In: Wainer, H. Computerized Adaptive
Testing: A Primer. Lawrence Erlbaum Associates, Publishers, New Jersey, pp. 103-135.

TOEFL (2000). http://www.toefl.org

Tsang,E. (1993). Foundations of Constraint Satisfaction. Academic Press, London, San Diego,
New York, Boston, Sydney, Tokyo, Toronto.

Uhr,L. (1969). Teaching Machine Programs that Generate Problems as a Function of Interaction
with Students. Proceedings of the 24th National Conference, pp.125-134.

Ur, S. and VanLehn, K. (1995). STEPS: A simulated, tutorable physics student. Journal of
Artificial Intelligence and Education, 6(4), pp.405-437.

Urban-Lurain,M. (1996). Intelligent Tutoring Systems: An Historic Review in the Context of the
Development of Artificial Intelligence and Educational Psychology.
http://web.cps.msu.edu/~urban/ITS.html

vanderLinden,W.J. (1998). Bayesian Item Selection Criteria for Adaptive Testing. Psychometrika
63 (2), pp. 201-216.

http://www.toefl.org/
http://web.cps.msu.edu/~urban/ITS.html

Bibliography 245

VanLehn,K. (1982). Bugs are not enough: Empirical Studies of Bugs, Impasses and Repairs in
procedural Skills. Journal of Mathematical Behaviour 3, pp. 3-72.

VanLehn,K (1990). Mind Bugs: The Origins of Procedural Misconceptions. MIT Press., London.

VanLehn,K., Martin,J. (1997). Evaluation of an Assessment System based on Bayesian Student
Modeling. International Journal of Artificial Intelligence in Education 8, pp. 179-221.

VanLehn, K. & Niu, Z. (2001). Bayesian student modeling, user interfaces and feedback: A
sensitivity analysis. International Journal of Artificial Intelligence in Education, 12.

VanLehn, K., Ohlsson, S., & Nason, R. (1994). Applications of simulated students: An exploration.
Journal of Artificial Intelligence and Education, 5(2), pp.135-175.

Villano,M. (1992). Probabilistic Student Models - Bayesian Belief Networks and Knowledge Space
Theory. In: Frasson,C., Gauthier,G., McCalla,G.I., (Eds.), Intelligent Tutoring Systems.
Second International Conference, ITS'92, Montréal, Canada, June 1992 proceedings.
Lecture Notes in Computer Science 608. Springer-Verlag, Berlin, Heidelberg, New York,
pp. 491-498.

Virvou,M., Moundridou,M. (2000). Modelling the Instructor in a Web-Based Authoring Tool for
Algebra-Related ITSs. In: Gauthier,G., Frasson,C., VanLehn,K., (Eds.), Intelligent Tutoring
Systems: Proceedings of 5th International Conference, ITS 2000, Montreal, Canada,
No.1839 in Lectures Notes in Computer Science. Springer, Berlin, Heidelberg, New York,
pp. 635-644.

Vispoel,W.P., Rocklin,T.R., Wang,T. (1994). Individual Differences and Test Administration
Procedures: A Comparison of Fixed-Item, Computerized-Adaptive, and Self-Adapted
Testing. Applied Measurement in Education 7 (1), pp.53-79.

Wainer,H. (1990). Computerized Adaptive Testing: A Primer. Lawrence Erlbaum Associates,
Publishers, New Jersey.

Wainer,H., Mislevy,R.J. (1990). Item Response Theory, Item Calibration and Proficiency
Estimation. In: Wainer,H., (Ed.), Computerized Adaptive Testing: A Primer. Lawrence
Erlbaum Associates, Publishers, New Jersey, pp. 65-102.

Weiss,D.J., Kingsbury,G.G. (1984). Application of Computerized Adaptive Testing to Educational
Problems. Journal of Educational Measurement 21 (4), pp.361-375.

Welch,R.E., Frick,T.W. (1993). Computerized Adaptive Testing in Instructional Settings.
Educational Technology Research & Development 41 (3), pp.47-62.

Wenger,E. (1987). Artificial Intelligence and Tutoring Systems. Computational and Cognitive
Approaches to the Communication of Knowledge. Morgan Kaufmann Publishers, California.

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Aim of Research
	Outline of Thesis
	Miscellaneous

	Student Modelling, Intelligent Tutoring and Adaptive Testing
	Introduction
	Intelligent Tutoring Systems
	Components of an Intelligent Tutoring System

	Student Modelling and Intelligent Tutoring
	Modelling Domain-Specific Knowledge
	Scalar Model
	Overlay Model
	Differential Model
	Perturbation Model
	Genetic Graph
	Bounded Model
	Constraint-based Model
	Machine Learning
	Computerised Adaptive Testing

	Computerised Adaptive Testing
	Item Response Theory
	Describing the Domain
	The Problem Progression Strategy

	Knowledge Space Theory
	Describing the Domain
	The Problem Progression Strategy

	Challenges in Student Modelling
	Dealing with Uncertainty
	Conclusion

	Knowledge Acquisition and Representation
	Introduction
	Context
	Choosing an Expert
	Type of Students
	Choosing a Domain
	Role of Expert
	The MATT Experiment
	Aim of Experiment
	Subjects
	Method
	Findings
	Experiment Summary

	Conventional Knowledge Acquisition Techniques
	Constraint Logic Programming
	Background of Constraint Logic Programming
	Constraint Logic Programming as a Tool for Knowledge Acquisition

	Domain Knowledge Representation
	Eliciting the Domain Knowledge
	Categorising Problems
	Categorising Responses
	Domain Representation in clp(FD)
	Problem Generation
	Evaluating Student Answers

	Eliciting Other Information
	Categorising Problem Solving Skills
	Measuring Problem Difficulty

	Conclusion

	Initial Experiments: Creating a Student Model and Problem Progression in Adaptive Testing
	Introduction
	The Use of a Student Model
	The DSA Experiment
	Aim of Experiment
	Subjects
	Method
	Findings
	Experiment Summary

	Contents of the Student Model in SKATE
	The Progression Problem
	Direct Elicitation of Test Item Sequencing
	Manual Querying An Expert
	Aim of Experiment
	Method
	Results
	Comments

	Computer-aided Elicitation
	The Query Procedure
	The Delivery Procedure – the BT algorithm
	Comments

	Problem Progression based on Problem Solving Skills
	Aim of Experiment
	Method
	Example
	Comments

	Conclusion

	Design and Implementation
	Introduction
	Origins of the Design
	SKATE – A Student Modelling Architecture
	The Adaptive Testing Strategy
	Parameters of XP

	Domain Knowledge
	Problem Solving Skills
	Problems
	One Skill Problems
	Two Skills Problems
	Three Skills Problems
	Four Skills Problems
	Five Skills Problems

	The Student Model
	Conclusion

	Experiment and Analysis
	Introduction
	The Evaluation Strategy
	Creating Simulated Students
	Sam1 Student Type – knows all the skills
	Sam2 Student Type – gaps in knowledge
	Sam3 Student Type - malrules
	Sam4 Student Type – lucky guesses
	Sam5 Student Type – careless slips

	Generating Logfiles
	Running the XP and ST Assessors
	Comparing XP and ST Assessors
	Varying the Parameters of XP
	Running Variations of XP
	Conclusion

	Conclusions
	Summary
	Publications
	Main Contributions
	The Domain Model
	The Student Model
	The Test Delivery Model
	Learning

	Further Work

	Appendix A. Item Characteristic Curves
	Appendix B. Manual Adaptive Testing
	Appendix C. Clp(fd) Representation of Problem Classes
	Appendix D. Problem Classes of Fraction Additions
	A
	Appendix E. Fixed-Item Test in Fraction Additions
	Appendix F. Diagnosing Student Answers
	Appendix G. Simulated Students
	Appendix H. Set of Fraction Additions Problems
	Appendix I. Generated Logfiles
	Appendix J. Running XP Adaptive Test
	Appendix K. Running ST Sequential Test
	A
	Appendix L. Running XP1 Adaptive Test
	Appendix M. Running XP2 Adaptive Test
	A
	Appendix N. Running XP3 Adaptive Test
	Appendix O. Tabulated Results of Different Students
	Appendix P. Summary of Performance of Assessors
	Appendix Q. List of Publications
	Bibliography

