

Addressing Computational Viewpoint Design

D.H.Akehurst, J.Derrick, A.G.Waters
University of Kent at Canterbury

{D.H.Akehurst, J.Derrick, A.G.Waters}@kent.ac.uk

Abstract
Distributed System design is a highly complicated and

non-trivial task. The problem is characterised by the need
to design multi-threaded, multi-processor, and multi-
media systems. Design frameworks such as Open
Distributed Processing (ODP), the ITU/ISO standard,
define a number of viewpoints from which the design of a
distributed system should be approached. To use the
framework, a design language for each of these
viewpoints must be defined. This paper defines a
computational viewpoint language based on the Unified
Modelling Language (UML) and Component Quality
Modelling Language (CQML). The use of this approach
to provide the ODP viewpoint languages enables
standard UML tools to be used as part of an ODP
compliant design process; and in addition, it will
potentially enable the use of Meta Object Facility (MOF)
based generation tools for constructing tool support for
our language.

1. Introduction

The formation of the ‘Global Grid Forum’ and the
consequent interest in

“research, development, deployment, and support
activities related to high-capability distributed
software systems” [1]

reinforces the need for a significant improvement in the
capabilities of tools and support environments for the
development of distributed systems. The technologies of
the internet, CORBA, web services, etc. provide the
capability to build such systems. However, there is not the
necessary level of support at the design stage to enable
systems analysts and designers to manage the inherent
complexity.

The work contained in this paper forms part of a
project – Design Support Environments for Distributed
Systems (DSE4DS [2]), which aims to extend facilities
for the design of multimedia distributed systems, to
ensure that they can meet the needs of complex systems
that include the use of stream communication,
multicasting and Quality of Service (QoS) constraints.
The work will augment the design environment with
descriptions in sufficiently precise notations to enable

assessments of designs to be made based on fitness for
purpose, performance and functionality.

As a basis for the definition of a distributed system, we
target the definitions contained in the ITU/ISO standard
framework for Open Distributed Processing (ODP). The
telecommunications industry has long been investigating
the problems of designing distributed systems and has
standardised on a number of issues. The Reference Model
for ODP (RM-ODP) [3] addresses the design of
distributed systems; and related standards [4, 5] address
specifically the issue of stream communication and the
definition of the quality at which the computing system
components provide their services – commonly known as
Quality of Service (QoS).

The work reported in this paper looks at enabling tool
support for the design languages involved, in particular
this paper describes a design method and language to
support design within the computational viewpoint – one
of the five viewpoints defined by the ODP standard, with
the aim of using this as input to a tool generation suite.

An aspect of our approach to the design of computing
systems is to make use of the current common and best
practises and tools that support the design of the types of
distributed multimedia systems in which we are
interested; this approach should result in widely
understood specifications and gain us maximum support
from existing design tools.

Currently, the Unified Modelling Language (UML [6])
is by common practise a clear contender for the design
language of choice. However, although having significant
community and tool support, it does not provide a means
to address some of the issues relevant to distribution and
multimedia; to support the design of such systems we
make use of the RM-ODP. The RM-ODP does not
prescribe the use of any particular concrete notation;
hence where appropriate we make use of notations taken
from the UML, e.g. for the specification of behaviour we
use the UML State Diagram [6] notation.

We are aware that the definition of the UML is
surrounded by arguments involving its ambiguity and lack
of precision. Hence, we aim in this paper to provide an
ODP Computational Viewpoint language that will be
supported by tools that implement the UML language;

however, the provided language must be well defined and
based on the concepts from the RM-ODP specifications.

We argue that by defining the ODP viewpoint
languages in this manner, we gain three benefits:

1. Tool support for the languages, by utilising the
wide range of tool support given to the UML;

2. Machine readable specifications, produced by the
tools, in the UML standard XMI format, enabling
further tools to be developed that read the design
models, and give back appropriate feedback;

3. Tool generation facilities, made possible due to the
meta-modelling approach to language specification
(see explanation of Kent Modelling Framework
(KMF) section 2.1).

The Computational Viewpoint Language defined here
builds on the work started in [7], taking the opportunity to
introduce additional facility for modelling multicast
features. The language draws on the notations used in [8]
and the language defined in [9].

The rest of the paper is organised as follows. Section 2
introduces ODP, describing in particular the concepts that
are required in a computational viewpoint specification
language. This section also describes the language
definition architecture (i.e. a means to define our
computational viewpoint language) we will use and
introduces the definition of a concrete language for the
Computational Viewpoint. Section 3 contains the
specification of a Near Video on Demand system as an
example to illustrate our method and language for
computational viewpoint design and discusses the
differences between our language and the UML. Section 4
reviews related work and discusses tool support for our
language, illustrating how tools can be used to provide
support for the computational language. Section 7
concludes the paper, including an indication of future
work to be carried out in relation to that presented here.

2. A Computational Viewpoint Language

The ODP framework proposes a multi-paradigm
specification approach for the design of distributed
systems by identifying five separations of concern and
addresses the design of the system from each. Different
languages may be used for each separation of concern
providing the benefit that the relative strengths of
different specification languages can be exploited. In
ODP terminology these five separations of concern are
named viewpoints.

The RM-ODP defines five viewpoints: enterprise,
information, computational, engineering and technology;
further information regarding both the reference model
and its approach to using viewpoints can be found in [3,
10, 11]. The language definition approach proposed in
this paper is explored within the scope of the

Specification
Language

Configuration
Language

Semantic Mapping

A Language Definition

Figure 1 - Architecture for a language
definition
computational viewpoint, although we believe it is also
applicable to the other viewpoints.

The computational viewpoint is concerned with the
identification of distributable components (objects) and
their interaction points (interfaces). The viewpoint
addresses the specification of the behaviour of identified
objects; the specification of the signatures of the
interfaces through which they interact; the specification of
templates from which such components can be
instantiated; and the specification of any constraints under
which the objects must operate. The mechanism by which
distributed communication is achieved is not addressed in
this viewpoint (that is part of the purpose of the
engineering viewpoint), i.e. distribution transparency is
assumed.

Part 3 of the RM-ODP [3] defines the concepts and
structuring rules that define an ‘abstract’ language for
each of the viewpoints. The definitions must be
considered abstract, as there is no defined (concrete)
syntax specified for any of the viewpoint languages. The
description of concepts and rules can be modelled using
the OMG’s MOF [12] concepts of class, association,
generalization etc. These are a subset of the specification
concepts found in the more commonly used UML. The
following two subsections firstly describe the language
definition architecture that we will use and then illustrate
its use by showing parts of the definition of our
computational viewpoint language. The full definition can
be found at [13].

2.1 A Language Definition Architecture

Many of the approaches to computational viewpoint
design propose the use of existing languages such as
LOTOS [14] or Z [15]. This approach enables the reuse of
existing tools and reuse of existing experience that
designers might have with that language. However,
whichever existing language is used the approach
invariably requires a mapping between that language and
the concepts of the computational viewpoint. This
mapping is often defined informally; often requires the

use of many constructs of the language to define a single
concept of the Computational Viewpoint; and often is
unable to specify some of the Computational Viewpoint
concepts either at all or in an intuitive manner.

To improve upon this, our approach is to design a
bespoke Computational Viewpoint language that includes
all of the appropriate concepts required by the
Computational Viewpoint definition. The drawback of our
approach would seem to be an inability to make use of
existing experience and tools. Hence, we form two
additional requirements for the language: a) that it is
similar to an existing and widely used language (where
possible); and b) that we must be able to use tools for that
similar language to define specifications in our
Computational Viewpoint language.

As outlined previously, we aim to make use of the
work related to the UML and its community in order to
take advantage of its tool support and wide acceptance. In
addition there is a UML related modelling architecture
[16, 17] with tool support [18] that can be used for the
definition of visual languages and the generation tools
supporting that language.

This architecture views a language as consisting of
three primary packages that define the abstract syntax,
semantics and semantic domain of a language, see F

. In addition four other packages are used to define a
concrete syntax for both the abstract syntax and semantic
domain, F . The RM-ODP partitions its definitions
is a similar manner, although using different names -
Specification Concepts (rather than Abstract Syntax) and
Basic Modelling Concepts (rather than Semantic
Domain). We believe that the RM-ODP names are more
appropriate, better conveying a descriptive meaning of
what is inside the packages. (In particular we feel that the
name ‘Semantic Domain’ carries alternative meanings
and context that do not quite apply here.) As the terms
‘model’ and ‘modelling’ are heavily used within the
context of the UML, we use the name Configuration
Concepts to replace the RM-ODP name of Basic
Modelling Concepts. In addition to defining a model of
the concepts for specification and for configuration we
also specify models for a concrete syntax to enable

visualisation of such concepts. Finally the key part of the
architecture is the facility to specify mappings between
the various models. The technique and details of defining
these mappings is more fully described in [19, 20].

To define the mapping we specify relations between
elements from each of two models; e.g. between elements
from the concrete syntax model and the configuration
concepts model. For each relation we specify the domain
and range as a set of instances from each of the two
related models and define a matching condition that
defines whether an element from one model should be
related to an element from the other. The following
section includes examples to illustrate this.

The Kent Modelling Framework (KMF) [18] gives us a
tool set that supports this language definition architecture
and enables automatic generation of tools that support the
defined language. KMF provides a mechanism to generate
a tool implementation from a UML model, including
execution of Object Constraint Language (OCL) [6]
expressions within the model. The generated tool includes
a repository for populating the model; a basic GUI for
viewing and manipulating the population; and facility to
check and execute OCL constraints and expressions. In
anticipation of the results from the KMF project, we
choose to specify our language in a manner that enables
us to make use of the KMF tool-generation tools. In the
mean time, we specify a set of stereotypes that enable us
to use make use of existing UML tools.

igure
1

igure 2
The concrete syntax to concept mappings define a

method to visualise expressions in each of the
specification and configuration languages. Additionally
we specify a mapping between the specification and
configuration concepts that enables us to verify whether
or not a particular configuration conforms to a particular
specification.

The facilities of the KMF framework and tools mean
that having fully defined the models and mappings, we
can generate tools to support the language. Additionally,
the runtime OCL evaluation feature of KMF enables the
generated tools to perform the conformance verification
between a configuration and a specification.

Concrete Syntax Specification
Concepts

Concrete ↔ SC
Mapping

Specification Language

Concrete Syntax Configuration
Concepts

Concrete ↔ Configuration
Mapping

Configuration Language

Figure 2 - Architecture for Concrete Syntax Definitions

 2.2 A Computational Configuration Language

Figure 4

Figure 3

igure 6

Figure 5

Fig

 shows a simplified definition of the concepts
for defining a computational system configuration (the
full definition is tool large to describe here and can be
found at [13]). Such a configuration consists of
computational objects, interfaces and primitive bindings.

 shows the model of a concrete syntax for
visualizing computational configurations. The syntax
consists of lines, circles, oblongs and T-bars. Circles and
T-bars have labels. (An example use of the syntax is
shown in F .) These two figures show the language
concepts and visualization concepts of a computational
language for defining system configurations. To complete
the definitions a mapping is required as the final step in
defining the language.

lan
sig

rel
con
or
and

3. illustrates the mapping relationships for the
configuration language. The definitions of the domain,
range and matching condition are specified using the OCL
in the context of the aggregations (labelled ‘a’ and ‘b’)
that specify one relation as a sub-relation of another. They
are placed in this context so that it is possible to reuse the
specification of a relation (although this facility is not
illustrated by the current example). The OCL for these
mappings is give below:

des
for
illu

(nV
ob
req
cre
wi
film
and

context a
 domain: config.object
 range: diagram.elements->select(el |
 el.oclIsKinfOf(Circle))
 match: object.name = circle.label

fea
label : String label : String

label : String

Figure 3 – Concrete Syntax Concepts
CompObject

Interface
0..*

interface

Primitive
Binding

2

binding

interface

Configuration

object 0..*

Figure 4 – Computational Objects
ure 7

context b
 domain: object.interfaces
 range: circle.lineEnds.owner->select(el |
 el.oclIsKindOf(TBar))
 match: interface.name = tBar.label

The same approach is used to define a specification
guage for defining object templates and interface
natures. An example of this language is shown in

. In addition we have defined a set of mapping
ations between the specification concepts and the
figuration concepts. This enables us to check whether

not a particular configuration conforms to the template
 signature specifications.

A Near Video on Demand System

This section presents the computational viewpoint
ign of an example system. It demonstrates our method
 constructing computational viewpoint designs and
strates the computational viewpoint design languages.
The example system is a Near Video on Demand
oD) System. Users of the system instantiate a browser

ject and connect to a service manager. They then
uest a particular film, causing a video window to be
ated for the user. The window is added to a group of
ndows receiving the video stream for the requested

. At the designated showing time, the film is played
 streamed to all users in the appropriate group.

The system contains multi-media, multicast, and group
tures, all of which can be handled by the computational

Figure 5 – Concrete Syntax to Configuration Concepts Mapping

Interfaces are illustrated using ‘T’ shapes, attached to a
circle to indicate that the computational object (depicted
by the circle) offers that particular interface. The role of
the interface (producer/consumer, initiator/responder or
client/server) is indicated by the direction and style of an
arrow placed near the interface (as suggested in [8]).
Bound interfaces are either connected via an irregularly
dashed line (e.g. vsCtrl and service) or placed head to
head (e.g. videoTrans, videoRec).

viewpoint design language. We start with a snapshot of
the system, which gives an indication of the primary
distributable components composing the system and the
interfaces required to connect them. From the snapshot we
identify and specify the computational object templates
and interface signatures of the system. For each
computational object we subsequently provide a
behaviour specification. Finally we specify environment
contracts for each computational object in the form of
some QoS constraints. The design details are described in
the following subsections.

The identification policy for objects and interfaces is
similar to the approach used in UML object diagrams,
computational objects and interfaces are identified by
either or both of an ‘instance name’ and a ‘template
name’ separated by a colon and underlined. Where bound
interfaces are close together we omit naming both
interfaces separately and distinguish between them using
their role. The scope of an interface name is with respect
to the computational object supporting that interface;
hence interface names can be repeated within the scope of
a snapshot. In this snapshot the two bindings are labelled
with only the template name (see following section); the
film objects and vidWins group objects are labelled with
only an instance name (as are the interfaces); and the
manager object and browsers group are labelled with
both.

3.1 System Snapshot

The first stage in our design approach is to create one
or more system snapshots in the form of configuration
diagrams (i.e. using the configuration language discussed
above). This follows an object-oriented design
methodology and helps to identify the types of object and
interface that we need to create.

An aspect of a computational viewpoint specification
is the decomposition of the system into distributable
objects that interact at interfaces. A computational object,
which may be a composition of two or more other objects,
is a unit of distribution and management that encapsulates
behaviour [3]. In particular, computational objects are not
instances of classes, as is the case in Object Oriented
(OO) languages [11]. To avoid confusion with the word
object, which is a ‘reserved’ word in the UML, we shall
use the term Computational Object.

The film computational objects emit video frames to
the video bindings across the bound videoTrans stream
interfaces. The receiving vidWins computational objects
receive the video frames from the bindings at the bound
videoRec stream interfaces. The service interfaces are
operational interfaces and the vsCtrl interfaces are signal
interfaces. The two interfaces ui and display attached to
the browser objects are for interaction with the user
input/output devices.

Figure 6 depicts a computational viewpoint snapshot of
our example system. Circles depict computational objects;
there are three of these – manager, film1 and film2. The
‘stacked’ circles depict a group of computational objects;
there are three groups indicated – vidWins1, vidWins2 and
browsers. The computational objects film1 and film2
transmit video frames. The frames are transferred via
binding objects to the receiver computational object
groups – vidWins1 and vidWins2. Binding objects are
distinguished from computational objects by illustrating
them as elongated circles.

As an alternative Concrete Syntax for these
configuration diagrams we can use standard UML object
diagrams (if a bespoke configuration diagram editor is
unavailable). Computational Objects and Interfaces are
both shown using the UML notation for an object. These
UML objects should be stereotyped in order to distinguish
between the representations of an interface from that of a
computational object and to distinguish between different
types of interface and computational object. UML ‘links’
are use to show connectivity between interfaces and
computational object, and to show bindings between
interfaces.

u

isplay

3.2 Template and Signature Specifications

The snapshot discussed in the previous subsection
indicates the kinds of component needed in order to build
the system. The next step is to fully specify those
components in order to obtain reusable and detailed
definitions of the aggregated parts of the system. From a
computational viewpoint, the necessary specifications
browsers
: Browser

service

manager :
Service

Manager

film1
: VideoStream

videoTrans

vsCtrl

videoRec

film2
: VideoStream

videoTrans

service
vidWins1

vidWins2

vsCtrl

dvideoRec

Figure 6 Computational Viewpoint snapshot

illustrating the nVod system

includ
interf

Sin
captu
comm
the U

Ho
comp
(OO)
differ

1) A
(
w
t

2) A
a
i

In
an ob
objec
is thro
The w
entitie
class
or a c
a pred
the sy

An
ODP
a give
other
an int
interf

«CompObjectTemplate»
ScheduledShowing

«CompObjectTemplate»
VideoWindow

«StreamBindingObjectTemplate»
VideoStream

«StreamInterfaceSignature»
VideoInterface

video : VideoFlow

«producer»

«consumer» «producer»

«consumer»

«SignalInterfaceSignature»
VSControlInterface

join(vw:VideoInterface) : void
leave(vw: VideoInterface) : void

«responder»

«CompObjectTemplate»
ServiceManager

«initiator» «OperationInterfaceSignature»
ServiceInterface

getProgramme : Set(FilmDescription)
selectToView(f : FilmDescription,
 vw : VideoInterface) : void

«server»

«CompObjectTemplate»
Browser

«client»

0..*

service
service

vsCtrl

vsCtrl

videoTrans

videoTrans

videoRec

videoRec

0..*

«OperationInterfaceSignature»
DisplayInterface

displayProg(fs : Set(FilmDescription)

«client»
display

«client»
ui

«OperationInterfaceSignature»
InputInterface

select(f : FilmDescription
enterServiceURL(s:String)

Figure 7 Computational Template Diagram for the nVoD system
e the definition of computational object templates,
ace signatures, and the relationships between them.
ce the UML provides a rich set of notations for

ring various aspects of computing systems, the ODP
unity has shown extensive interest in using parts of

ML to specify various parts of ODP designs [21-24].
wever, the ODP concept of an object is not entirely
atible with the UML (and other) Object Oriented

concept of an object. There are two subtle
ences:

n ODP class is a set of entities that satisfy a type
i.e. a specification of how to classify objects),
here as a UML class is the specification of how

o construct an object; and
n interface supported by an ODP object provides

 communications port, whereas a UML interface
s a type classifier.
UML the class tends to be the focus of modelling,
ject simply being an instance of a class. In ODP, the
t itself is the focus of modelling; object instantiation
ugh a defined object template, rather than a class.
ord class in the ODP context refers to the set of all
s that satisfy some type. So in ODP we can talk of a
of objects of type X, a class of interfaces of type Y
lass of templates of type Z. A type in ODP refers to
icate, a set of conditions to classify an element of

stem and which can be evaluated for all elements.
 identifying feature of classes in ODP is that an
class, being a set, can be empty, i.e. nothing satisfies
n type, though it may later have members. On the
hand, templates are patterns of feature. In particular,
erface signature (template) defines the type of the
ace and the interactions that may occur across that

interface. For each interaction type, the interface template
defines the name and type of the interaction, the types of
the parameters, the directionality and the exceptions
raised. As a result, the normal UML concept of class
relates more closely to the RM-ODP concept of a
template.

The relationship between objects and interfaces in the
UML world is one of realization. A UML interface
defines a particular set of features; to realize an interface,
an object (defined by a UML class definition) implements
the defined set of features. I.e. with respect to an
interface, the features are abstract definitions, which are
only ‘made real’ by an object.

Within the ODP, interfaces are more of a first class
entity; ODP objects offer a number of interfaces, through
which interactions, both incoming and outgoing, occur.
The same interface signature may be instantiated and
offered by an object multiple times – offering the same set
of interactions to multiple different peers. A particular
point to note is that both input and output communications
require an interface in the ODP world – unlike the UML,
which only facilitates the specification of incoming
communications; there is no means to explicitly specify
what outgoing operations an object may call.

A consequence of these differences is that we cannot
use UML class diagrams “as is” to model the structure of
distributed systems within our approach. The semantics of
a UML class and its relationships are not wholly
compatible with the ODP semantics of templates.
However, given that the UML allows us to ‘stereotype’ its
design concepts, enabling us to effectively define our own
concepts, we do so. Thus we reuse the notation of UML
class diagrams as a notation for the specification language

of computational viewpoint templates. This both, gives us
an appropriate notation, and allows reuse of existing UML
tools, for the specification of computational viewpoint
specifications.

The UML concept of a class is similar to the ODP
notion of a template (and signature) we define stereotypes
of the UML class to enable definition of the ODP
concepts of: computational object template; stream,
operational and signal binding object template; reactive
object template; and stream, operational and signal
interface signature. UML allows us to define icons related
to each stereotype, so we associate an appropriate icon
with each stereotype label. The concrete notation is that of
UML class diagrams, with each component showing its
appropriate stereotype by either or both of a label or icon.
As discussed above, this gives us a language and notation
suitable for defining the computational viewpoint of an
ODP system, which is (hopefully) familiar to UML
designers; easily used; and provided with tool support
from many standard UML tools.

Figure 7
igure 6

 defines a template diagram for the
computational snapshot shown in F . Both
computational object template and interface signatures are
depicted using the notation for UML classes,
distinguished using stereotypes. To aid the distinction,
computational object and binding object templates are
shaded, whereas interface signatures are not. The
stereotype of interface signatures distinguishes (textually)
between operations, stream and signal signatures. The
iconic notation for the templates is included in the top
right corner of the boxes as an additional visual aid to
distinguish between objects, interfaces and bindings.

The relationship between a computational object
template and the interfaces that its instances may offer is
defined using stereotyped UML associations. The
stereotype of the association defines the role in which the
object may offer instances of the interface signature; the
association end name gives a navigation name for the
object to refer to the interface. Each interface instance
may be offered by only one object; hence the object end
of the association is defined to be an aggregation (using a
black diamond). Where an interface signature may be
used to bind to a group of objects, we allow the UML
multiplicity notation to be used on the end of the
association near the interface, to indicate that a specific
number (or many) interface instances may be created (e.g.
the «producer» aggregation between VideoStream and
VideoInterface). The UML ‘realization’ dashed-line arrow
is a possibility as an alternative notation to the
aggregation; this would be more inline with the UML
notation for relating classes to interfaces. However,
standard UML tools are unlikely to enable that addition of
multiplicities to such relationships, disabling the facility
to specify groups; thus we choose the aggregation
relationship as our preference.

3.3 Behaviour

After defining the object templates and the interfaces
they may support, it is necessary to define the behaviour
of the objects and the interactions that occur across the
interfaces. This subsection firstly describes our adopted
approach to specifying behaviour and subsequently
illustrates the techniques by defining the behaviour of the
ServceManager and Browser objects.

As stated in the introduction, one of our requirements
is to use common design practices; following this
directive we look to the UML for a notation that enables
the specification of state-based behaviour. The UML
defines a particular variant of state and transition based
behaviour, based on (a subset of) the formalism of
Statecharts [25], and renamed State Diagrams within the
context of the UML. A state diagram represents the
behaviour of entities capable of dynamic behaviour by
specifying its response to the receipt of event instances. A
state diagram consists of states and transitions.

A state is a condition during the life of an object or an
interaction, during which it satisfies some condition,
performs some action, or waits for some event. A state is
normally depicted as a rectangle with rounded corners,
although special types of state are depicted in other ways.

A transition is a relationship between two states
indicating that an instance in the first state will enter the
second state and perform specific actions when a
specified event occurs provided that certain guard
conditions are satisfied. A transition is shown as a solid
line originating from the source state and terminated by an
arrow on the target state; a transition is typically labelled
with a string that has the following general format:

<event-signature> ‘[’ <guard-condition> ‘]’
‘/’ <comma-separated-action-expressions>

Where event-signature describes an event with its
arguments, guard-condition is a Boolean expression
written in terms of parameters of the triggering event and
attributes of the object whose behaviour is described by
the state machine. The action-expressions are executed if
and when the transition fires (i.e. the source state is active,
the event occurs and the guard evaluates to true). Actions
are expressions that either:

1) Alter or access the local state of the object;
2) Instantiate interfaces to be offered by the object; or
3) Cause an interaction at a specified interface.
An action must be executed entirely before any

following actions are considered – i.e. actions are
considered atomic.

Within our usage of State Diagrams, events are caused
by the receipt of signals at interfaces offered by the
object. These are either: directly by receiving a signal sent
to a responder signal interface; by receiving an operation
call at a server operational interface; or by receiving a

pa
na
int
int

thi
co
dia
on
co
ge

UM
the
sin
be
ho
ev
de
en
tog
the
wi

be
OD
us
pro

be
ob
fro
off
in
ev
ev
by
tra
int
ac

sent (Return_getProgramme(…)), passing the return
parameter consisting of the programme listing (retrieved
from some internal state of the service manager object –
not modelled here).

The lower transition is fired by a call to the
selectToView operation on the service interface.
Parameters film and vw are passed with the operation call
and hence are present in the event. There are two actions
in caused by the transition; the first retrieves the value of
a VSControlInteface interface for the selected film (from
some unmodelled internal state of the object) and assigns
the retrieved interface reference the name ctrl. The second
action sends a join signal to the retrieved interface, which
should cause the passed video window interface reference
parameter, vw, to be added to the group of computational
 ServiceManager

let e = service.getProgramme() /
e.source.Return_getProgramme (programmeList)

Waiting

service.selectToView(film, vw) /
 let ctrl = shows.get(film),
 ctrl.join(vw)

Figure 8

cket or frame at a consumer stream interface. The event
me and parameters are taken from the respective
erface signature and is clarified by the name of the
erface instance with respect to the object offering it.
State diagrams also allow hierarchical nesting of states;
s enables complex behaviour to be specified in a
ncise manner. Sub-states are either single state
grams in which contained states are ‘or’-states in that
e or other is active; or alternatively sub-states can be
ncurrent whereby both sub-states are active and
nerally further refined to a sub state.
There are also four special types of state (known in the
L as pseudo states). These are: the initial state, where

 behaviour starts, depicted as a filled circle with a
gle outgoing transition; the final state, where the
haviour terminates, depicted as a filled circle inside a
llow circle; the choice state, causing dynamic
aluation of guards to determine the behavioural path,
picted as a hollow circle; and the junction state, which
ables multiple transitions to be chained or merged
ether. Pseudo states are not assumed to be stable – i.e.
 state machine should not ‘wait’ for an event to occur
thin a pseudo state.
These different types of state map to some of the
havioural actions defined in the RM-ODP. The other
P actions are supported by specific keywords or by

ing a ‘virtual’ node management function interface that
vides the required behaviour.
The example diagrams of F and F show
haviour specifications for ServiceManager and Browser
jects. The service manager has a ready or Waiting state
m which it provides its services of either returning the
ered programme of films or registering a user’s interest
a particular film. The upper transition is fired by the
ent getProgramme received at the service interface. The
ent is assigned to the name e so that it can be referenced
 the following action. There is a single action on this
nsition, which retrieves a reference to the client
erface that initiated the operation call (e.source). The
tion causes the return signal of the operation call to be

object interface that receive the selected film.
The behaviour specification for the browser objects,

shows a connected and unconnected state. The browser
moves into a connected state when the user has specified
the service manger to which the browser should connect.
The transition is split to facilitate reuse of the connection
actions, when a user specifies connection to a different
manger; there are three actions involved. The first makes
use of the ‘node management function’ bind that forms a
binding between two interfaces. The other two actions
retrieve the programme of films and display them to the
user. When connected, a user of the browser can select to
view a particular film. The event ui.select(film) detects
this and invokes actions to firstly create a video window
object and secondly pass the appropriate film description
and interface reference of the video window on to the
service manager.

3.4 Environment Contracts – QoS Specification

The previous subsections have defined the structure,
templates and functional behaviour of the system. Now
we address the specification of non-functional aspects of
the system by defining some QoS constraints. The ODP

igure 8 igure 9
Browser

Connected

Unconnected

ui.enterServiceURL(s) /

 / bind(service, s)
 let p = service.GetProgramme(),
 display.displayProg(p)

Waiting

ui.select (film) /
 let vw = create VideoWindow
 clientServiceInterface.selectToView(film, vw.videoRec)

ui.enterServiceURL(s) /

Figure 9

standard defines the concept of an environment contract.
This is a contract between an object and its environment,
i.e. all other object with which it interacts. As interactions
occur across interfaces, environment contacts for an
object generally involve one or more interfaces. A QoS
constraint is one such example of an environment
contract. Such a constraint involves two parts:

1) Requirements of the object by the environment,
known as obligations; and

2) Requirements of the environment by the object,
known as expectations.

The relationship between these two parts states that
provided the expectations are met (by the environment)
the obligations will be met (by the object).

There is currently no clear contender for a most
commonly used (de facto) QoS language. Many have
been proposed [9, 26-29]; one that we have found to be
most suited to our design approach, partly due to its
association with the OCL and UML, is the Component
Quality Modelling Language (CQML) [30, 31]. CQML is
a lexical language for QoS specification and has been
developed to explicitly include as many features as
possible [9]. We have found the language to be
expressive, very useable and easily integrated with our
other UML based languages within the ODP framework.
There are many possible QoS characteristics that could be
constrained, [32] lists those identified by the ITU. For the
purpose of this paper we look at three stream and time
related characteristics – latency, anchored jitter and
throughput. Latency is the amount of time between two
events (e.g. time between sending a frame and receiving
it); throughput is the rate of occurrence of events (e.g. the
rate of flow of frames); and anchored jitter is a variation
in nominal throughput.

CQML facilitates the definition of quality
characteristics such as latency, throughput and anchored
jitter in terms of the history of events at a particular
interface. The following CQML statements define these
characteristics in terms of the events occurring at each
interface involved in the constraint. The semantics define
that each flow of an interface instance contains a
historical sequence of events. This is essentially provision
of the ‘Event Notification Function’, defined by the RM-
ODP [3], which requires event histories to be made
available.

quality_characteristic throughput(
 duration : Integer,
 flow : Flow
) {
 domain: increasing numeric integer [0..)
 eventsPerDuration;
 values: flow.events->select(e |
 flow.events->last.time - e.time > duration
)->size
}

This definition defines the characteristic named
throughput. The characteristic takes two parameters, the

duration over which the throughput is constrained, and the
particular flow of an interface to which the constraint is
applied. The first part of the characteristic (domain)
defines the type of value constrained by the characteristic
and the units to be used. The values part is an OCL
expression that defines the value of the constraint in terms
of the parameters. This particular characteristic gives
increasing positive integers and is calculated by counting
the number of events whose time stamp is within duration
milliseconds of the last event.

quality_characteristic latency(
 src : Flow,
 tgt : Flow
) {
 domain: decreasing numeric milliseconds;
 values:
 let tgt_evt = tgt.events->last
 let src_evt = src_events->any(e |
 tg_evt.id = e.id) in
 tgt_evt.time – src_evt.time
}

This latency characteristic defines latency to be the
time between the last two corresponding events from the
source and target flows.

Constraints regarding particular characteristics are
formed in CQML by specifying quality statements, these
are grouped to form QoS specifications on particular
objects or object templates as QoS Profiles. A QoS profile
includes statements for both expectations and obligations;
each expectation or obligation is an expression referring
to one or more quality statements. The quality statements
enable reuse of QoS specifications across multiple QoS
profiles. A quality statement contains the conjunction of a
number of sub expressions that constrain a variety of
quality characteristics. Each quality characteristic is
defined by an OCL expression that (in the case of latency,
anchored jitter and throughput) references the associated
event histories. To enable quality characteristics to be
generalised and reused, they can be defined with specific
parameters. Given a set of pre-defined quality
characteristics (throughput, anchoredJitter and latency)
the QoS specifications associated with the VideoStream
Template defined in F (defining templates for the
system illustrated in F) can be specified and
explained as follows.

igure 7
igure 6

The video binding from film to video window is
specified to provide a through frame rate of no less than
25 fps with a latency of between 40 and 60 milliseconds
(ms) so long as it receives an input frame rate of no less
than 25 fps. This is expressed in CQML as follows:

QosProfile for VideoBinding {
 exp: quality {
 throughput(1000, videoTrans.video)>=25; };
 obl: videoRec->forAll(vr |
 quality {
 throughput(1000, vr.video) >= 25;
 latency(videoTrans.video,
 vr.video).maximum = 60;
 latency(videoTrans.video,
 vr.video).minimum = 40; }; }

The above QoS Profile, defined for the VideoBinding
template, defines one expectation, that there should be at
least 25 events received every second (1000 ms) at the
‘video’ VidowFlow part of the consumer interface
videoTrans. It also defines that for all of the videoRec
interfaces the binding is obliged to provide at least 25
frames every second (fps) from the VideoFlow (named
‘video’) part of the VideoInterface signature, supported by
the binding in the role of a producer. The particular
VideoFlows on which the constraints are placed is
navigated to using the association end names of the
associations relating object templates to interface
signatures. Additionally there are constraints between
consumer and producer VideoFlows that specify the
maximum and minimum latency that should occur for a
frame passing through the binding. We have extended the
CQML language to allow OCL quantification over
collections of interfaces in order that we can support the
specification of quality constraints over groups.

This completes the computational viewpoint design. A
number of iterations through this process may be required
as filling out each stage may prompt a designer to add or
change information initially entered during a previous
stage. However, by deciding on the information to be
entered into the design at each of these stages
(configuration, templates, behaviour, and environment
contracts) we complete a computational viewpoint design.

This design can subsequently be used to populate
model checking and verification tools to provide feed
back about the design. Other aspects of the DSE4DS
project address the provision of such tools, based on
computational viewpoint designs consisting of the above
described information.

4. Tool Support and Related Work

As discussed earlier, the primary motivations for
specifying out language using this approach is to facilitate
use of the KMF tool generator to provide tools for our
language. Currently the KMF tool will:
• Provide a repository for storing and manipulating

specifications in our language.
• Enable (OCL) constraints to be checked in order to

affirm that a valid specification has been formed.
• Provide persistent storage of the specification as an

XML document; enabling saving and loading of
Computational Viewpoint specifications.

• Support the implementation of mappings between
two models, enabling constraints to be evaluated that
report whether or not a mapping is valid.

• Provide transformation code that will either generate
one model from the other or reconcile two partially
consistent models.

The KMF tool will not yet generate editors for the
concrete syntax – these must be provided separately. One
option, currently in use, is to use a UML tool along with
the defined stereotypes and provide a mapping between
the UML meta-model and our Computational Viewpoint
language model. Using a UML tool we can save the
specification as an XML representation of the model
(using the defined UML encoding – XMI). This can be
loaded into the tool generated by KMF and by activating a
model transformation be used to populate our abstract
Computational Viewpoint language model. We hope to
provide a bespoke concrete syntax editor within the next
few months.

The design approach presented in this paper is an
evolution of our earlier work [7, 33]. Previously we
proposed an approach that used the UML in a stricter
fashion for the structural and behavioural design and the
language QL for specifying QoS. The strict use of UML
caused designs to be expressed in a manner that made
them hard to read and lengthy to write. Additionally, the
QoS language QL does not integrate well with UML – as
described in [33]. To improve upon this, we have adopted
a more flexible approach to using UML, providing
stereotypes to enable design using specifically the
concepts defined in the RM-ODP. This approach has also
been used in [34] although they do not use the RM-ODP
terminology and in [21] and [23] which stereotype UML
elements to define a language for creating ODP Enterprise
specifications.

There is also the EDOC profile for UML [35]; this is
very large, but does not address sufficiently facilities for
specifying computational viewpoint languages. Besides,
for the reasons outlined above, we prefer a newly defined
language rather than an adaptation of a language designed
with other specification goals in mind. We have allowed
our design approach to be influenced by non-UML based
methods such as the work at Lancaster [28] and in
particular the methods proposed by Blair and Stefani in
[8].

Our approach to QoS specification uses the Aagedal’s
CQML language [9] which he has shown to be well
integrated with and useable in the context of UML based
designs [30]. There are other approaches to the
specification of QoS, discussed in [9] and in [36]. The
approach taken by [37] and defined in the new CORBA 3
standard [38] is to use extensions of the OMG’s Interface
Definition Language (IDL) for defining QoS, however we
consider this to be a technology specific approach and
prefer the use of a language less related to
implementation. Similarly, [39] suggests the use of TINA-
ODL [27] that is also an extension of the OMG IDL.
Finally, the OMG has issued an RFP for a UML profile
for modelling QoS [40]; in [30] the authors state that
CQML is intended to contribute towards this RFP.

Naumenko and Wegmann [41] define a model for the
ODP foundation concepts using the language Alloy. Their
work, although providing a model of the concepts, does
not provide a specification language for those concepts.

UML for Real Time proposes the concept of capsules
and ports. These are similar to the ODP idea of object and
interface. However, the UML-RT concepts are closer to
the Engineering viewpoint concepts than the
computational ones; and besides, why re-invent the ideas
again, when they are perfectly well defined in RM-ODP.

5. Conclusion

This paper has presented a fully integrated set of
notations that together form a concrete language used to
specify computational viewpoint aspects of a distributed
system. The language is precisely based on the concepts
defined within the RM-ODP and fully supports all of the
definitions. This enables us to define distributable
components, their interfaces, their functional and their
non-functional behaviour. We can specify how the
components are configured to form particular systems and
specify the templates from which the components are
instantiated.

We have presented the precise technique used to define
the language concepts and integrate the different notations
to form a consistent model of the specification. This
language definition technique also enables us to
automatically generate the significant portion of a tool to
support the defined language; this tool is currently under
development.

Use of this computational viewpoint language has
enabled us to define a number of examples. Within the
framework of the DSE4DS project these examples have
been used to develop techniques for verifying that the
behaviour of computational objects conform to the
defined QoS constraints placed on them.

We have found the Configuration and Specification
notations to be easily used for specifying a variety of
systems involving multi-media streams – such as the Near
Video on Demand system described in this paper and a
Lip Synchronisation system described in [42]. In
particular the facilities offered by the QoS specification
language CQML enable us to take full advantage of being
able to specify non-functional aspects of a system in
addition to the functional ones.

In the future we intend to use this approach to generate
tools and definitions to support specification in additional
ODP viewpoints. We also plan to investigate the use of
the Mappings technique within the context of inter-
viewpoint consistency with the hope of using KMF to
generate supporting tools. These tools will then be
integrated with our work on the verification of functional
against non-functional (QoS) specifications [42] to

provide parts of our design support environment for
distributed systems.

References

[1] C. Catlett, "GGF Document Series," Global Grid Forum
GFD-C.1, April 2002.

[2] D. H. Akehurst, B. Bordbar, J. Derrick, and A. G. Waters,
"Design Support for Distributed Systems: DSE4DS," in J.
Finney, M. Haahr, and A. Montressor (eds) proceedings
7th Cabernet Radicals Workshop, Bologna, Italy, October
2002.

[3] ITU-T Recommendation X.901-5 10746-2 to 5:1996-99,
Information Technology - Open Distributed Processing -
Reference Model: All Parts

[4] ITU-T Draft Recommendation X.930 (1998) | ISO/IEC
JTC1/SC7 N2013:1998, Information Technology - Open
Distributed Processing - Interface references and Binding

[5] ITU-T Recommendation X.641 (1997) | ISO/IEC
13236:1998, Information technology - Quality of service:
Framework

[6] OMG, "The Unified Modeling Language Version 1.4,"
Object Management Group formal/01-09-67, Septamber
2001.

[7] B. Bordbar, J. Derrick, and A. G. Waters, "A UML
Approach to the Design of Open Distributed Systems," in
C. George and H. Miao (eds) proceedings Formal Methods
and Software Engineering, 4th International Conference on
Formal Engineering Methods, ICFEM 2002, Springer,
Lecture Notes in Computer Science, 2495, Shanghai,
China, pp. 561-572, October 2002.

[8] G. Blair and J.-B. Stefani, Open Distributed Processing
and Multimedia: Addison Wesley, ISBN 0-201-17794-3,
1997.

[9] J. Ø. Aagedal, "Quality of Service Support in Development
of Distributed Systems," PhD thesis, Department of
Informatics, Faculty of Mathematics and Natural Sciences,
The University of Oslo, 2001

[10] P. F. Linington, "RM-ODP: The Architecture," in K.
Raymond and E. Armstrong (eds) proceedings Open
Distributed Processing: Experience with Distributed
Environments, 3rd IFIP TC 6/WG 6.1 International
Conference on Open Distributed Processing, Chapman and
Hall, February 1995.

[11] J. R. Putman, Architecting with RM-ODP: Prentice Hall,
ISBN 0-13-019116-7, 2001.

[12] OMG, "Meta Object Facility (MOF) Specification, Version
1.4," formal/2002-04-03, April 2002.

[13] D. H. Akehurst, B. Bordbar, J. Derrick, and A. G. Waters,
"Design Support for Distributed Systems (DSE4DS)
Project Home Page," 2000,
http://www.cs.ukc.ac.uk/projects/dse4ds/index.html

[14] H. Bowman, M. Steen, E. Boiten, and J. Derrick, "A formal
framework for viewpoint consistency," Formal Methods in
System Design, vol. 21, pp. 111-166, September 2002.

[15] R. O. Sinnott and K. J. Turner, "Specifying ODP
Computational Objects in Z," in proceedings 1st
International Workshop on Formal Methods for Open
Object-Based Distributed Systems, Paris, France, pp. 375-
390, March 1996.

http://www.cs.ukc.ac.uk/projects/dse4ds/index.html

[16] D. H. Akehurst, "An OO Visual Language Definition
Approach Supporting Multiple Views," in proceedings
VL2000, IEEE Symposium on Visual Languages,
September 2000.

[17] 2Uworks, "Unambiguous UML (2U) 3rd Revised
Submission to UML 2 Superstructure RFP," OMG
document ad/2002-12-23, January 2003.

[18] D. H. Akehurst, S. Kent, O. Patrascoiu, and R. Smith, "The
Kent Modelling Framework," 2002,
www.cs.kent.ac.uk/kmf

[19] J. H. Hausmann and S. Kent, "Visualizing model mappings
in UML," in proceedings ACM Symposium on Software
Visualization 2003, San Diego, USA, June 2003.

[20] D. H. Akehurst and S. Kent, "A Relational Approach to
Defining Transformations in a Metamodel," in S. Cook
(eds) proceedings The Unified Modeling Language 5th
International Conference, LNCS, 2460, Dresden, Germany,
pp. 305-320, 2002.

[21] P. F. Linington, "Options for expressing ODP Enterprise
Communities and their Policies by using UML," in
proceedings 3rd International Conference on Enterprise
Distributed Object Computing (EDOC99), IEEE, Silver
Spring, pp. 72-82, September 1999.

[22] M. Belaunde and J.-M. Cornily, "Specifying Distributed
Object Applications Using the Reference Model for Open
Distributed Processing and The Unified Modeling
Language," in proceedings 3rd International Conference on
Enterprise Distributed Object Computing (EDOC99),
IEEE, Silver Spring, September 1999.

[23] M. Steen and J. Derrick, "ODP Enterprise Viewpoint
Specification," Computer Standards and Interfaces, vol.
22, pp. 165-189, September 2000.

[24] B. Bordbar, J. Derrick, and A. G. Waters, "Using UML to
specify QoS constraints in ODP," Computer Networks and
ISDN Systems, 2001.

[25] D. Harel, "Statecharts: A Visual Formalism for Complex
Systems," Science of Computer Programming, vol. 8, pp.
231-274, 1987.

[26] P. Hoschka, "Synchronized Multimedia Integration
Language (SMIL) 1.0 Specification," WC3 REC-smil-
19980615, June 1998.

[27] TINA, "TINA Object Definition Language (TINA-ODL)
Manual," TINA Consortium Document No.
TR_NM.002_1.3_95, June 1995.

[28] G. Blair, L. Blair, and J.-B. Stefani, "A Specification
Architecture for Multimedia Systems in Open Distributed
Processing," Computer Networks and ISDN Systems,
Special Issue on Specification Architecture, vol. 29, pp.
473-500, 1997.

[29] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken,
"Specifying and Measuring Quality of Service in
Distributed Object Systems," in proceedings First
International Symposium on Object-Oriented Real-time
Distributed Computing (ISORC 98), pp. 43-52.

[30] J. Ø. Aagedal and E. F. Ecklund, "Modelling QoS:
Towards a UML Profile," in J.-M. Jezequel, H. Hussmann,
and S. Cook (eds) proceedings <<UML>> 2002 The
Unified Modeling Language: Model Engineering,
Concepts, and Tools, Springer, LNCS, LNCS 2460,
Dresden, Germany, pp. 275-289, October 2002.

[31] J. Ø. Aagedal and A. Berre, "ODP-Based QoS-Support in
UML," in proceedings First International Enterprise
Distributed Object Computing Workshop (EDOC'97),
1997.

[32] ITU-T Recommendation X.642 (1998) | ISO/IEC
13243:1999, Information technology - Quality of service -
Guide to methods and mechanisms

[33] B. Bordbar, J. Derrick, and A. G. Waters, "Using UML to
specify QoS constraints in ODP," Computer Networks, vol.
40, pp. 279-304, 2002.

[34] M. Born, M. Holz, and M. Kath, "A Method for the Design
and Development of Distributed Applications using UML,"
in proceedings International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS Pacific),
IEEE Computer Society Press, Sydney, Australia,
November 2000.

[35] OMG, "UML Profile for Enterprise Disributed Object
Computing," Object Management Group ptc/02-02-05,
Febuary 2002.

[36] C. Aurrecoechea, A. T. Campbell, and L. Hauw, "A survey
of QoS architectures," Multimedia Systems, vol. 6, pp. 138-
151, 1998.

[37] D. G. Waddington, G. Coulson, and D. Hutchison,
"Specifying QoS for Multimedia Communications within
Distributed Programming Environments," in G. Ventre, J.
Domingo-Pascual, and A. Dantine (eds) proceedings
Multimedia Telecommunications and Applications, Third
International COST 237 Workshop, Springer, Lecture
Notes in Computer Science, 1185, Barcelona, Spain, pp.
75-103, November 1996.

[38] OMG, "Common Object Request Broker Architecture
(CORBA/IIOP), version 3," Object Management Group
formal/2002-11-03, November 2002.

[39] P. Leydekkers and V. Gay, "ODP View on Quality of
Service for Open Distributed Multimedia Environments,"
in A. Vogel and J. d. Meer (eds) proceedings 4th
International IFIP Workshop on QoS (IWQOS'96), Paris,
France, March 1996.

[40] OMG, "UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms, Request
for Proposal," Object Management Group ad/02-01-07,
January 2002.

[41] A. Naumenko and A. Wegmann, "Conceptual Modeling of
Complex Systems Using an RM-ODP Based Ontology," in
proceedings 5th IEEE International Enterprise Distributed
Object Computing Conference - EDOC 2001, Seattle,
USA, pp. 200-211, September 2001.

[42] D. H. Akehurst, B. Bordbar, J. Derrick, and A. G. Waters,
"Design and Verification of Distributed Multi-media
Systems," University of Kent at Canterbury 1-03, January
2003.

http://www.cs.kent.ac.uk/kmf

	Introduction
	A Computational Viewpoint Language
	A Language Definition Architecture
	A Computational Configuration Language

	A Near Video on Demand System
	System Snapshot
	Template and Signature Specifications
	Behaviour
	Environment Contracts – QoS Specification

	Tool Support and Related Work
	Conclusion
	References

