
Tooling Metamodels with Patterns and OCL 
D. H. Akehurst, O. Patrascoiu 

University of Kent at Canterbury 
{D.H.Akehurst, O.Patrascoiu}@kent.ac.uk 

Abstract. Computing is moving to a new paradigm where models are first class 
artefacts. Metamodelling is one of the foundations of this future. However, it is 
all very well to have metamodels and languages with which to define them (i.e. 
MOF), but what should we do with them once they are defined? One task 
should be to populate the model described by the metamodel definition and 
ensure that the well-formedness constraints are correctly specified; another task 
may be to create a tool based on the metamodel. In order to enable experiments 
with variations in the metamodel an automated approach to building such tools 
is required. Judicious use of patterns can facilitate automatic generation of such 
tools. The ability to auto-generate a tool from a metamodel definition facilitates 
experimentation and general confidence in the definition of the metamodel. The 
tool generated can be subsequently used as the foundation for a more 
functionally rich hand-coded tool. 

1 Introduction 
Models are becoming ‘primary artefacts’ in modern computing. The Object 

Management Group’s (OMG) Model Driven Architecture (MDA) [1] strategy 
envisages a world where models play a more direct role in software engineering and 
production. Metamodelling is a key facility in this new era; it provides the facilities to 
support the design of models, i.e. a metamodel is a model of a model. The OMG has 
defined the Meta Object Facility (MOF) [2] as a language for defining metamodels; 
but what do we do with a model specification (an expression in MOF) once it is 
defined and what support can be provided to aid the specification of models? 

• Can we check that a population meets the well-formedness constraints? 
• Can we implement the specification? 
• Can we provide tools to support the defined model? 

The aim of this paper is to demonstrate that, the use of programming patterns and 
the provision of support for the Object Constraint Language (OCL) [3], enables us to 
say yes to all of these questions. 

OCL provides the Unified Modelling Language (UML) with a navigation and 
constraint expression facility. By implementing this language over the metamodel 
specification language MOF, a sub set of UML, we provide a facility to check the 
well-formedness constraints that typically form part of many model specifications. In 
addition the OCL implementation provides a very useable query language [4] for 
exploring metamodel populations. 

Modelling raises the level of abstraction at which computing is done; programming 
patterns enable us to map modelling abstractions onto today’s ‘executable’ languages. 
Traditionally higher level constructs are mapped onto lower level ones using a 
particular pattern. Much of this has in the past been about behavioural constructs 



mapping to a pattern of lower level (assembly instruction) constructs. However, 
modelling is more of a structural facility; hence we form structural patterns in 
addition to behaviour patterns. Such patterns are becoming common place, although 
often implemented by hand. One of the most well-known is that of accessors and 
mutators as implementation patterns for class properties. Many tools support such 
patterns in their code generation facilities. 

The mapping from metamodel onto implementation can be seen as an MDA 
exercise requiring a mapping from MOF (PIM) to a programming language (PSM). 
However, as there is as yet no standard specification language for transformations and 
more importantly, as the PSM is a programming language, we feel that specifying the 
mapping in a manner that resembles the target programming language expression, is 
more appropriate. There are many tools that will support code generation from UML 
models, e.g. Rational Rose [5], Poseidon [6], Together [7]. 

However, what we are proposing here is something more than simple code 
generation. We support generation of a complete framework useable for populating, 
manipulating and exploring the specified model (or metamodel). 

To fully realise the power of modelling in an implementation we need to support 
complex patterns; such as Visitors, Factories, Repositories, support for bi-directional 
Associations (opposite ends should always refer to each other), and possibly many 
others. To achieve this in a fully flexible manner it is necessary to provide a tool that 
enables the specification of the required patterns in such a way that the instantiation 
of the pattern takes its parameter values from the specified model. 

We already have a language for navigating metamodel specifications – OCL. This 
language facilitates the extraction of template parameters from the specified model; to 
provide a full template language we need to add mechanisms to: 

a) compose the string values that define the implementation code 
b) generate files and directories for storing the implementation code 
c) call sub-templates with appropriate parameters 

Ideally, an appropriate template language would be designed and specified (or an 
existing one altered) that incorporates OCL as an expression language. However, as 
an interim solution, we have found that a few minor extensions to our OCL 
implementation provide us with the required functions. 

By defining templates for a number of interacting patterns we are able to generate, 
from the specification of a model, a tool that supports: 

• Building and manipulating model populations 
• Viewing model populations 
• Evaluating OCL constraints and expressions over the population 
• Provision of persistent storage as XMI [8], HUTN [9] (or other formats). 

This is demonstrated through the use of a tool called the Kent Modelling 
Framework (KMF) [10], developed and used at the University of Kent at Canterbury; 
the tool has been under development and use for over five years, supported by a 
number of different research projects. The tool has been used as part of those projects 
to generate support tools for a variety of different models, such as: the UML 
metamodel (versions 1.4, 1.5, 2.0); the OCL (abstract syntax model) version 2.0; a 
metamodel (discussed in [11]) based on the Reference Model for Open Distributed 
Processing (RM-ODP) [12], as part of the DSE4DS project [13, 14]; and 
diagrammatic language models, as part of the Reasoning with Diagrams project [15]. 



In addition, due to the use of OCL as the template language we are able to generate an 
implementation of KMF using itself. 

The rest of this paper is organized as follows. Section 2 described the patterns 
generated by the latest version of our KMF tool. Section 3 describes how we use OCL 
as a template language. Section 4 discusses how the generated code is fitted together 
into a useful support tool for the original model specification. Section 5 discusses 
existing related work to that presented in this paper. Section 6 concludes the paper 
with a summary and discussion of future work. 

2 The Patterns 
The generation of our modelling tools from a metamodel is achieved through the 

use of a number of interacting programming patterns. Information is taken from the 
metamodel specification and used to populate the parameters of each pattern. Each of 
the major concepts from the metamodel, class, attribute, association and package, are 
used to instantiate a different set of patterns; described in the following sub sections. 
We currently use Java as the target implementation language; it would be easy to 
adapt the templates to additionally target other languages. 

Patterns have been recognised as a useful programming technique for a number of 
years. In particular the book by the “gang of four” [16] discusses a number of widely 
used patterns. Most of our patterns are taken or adapted from those documented in 
this book. 

2.1 Classes 
Each metamodel class is implemented using a pattern of interface and 

implementation class. An interface is constructed to represent each class and the type 
hierarchy of the class; a key value of this pattern is that the implemented type 
hierarchy will support multiple inheritance. The name of the interface matches the 
name of the metamodel class. The implementation class is named after the metamodel 
class, but with an added extension to the name – such as ‘Impl’. 

2.2 Attributes and Associations 
Each attribute of, and association end that is navigable from, a particular 

metamodel class is implemented by adding appropriate accessor and mutator methods 
in both the interface and implementation class. These method signatures follow the 
standard java pattern as shown below: 

public <Type> get<CapitalisedName>() 

public void set<CapitalisedName>(<Type> <name>) 

The implementation of attributes and associations differ. Attributes are 
implemented simply by providing an appropriately typed private variable, which is 
returned or assigned in the accessor and mutator bodies. 

Two alternative patterns are used to implement an association end. The choice 
between patterns is based on whether or not the association end (or its counter part at 
the other end of the association) is marked as ‘navigable’. 



If only one end is marked as ‘navigable’ then the same implementation pattern is 
used as that for attributes; the class navigated from will contain a private variable 
returned and assigned by the accessor and mutator. 

If both ends of the association are navigable then we must ensure that setting one 
end will also set the other end appropriately. A variety of programming techniques 
could be used to achieve this; the simplest being for the mutator implementation to set 
the opposite end as well as setting this end, i.e.: 

public void set<CapitalisedName>(<Type> <name>) { 
  this.<name> = <name>; 
  if (<name>.get<OtherName>() != this) 
    if (<name>.get<OtherName>() != null) 
      <name>.get<OtherName>().set<Name>(null) 
    <name>.set<OtherName>(this); 
} 

This mutator first sets the private variable for this end of the association. The next 
conditional test is to eliminate a non-terminating recursive loop, without it, each end 
of the association would attempt to set the other end, which would set the other end, 
which would set the other end…etc. The second test determines if an existing object 
is already using the new object as one of the association ends, if so we should remove 
it (i.e. set it to null). Finally, the other end of the association is set to reference this 
object as the appropriate end of the association. 

This pattern is fine for Association ends with multiplicity of one (or zero-to-one), 
however, when we have a collection of objects at an association end, something more 
complex is needed. There are two approaches to implementing this type of 
association; one is to provide ‘Add’ and ‘Remove’ methods on the class that 
references the collection; the other option is to use accessors and mutators which get 
and set collection objects. 

To ensure the referential integrity of opposing association ends with the first of 
these implementation approaches, a similar technique can be used to that for single 
object association ends; the Add and Remove methods can be implemented so as to 
set the opposite ends of the association. 

Performing the same actions when the second approach is used is more complex. 
Standard Java (or other language) collections are used to implement the model 
collections and the mutator will allow any collection that implements the collection 
interfaces to be used as an argument. Our approach to implementing the referential 
integrity is to provide a separate object that implements an associationEnd. Objects 
that take on the role of an associationEnd within a model implementation must 
implement an AssociationEnd interface, the functions of which are delegated to the 
separate associationEnd object. The AssociationEnd interface is shown below: 

public interface AssociationEnd { 
  Object getOtherEnd(String propertyName); 
  void setOtherEnd(String propertyName, 
                   Object value, 
                   String otherName); 
} 

The accessor and mutator are qualified by a string value in order to distinguish 
between multiple associationEnd roles supported by an object. The mutator, in 
addition, takes a value for the opposing association end name as a parameter, so that 



the referential integrity actions can be caused. The implementing (delegate) object for 
this interface performs actions similar to those discussed above, with some variation 
based on collection objects. Setting a collection object causes a new wrapper 
collection to be created. This delegates all collection functions to the original 
collection, but intercepts add and remove methods so as to cause additional actions 
for setting the other end of the association. 

2.3 Packages 
There are three patterns instantiated from metamodel packages – Factory, 

Repository and Visitor. Each of these patterns addresses the classes owned by the 
metamodel package and addresses any sub packages. 

Factory 
Based on the traditional pattern for a factory object [16], we provide a variation 

that scales more easily to large models. The idea of the pattern is essentially to 
provide an interface for constructors of the classes in a model (Java does not facilitate 
constructors in an interface specification). A factory interface contains a create 
method for each (non-abstract) class in the model, the implementation of the factory 
supports generation of an object of the appropriate class, the returned object being 
referenced by the implemented interface type (rather than the actual implementation 
class). We additionally provide a generic create method that takes a (model) class 
name as parameter. 

Our original implementation provided a single factory for a whole model; however 
we discovered that this approach was not scaleable, causing problems with very large 
models; and meant that we had to treat the whole model as an entity, where as 
sometimes we wished to deal with a single package (and sub-packages) of the model. 
An alternative that we have investigated is to construct a factory implementation class 
(and interface) for each metamodel class; however, we found that this was 
unnecessary. 

Our preferred evolution of the factory pattern is to provide a factory for each 
package. These factories are linked in a hierarchy that matches the package structure; 
any factory can be used to create objects from its own package or any sub-package. 

We create an implementation Factory class for each package; the class implements 
and extends a common Factory interface and implementation which provide common 
behaviour. The template for the generated class is as follows: 

public class <pkg_name>Factory extends FactoryImpl { 

  public <pkg_name>Factory() { 
    <for each subPackage> 
     <spkg_name> = new <subFactory_name>(); 
  } 

  <for each subPackage> 
   public <subFactory_name> <spkg_name> = null; 

  <for each class in this package> 
   public <class_name> create<class_name>() { 
     return new <classImplName>(); 
   } 
   public void destroy<className>(<className> object) { 
     <for each attribute or associationEnd> 



      <if a.multiplicity.oclIsUndefined() then> 
        object.<mutator_name>(null); 
      <else> 
        object.<accessor_name>().clear(); 
      <endif> 
   } 

} 

Repository 
A repository provides at its basis a similar function to a factory; it enables the 

creation of objects (in fact the repository uses the factory to provide this part of its 
implementation). However, the repository keeps track of all objects created and 
facilitates operations such as: saving its set of objects – to provide persistence for the 
model population; returning the set of all objects in the model that conform to (are 
instance of) a particular type; or deleting objects. 

As with the factory pattern, we provide repositories on a per package basis, which 
are linked in accordance with the package hierarchy. Each Package registers a 
repository for its sub packages and registers a population for its own classes. The 
template is shown below: 

public class <pkg_name>Repository extends RepositoryImpl { 
  public <pkg_name>Repository() { 
    super.setFactory( new <pkg_name>Factory(log) ); 
    <for each subPackage> 
     super.registerSubRepository("<spkg_name>", 
              new <spkgFullName>.<spkg_name>Repository()); 
    <for each class in this package> 
     super.registerElementType("<cls_name>"); 
 } 

 public void saveXMI(java.lang.String fileName) { 
   super.saveXMI(fileName, new <pkg_name>VisitorImpl()); 
 } 

 public java.lang.String toString() { return "<pkg_name>";} 

} 

The saveXMI method calls the generic saveXMI method, passing a bespoke 
package visitor. This visitor encodes the manner in which the model elements and 
their parts should be traversed in accordance with the original model specification. 

Visitor 
The visitor pattern is one that supports traversal of an object graph that forms the 

population of a model. The standard visitor pattern provides an implementation of a 
technique known as ‘double dispatch’. This enables a particular method to be called 
based on the runtime type of two objects (as opposed to the basic method call that 
depends on the runtime type of a single object). The two objects are typically: one 
that is the object being visited (known as the host); and one that is providing a 
particular piece of behaviour (known as the visitor). 

Implementation of the standard visitor pattern provides a visitor interface. This 
interface typically contains a visit method for each object type for which it provides 
behaviour. Implementations of the interface visit methods are called indirectly by 



calling an accept method on the host object, which takes the visitor implementation as 
a parameter, this accept method subsequently calls the visit method on the passed 
visitor using itself as a parameter. The behaviour of visit methods typically perform 
some actions specific to the purpose of the visitor and call accept methods on the 
objects that form the next hosts in the traversal order. 

As with the factory and repository patterns, providing such a visitor for the whole 
model is not scaleable, or useable if we wish to provide a visitor implementation for 
only a portion of the model. Thus we also split our implementation of the visitor 
pattern by package and link them according to the package hierarchy. 

 

2.4 Visitor Implementations 
We have found that much of the implementation of tools to support a particular 

metamodel is provided by implementations of the visitor interface that navigate the 
model population according to attributes and the various types of association end – 
composition, aggregation and none. The specific behaviour actions of the visitor 
implementations can be characterised by grouping the actions into: 

- those related to the host 
- those related to the attributes 
- those related to each type of association end 
- those related to linkage between the host and the attributes or association ends 
To support this set of visitor implementations, we have defined an implementation 

pattern for a model navigation visitor. This visitor implementation takes as an 
additional argument, an object that carries the actions as described in the list above 
(the visitActions). The interface for this is as follows: 

public interface VisitActions { 

  Object hostAction( String hostTypeName, 
                     Object host, 
                     Object data, 
                     Visitor visitor ); 

  Object attributeAction( String modelPropertyName, 
                          String modelPropertyTypeName, 
                          Class implPropertyType, 
                          Class collType, 
                          Object implPropertyValue, 
                          Object data, 
                          Visitor visitor); 

  Object associationEndAction( String modelPropertyName, 
                               String modelPropertyTypeName, 
                               Class implPropertyType, 
                               Class collType, 
                               Object implPropertyValue, 
                               Object data, 
                               Visitor v ); 

  Object aggregateEndAction( String modelPropertyName, 
                             String modelPropertyTypeName, 
                             Class implPropertyType, 
                             Class collType, 
                             Object implPropertyValue, 



                             Object data, 
                             Visitor v ); 

  Object compositeEndAction( String modelPropertyName, 
                             String modelPropertyTypeName, 
                             Class implPropertyType, 
                             Class collType, 
                             Object implPropertyValue, 
                             Object data, 
                             Visitor v ); 

  Object linkAttribute( Object propValue, 
                        Object hostValue, 
                        Visitor v ); 

  Object linkAssociationEnd( Object propValue, 
                             Object hostValue, 
                             Visitor v ); 

  Object linkAggregateEnd( Object propValue, 
                           Object hostValue, 
                           Visitor v ); 

  Object linkCompositeEnd( Object propValue, 
                           Object hostValue, 
                           Visitor v ); 

} 

The actions for each implemented visit method are defined to be those that call 
methods from the visitActions object interspersed with actions that appropriately 
navigate the population in accordance with the metamodel definition. E.g.: 

Object visit( <HostType> host, 
              VisitActions actions, 
              Object data ) { 
  Object node = 
           actions.hostAction("<HostType>",host,data,this); 
  actions.linkAttribute( 
    actions.attributeAction("<HostType>.<attName>", 
                            "<AttType>", 
                            <AttType>.class, 
                            <CollectionTypeOrNull>, 
                            host.get<AttName>(), 
                            data, 
                            this 
    ), 
    node, 
    this 
  ); 
  actions.linkAggregateEnd( 
    actions.aggregateEndAction("<HostType>.<endName>", 
                               "<EndType>", 
                               <EndType>.class, 
                               <CollectionTypeOrNull>, 
                               host.get<EndName>(), 
                               data, 
                               this 
    ), 
    node, 
    this 
  ); 
} 



3 Using OCL as a Template Language 
As previously mentioned, we make use of OCL as an (interim) template language. 

To achieve this we have extended OCL in the following ways: 
1. Addition of the ‘+’ operator for String values; this is evaluated as a 

concatenation of the two string arguments. 
2. Addition of facility to construct any (model) object. Achieved using the full 

type name of the object, with constructor arguments contained in following 
braces ‘{…}’. This is similar to the syntax for constructing collection objects. 

3. Provision of a File class. This object requires a file name as a constructor 
argument (directories are constructed if necessary); there are two methods, 
read and write, which either get the file contents (as a String) or write a String 
argument to the file. 

4. Provision of an Expression class. This class enables evaluation of and OCL 
String value as an OCL expression; arguments are passed to the constructor 
and evaluate method to provide the environment (free variables) for the 
expression. 

5. Addition of a new query ‘context’ for OCL expressions that facilitates multiple 
context variables. 

The first of these additional features enables more succinct composition of string 
values; the second and third features enable us to create files and directories; and the 
combination of the second, third, fourth and fifth enable us to call sub templates with 
appropriate parameters. 

The templates, shown in the previous subsection, map to a particular pattern of 
OCL expression. This pattern starts with a query context, defining the parameter 
object types (free variables) for the expression. Then a number of let statements are 
given, which define the specific template variables, based on the parameters. The 
template text is mapped to a series of String and variable concatenations; and finally 
the concatenated text is written to a file. 

To illustrate this, the OCL template (query expression) for constructing package 
visitors is given below: 

context 
   self : uml::Model_Management::Package, 
   properties : uk::ac::kent::cs::kmf::browser::Properties 

query: 

let 
 root_dir = properties.get('root_generation_directory'), 
 dir = ''+root_dir+'/' 
       + 
       Expression { 
         String, 
         TupleType( self:uml::Foundation::Core::Namespace, 
                    sep:String ), 
         uk::ac::kent::cs::kmf::util::File { 
            properties.get('templates_directory') 
            + '/GetFullName.ocl'}.read() 
       }.evaluate( Tuple{self=self, sep='/'} ), 
 pkg_name = self.name.replaceAll('[^0-9a-zA-Z_]','_'), 
 file_name = ''+dir+'/'+pkg_name+'Visitor.java', 
 pkg_fullName 



   = Expression { 
         String, 

         TupleType(self:uml::Foundation::Core::Namespace, 
                   sep:String ), 
         uk::ac::kent::cs::kmf::util::File { 
            properties.get('templates_directory') 
            +'/GetFullName.ocl'}.read() 
     }.evaluate( Tuple{self=self, sep='.'} ), 
 subPackages = self.ownedElement-> 
    select(e|e.oclIsKindOf(uml::Model_Management::Package)), 
 classes:Set(uml::Foundation::Core::Class) 
   = self.ownedElement-> 
       select(e|e.oclIsKindOf(uml::Foundation::Core::Class)), 
 nonAbstractClasses = classes->select(c | not c.isAbstract ), 

 result_str = 
' 
package '+pkg_fullName+'; 

import uk.ac.kent.cs.kmf.patterns.Visitor; 
import uk.ac.kent.cs.kmf.patterns.VisitActions; 

public interface '+pkg_name+'Visitor 
  extends Visitor 
{ 
'+ 
nonAbstractClasses->collect( cls | 
  Expression { 
    String, 
    TupleType( 
      self:uml::Foundation::Core::Class, 
      properties:uk::ac::kent::cs::kmf::browser::Properties), 
    uk::ac::kent::cs::kmf::util::File { 
       properties.get('templates_directory') 
       +'/Class__VisitorMethodSignature.ocl'}.read() 
  }.evaluate( Tuple{self=cls, properties=properties} ) 
+'; 
' 
)->including('')->sum() 
+' 
} 
' 

in 
 if result_str.oclIsUndefined() then 
  'Error generating Visitor interface for - '+pkg_fullName 
else 
  uk::ac::kent::cs::kmf::util::File{file_name} 
   .write(result_str) 
endif 

To aid reading this expression the strings defining the generated code are 
highlighted in bold and the expression parameter variables and defined template 
variables are highlighted in italics. The expression illustrates all of the five additions 
to the OCL language. 

4 Providing Tools Based on the Patterns 
The set of implementation classes generated by these patterns could be used in a 

variety of applications. An application that we find to be particularly useful is that of 



a Browser. The browser is used to create populations of the model and to evaluate 
OCL constraints over that population. 

4.1 Browser 
A browser can be created by piecing together various implementations of Visitor 

Actions, reference to a Repository, our OCL implementation, and a number of actions 
for invoking operations on these component parts. 

A generic browser implementation has been written that can be used in conjunction 
with any model and set of classes generated using the templates described above. 
XMI and HUTN visitor actions are written to facilitate saving a population (others 
could be just as easily written). A generic XMI reader is provided, enabling a 
previously saved population to be restored. A set of visit actions that construct a JTree 
has been written; this provides a tree view on the population of a repository. These 
parts are linked together in a common application along with our implementation of 
OCL. An image of the generated browser can be seen in F . The panel on the 
left shows a JTree view of the metamodel components and the instances of those 
components in the current population. The Console panel on the right shows (in this 
image) that the metamodel components have been registered with the generated 
repository. The OCL evaluation panel shows an Invariant, to be evaluated in the 
context of the class (with name attribute set to “Library”) highlighted on the left. 

igure 1

 
Figure 1 – Generic KMF Browser, browsing a population of UML 1.5 metamodel 

5 Related Work 
Existing tools such as MetaEdit+ [17] and the Eclipse Modelling Framework 

(EMF) [18] go some way towards providing similar types of tool to KMF. However 
they fall short in certain areas. EMF does not support constraints or query 



expressions. MetaEdit+ is a more general tool for developing domain specific 
languages and also does not support OCL. 

MetaEdit+ does not directly support generation from class diagrams; it uses its own 
concepts for metamodel specifications, Graph, Object, Property, Relationship and 
Role, which are similar to a very small subset of MOF. Metamodels are entered 
through a series of property boxes, rather than using a visual notation such as class 
diagrams. The metamodel specification facility enables the definition of a visual 
language for entering populations of the metamodel (i.e. expressions/specifications in 
the domain specific language). UML is provided as one of the example domain 
specific languages supplied with MetaEdit+; however it does not provide an 
environment that we find easily useable for editing UML models. In addition there 
does not seem to be a mechanism for adding support for OCL. MetaEdit+ is a 
commercial tool with development and maintenance support. 

Frameworks such as the Eclipse Modelling Framework provide a similar level of 
generation facility to that provided by our KMF. However, the current release of EMF 
does not support OCL; we have been working with IBM to provide a version of our 
OCL library that operates with their EMF generated code. This work has been very 
successful and we have succeeded in providing facility to: 

a) directly evaluate OCL constraints over a population of an EMF model; and 
b) generate java code from an OCL expression that when compiled will 

evaluate the expression. 
UMMF - UML Meta-Model Framework [19] is an open source framework written 

in Perl; it can be used to generate class and interface templates for programming 
languages Perl and Java; and it will import from XMI versions 1.0 and 1.2. 

6 Conclusion 
The primary facility offered by KMF, not offered by other tools is the OCL 

evaluation functionality. In addition, KMF accepts, as input, standard XMI, generated 
from any appropriate modelling tool (unlike MetaEdit+). Also, KMF provides a fully 
flexible and user adaptable mechanism for generating code from the provided 
metamodel specification (possible in MetaEdit+, EMF supports a single, fixed, Java 
implementation). The KMF tool is based entirely on the concepts and languages of 
the OMG, making use of XMI, HUTN, MOF, UML and OCL. 

This paper has illustrated the significance of patterns as a means to aid the 
automatic production of tools that to support the specification of a metamodel. The 
implementation of OCL is used to check well-formedness constraints on populations 
of the model. In addition by using the OCL as the basis for a template language we 
have demonstrated that code can be generated from template specifications. The 
generated code implements standard coding patterns, which are put together to form 
component parts of a modelling tool. 

We show the patterns that we have used within the KMF project and show how we 
have varied from the standard patterns in order to make the scaleable. We also show 
the template expressions that will generate a Java implementation for these patterns. 

Other work started in [20] and [21] is being continued in order to extend the 
generated patterns so that they will support an implementation of model 
transformations. We are looking for a suitable template language, based on OCL, to 
use instead of directly using our variation of OCL. Additionally, we feel that 



providing an implementation in an aspect oriented language such as AspectJ [22] may 
provide useful facilities for linking the interacting patterns. 

Acknowledgements 
David Akehurst acknowledges support of the EPSRC project “Design Support for 

Distributed Systems” (GR/M69500/01) and its investigators J.Derrick and 
A.G.Waters. Octavian Patrascoiu acknowledges support of the EPSRC project 
“Reasoning with Diagrams” (GR/R63509/01) and its investigator P.Rodgers. 

References 
1. OMG: Model Driven Architecture (MDA). Object Management Group, ormsc/2001-

07-01 (2001) 
2. OMG: Meta Object Facility (MOF) Specification, Version 1.4. formal/2002-04-03 

(2002) 
3. OMG: Response to the UML 2.0 OCL Rfp (ad/2000-09-03), Revised Submission, 

Version 1.6. Object Management Group, ad/2003-01-07 (2002) 
4. OMG: Request for Proposal: MOF 2.0 Query / Views / Transformations RFP. Object 

Management Group, ad/2002-04-10 (2002) 
5. IBM: Rational Rose. http://www.rational.com (2003) 
6. Gentleware: Poseidon UML tool, version 1.4. www.gentleware.org (2003) 
7. Borland: Together. http://www.borland.com/together/index.html (2003) 
8. OMG: XML Metadata Interchange (XMI), v2.0. Object Management Group, 

formal/03-05-02 (2003) 
9. OMG: Human-Usable Textual Notation (HUTN) Specification. Object Management 

Group, ptc/02-12-01 (2003) 
10. KMF-team. Kent Modelling Framework (KMF).[Online]. Available: 

www.cs.kent.ac.uk/projects/kmf 
11. Akehurst, D. H., Derrick, J., Waters, A. G.: Addressing Computational Viewpoint 

Design. In: Proc. EDOC 2003 (2003) 
12. X.901-5: Information Technology - Open Distributed Processing - Reference Model: 

All Parts. ITU-T Recommendation (1996-99) 
13. DSE4DS-team. Design Support for Distributed Systems (DSE4DS) Project Home 

Page.[Online]. Available: http://www.cs.ukc.ac.uk/projects/dse4ds/index.html 
14. Akehurst, D. H., Bordbar, B., Derrick, J., Waters, A. G.: Design Support for Distributed 

Systems: DSE4DS. In: Proc. 7th Cabernet Radicals Workshop (2002) 
15. RWD-team. Reasoning with Diagrams (RWD) project.[Online]. Available: 

www.cs.kent.ac.uk/projects/rwd 
16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable 

Object-Oriented Software. Addison-Wesley (1995) 
17. MetaCase: MetaEdit+. http://www.metacase.com/ (2003) 
18. IBM: Eclipse Modeling Framework. http://www.eclipse.org/emf/ (2003) 
19. Stephens, K. UMMF - UML Meta-Model Framework.[Online]. Available: 

http://kurtstephens.com/pub/uml2code/current/htdocs/ 
20. Akehurst, D. H.: Model Translation: A UML-based specification technique and active 

implementation approach. University of Kent at Canterbury (2000) 
21. Akehurst, D. H., Kent, S.: A Relational Approach to Defining Transformations in a 

Metamodel. In: Proc. The Unified Modeling Language 5th International Conference 
(2002) 305-320 

22. AspectJ-team: AspectJ. http://www.eclipse.org/aspectj/ (2003) 
 

http://www.rational.com/
http://www.gentleware.org/
http://www.borland.com/together/index.html
http://www.cs.kent.ac.uk/projects/kmf
http://www.cs.ukc.ac.uk/projects/dse4ds/index.html
http://www.cs.kent.ac.uk/projects/rwd
http://www.metacase.com/
http://www.eclipse.org/emf/
http://kurtstephens.com/pub/uml2code/current/htdocs/
http://www.eclipse.org/aspectj/

	Introduction
	The Patterns
	Classes
	Attributes and Associations
	Packages
	Factory
	Repository
	Visitor

	Visitor Implementations

	Using OCL as a Template Language
	Providing Tools Based on the Patterns
	Browser

	Related Work
	Conclusion
	Acknowledgements
	References

