
Identifying requirements for Business Contract Language:
a Monitoring Perspective

S. Neal., J. Cole, P. F. Linington, Z. Milosevic, S. Gibson, S. Kulkarni.

University of Kent,
Kent, CT2 7NF, UK.
{sn7, pfl}@kent.ac.uk

Distributed Systems Technology Centre,
University of Queensland,

Brisbane, QLD 4072, Australia.
{colej, sgibson, zoran}@dstc.edu.au.

Abstract

This paper compares two separately developed systems
for monitoring activities related to business contracts,
describes how we integrated them and exploits the lessons
learned from this process to identify a core set of
requirements for a Business Contract Language
(BCL). Concepts in BCL needed for contract monitoring
include: the expression of coordinated concurrent actions;
obliged, permitted and prohibited actions; rich timeliness
expressions such as sliding windows; delegations; policy
violations; contract termination/renewal conditions and
reference to external data/events such as change in interest
rates. The aim of BCL is to provide sufficient expressive
power to describe contracts, including conditions which
specify real-time processing, yet be simple enough to retain
a human-oriented style for expressing contracts.

1. Introduction

Commercial interactions are typically performed with
respect to a prearranged agreement, or contract. Among
other things, contracts are used to specify obligations
imposed upon signatories and penalties that they will incur
should these obligations not be met. Such obligations may
be imposed on a periodic basis or in reaction to certain
events between the signatories.

The use of computers to manage business interactions is
standard practice for many organisations; however, the
support within these systems for contractual semantics is
implicit. We believe that, in order for contracts to be
properly managed, their definitions should be made explicit
and a framework should be provided to help support their
specification, interpretation and general maintenance. Such
a framework will enable real world contracts to be encoded
and used to police the behaviour of the computer systems
that are carrying out the duties pertaining to the contract.

This paper is based upon ongoing work carried out in a
collaborative project between DSTC and UKC. Previous
work by the authors had involved the implementation of
contract management frameworks and it was noticed that
there were many common features between these two
prototypes. Our investigation, therefore, initially focussed
on a comparative study of the approaches adopted and
pinpointed the relative strengths and weaknesses of these.
This comparison included integrating the prototype tools to
monitor the same business system and experimenting to see
which kinds of contract they were best suited to manage.

From these experiments, we identified a base set of
requirements for a contracting framework, a major part of
which was concerned with the specification of a language
which can be used to express contracting semantics - the
Business Contract Language (BCL).

We start this paper (in section 2) with a background
discussion on currently available commercial applications,
and related academic projects. We follow this (in section
2.3) with a discussion of requirements for a contract
management framework and associated implementation
issues. Section 3 presents a comparative overview of the
two prototype implementations and how we decided to
integrate them.

In section 4, we examine the motivation and key
requirements for BCL; this is followed (in section 5) by a
case study for a QoS contract which illustrates how BCL
features can be used to describe complex contracts and how
a supporting framework can be used to detect infringements
of the obligations laid down in the contracts.

2. Background

The field of contract management is increasingly gaining
the attention of both the commercial and academic
communities. Commercial interest is driven by the
opportunity to address one of the missing key ingredients

needed to support new forms of enterprise - variously
coined as real-time extended enterprise, value chains, or
virtual organisations. Academic interest is in part driven by
this, but also by the capabilities of new Web Service
technologies which provide an impetus for a shift in the
research focus - solving problems of higher-levels of
abstraction, increasingly of enterprise concerns. As a result,
there is a renewed interest in the topic initially dealt with in
[9] – namely studying semantics of contracts and their
architectural implications for e-commerce systems.

2.1 Commercial Systems

At present, enterprise contract management functionality
is mostly incorporated as part of ERP systems such as
Oracle Contracts [12]. These are mostly database
applications that store information about contracts, e.g.
contract name, type, organisational roles involved and some
contract significant dates, and provide certain notification
capabilities.

In addition, some commercial offerings such as DiCarta
[5], iMany [4] and UpsideContracts [6] have emerged
providing specialised contract management software. These
software products aim at supporting full contract life cycle
management - ranging from collaborative contract drafting
and negotiation (e.g. using Microsoft Word), storage of
contracts, milestone-driven notifications, certain analytic
features and some limited monitoring capabilities.

However, these products provide limited support for
contract monitoring features, in particular in terms of event-
based monitoring and rule-based checking of parties’
actions as per agreed contract. In addition, they do not
provide comprehensive support for seamless integration of
contracts as part of the enterprise systems, including both
internal and cross-organisational systems. This is perhaps
because there is a lack of an overall model that expresses
semantics of contracts as a governance mechanism for
cross-organisational collaboration.

2.2 Academic projects

The following academic papers provide a good starting
point for expressing such a contract model. [3] has
proposed a logic model of contracts based on Petri Nets and
the deontic logic formalism. [2] proposes the use of Genetic
Software Engineering to specify and verify contracts and an
event-based and policy-oriented model based on deontic
concepts – for contract compliance monitoring.

This paper summarises our latest ideas in this direction
and further extends the contract model presented in [2] to
better deal with i) complex event patterns, in a similar way
as the approach taken by [10] and [7] and ii) more powerful
enterprise model expressing policy based on [1].

2.3 Contract management frameworks

To store and manage business contracts electronically, a
framework must be implemented which provides generic
contract management functions. In this section we detail
what we believe are the fundamental services that such a
framework will need to provide; we then discuss the
implications of this with respect to providing a scalable
implementation of such a framework which will be capable
of operating in a heterogeneous environment.

2.4 Framework requirements

Industrial distributed systems are typically built upon
numerous middleware technologies (including CORBA,
J2EE, .Net and Web Services) and utilise a wide range of
software (e.g. workflow engines, billing systems). If a
contract management framework is to be applied in such an
environment, then it must be capable of adjudicating
between all such system components. Integration of a
contract management framework should involve minimal
disruption to existing systems. It is unlikely that
organisations will be prepared to shut down their systems to
allow contract management code to be added.

For contracts to be managed in a heterogeneous
environment, an independent process is required which can
interface with all components to determine the key
elements of their behaviour. One way of implementing such
a process is as an event listener/monitor which receives
notification of contract related behaviour from the
components using a publish/subscribe mechanism. This is
an approach widely adopted in industry as it provides a
flexible mechanism for receiving details of events which
can be encoded in a platform neutral format, such as XML.

2.4.1. General system requirements.
The purpose of a contract monitoring system is to

determine what has, and is currently, happening in the
enactment of activities associated with a contract. If the
contract activity is reported using events, then we should
consider how comprehensive and reliable the event
generation and reporting mechanisms are expected to be.
Amongst the factors to be considered are accuracy of the
reported events, impact of the event generation process and
organizational threats from it. We can look at these aspects
in turn.

Accuracy of event reports - One aspect of the accuracy
of event reporting is the timeliness and ordering of events.
The difficulty of maintaining a consistent view of time in
distributed systems is well-known. Steps may be taken to
synchronize clocks, but residual skew means that
distributed time-stamps can never be completely accurate.
Events can be passed to a common point so that time-

stamps are originated by a common clock, however this
risks delay and reordering during the transmission process
that is often more severe than the skew of coordinated
clocks would have been.

The practical implication of this is that the ordering of
events reported close together in time, or the relative
ordering of an event and a timeout for its receipt, are
unreliable. This must be considered by the monitor when
making decisions which are dependant upon the timing and
ordering of events. There is, therefore, a need for an agreed
latitude in timings, negotiated with knowledge of the
properties of the infrastructure in use, and of the contract
details.

Performance issues - Applying monitoring on a large
scale requires the use of mechanisms that do not introduce
performance bottlenecks. Solutions include the local
processing of events to generate higher level and summary
reports of activity, but this may imply that checks
performed are weaker than might be possible on the raw
data. In particular, operating on summary data may imply a
need to relax timing checks still further.

Even at a smaller scale, fine grained timing constraints
may imply a heavy load and optimised constraint checking
is essential.

Security issues - The very fact that contracts are being
monitored implies that there is not absolute trust between
the participants, and so the trust assumptions made in
designing the system need to be explicit. From the
monitoring point of view we need to consider the
trustworthiness of all the parts of the system, including the
parties to the contract, the components of the infrastructure
they use, the repositories holding contract information and
the monitoring system itself.

A participant in a contract will need to have confidence
in any event reporting mechanisms that have to be
incorporated into their systems. This is more likely if the
mechanisms are provided, or at least certified, by a trusted
third party. Similarly, there will be a need to establish
confidence in the event reporting mechanisms and there
may well be business opportunities in the establishment of
reporting services of established probity and reputation.

 The monitoring component can also be a trusted third
party, or it can be acting as an agent on behalf of one or
more of the contracting parties. Depending on its status, it
may give priority to the detection of particular kinds of
violation, and even ignore violations that are in the interests
of its principal. The level of trust placed in the monitoring
system by the various parties will influence the way they
respond to its reports of contract violations.

In cases where there is limited trust of the infrastructure
it will be important for the party performing an action to
ensure that the corresponding event carries a proof or

authenticity and a guarantee of non-repudiation, such as a
secure signature. The current prototypes have not
investigated these aspects.

Finally, the information about a party's activities
provided by the events reported may be considered
confidential. A service provider, for example, may well
commit to a service level agreement without wishing to
disclose the actual achieved performance. Knowledge of
the real performance has commercial value over and above
the statement that the contract is fulfilled. Such a party must
be able to trust the monitoring system to preserve
confidentiality.

Having established the key low level requirements, we
turn now to higher level issues; namely those which are
solely related to contracts.

2.4.2. The contract lifecycle
There are several stages in the lifecycle of a contract:

construction; negotiation; agreement; execution &
management; and, finally, when all of the contractual
obligations have been discharged, it expires. Note that some
contracts may be ongoing and never expire.

A contract management framework should provide
support for the contracts lifecycle; this may include
repository based tools for contract templates as well as
active contractual agreements (also referred to as contract
instances). It must also provide support for a contract
language capable of describing the required behaviour of
the contract signatories. For example, the required, or
permitted, sequences of events that the signatories are
expected to exhibit in fulfilling the burdens placed upon
them by the contract. This language will be interpreted by
components within the framework and used to check the
behaviour of the signatories to the contracts.
Our key requirements, then, may be summarised as follows:
• Platform neutral event monitoring mechanism
• Simple integration with existing systems
• Security/Confidentiality
• Contract lifecycle management
• Contract language

3. BCA and ECL Solutions

In this section we compare the respective contracting
systems, starting with an overview of each and focusing on
their capabilities for contract monitoring. We also discuss
how we integrated these systems and compared their
capabilities in monitoring business contracts.

3.1 BCA

The BCA contract management system is being
developed by the Elemental project at the Co-operative
Research Centre for Enterprise Distributed Systems
Technology (DSTC). It aims to support the entire contract
lifecycle and to be configurable to the requirements of
different contracting situations. The groundwork for the
system was developed in [9], and the implementation is
currently at a prototype stage.

BCA currently implements support for various tasks
within the contract lifecycle, including contract definition,
access to contract data, monitoring, and providing
notifications of contract significant occurrences to the
signatories. The system is managed via a web-based user-
interface.

BCA can be considered as an extensible contract
management platform. The system was designed to ensure
that new features could be easily integrated into the system
in the future.

Events and states are the central motifs of this design,
and help achieve this extensibility. The contracting
platform is implemented by an infrastructure that contains
components for generating events and updating the values
of states. The infrastructure components along with those
implementing the contract services communicate with one
another via events. Events are typed, and components
subscribe to events, specifying the types of the events they
are interested in receiving. The infrastructure performs the
event distribution.

The event-based inter-component communication
decouples the infrastructure and service components from
each other, which results in components only needing to be
aware of the events they wish to consume.

Components perform processing in response to receiving
events. During processing, they may access data both from
the event itself, and from repositories which are available to
BCA. As all event generation and state updates are
maintained by the system, it is possible for all components
to access information regarding them from such
repositories; for example, to check causal relationships
between previously observed events.

The components within BCA are configured with an
XML language which defines events, states, contract
conditions to monitor, and notifications to generate. These
definitions make use of a syntax we have developed for
specifying expressions and event patterns. For example, a
state is updated in response to some event pattern, a policy
is evaluated in response to an event pattern, and a relational
expression might be used to specify the condition that a
policy is checking. The event subscriptions for each

component may be deduced from their configuration
details.

States are implemented in BCA as components which
define how and when their values are to be updated. An
event pattern is used to specify when the state should be
updated. In most systems, these things would be entangled
within code that resides outside of the state definition. This
helps decouple states from the rest of the contracting
system.

By considering state as a distinct component in its own
right, we can develop higher-level syntax for specifying
them. An example of this is a special type of state called a
recurring state. Recurring states provide a convenient
means to specify states which pertain to a recurring period
of time; for example, number of purchases made in each
month. To define a recurring state, we specify the usual
details of when and how to update the state, but we also
specify when to create a new copy of it. There are also
mechanisms for accessing both the current copy of the state
as well as copies for previous periods.

Components within BCA may also generate
notifications. These are similar to events but are intended
for human consumption in the external environment, e.g.
via e-mail or SMS.

3.2 ECL

The ECL (Enterprise Contract Language) system is
being developed at the University of Kent. It aims to
provide sophisticated support for the monitoring of
contracts. ECL grew out of PhD work [8] on checking
conformance of software to design patterns, and its current
conception is a result of revising these concepts [1] in order
to apply them to contracts. The implementation is currently
at a prototype stage.

The PhD work was concerned with the specification of
behavioural design patterns, and how such specifications
may be used to dynamically verify the correct behaviour of
a particular software implementation. Behavioural patterns
describe the runtime dynamics of software rather than the
more static aspects such as class hierarchies; a well-known
example of a behavioural pattern is the Observer pattern
[13]. The work carried out in this thesis resulted in the
development of the Pattern Constraint Language (PCL) and
the implementation of in interpreter to prove that the
language could be used to effectively detect illegal software
behaviour. Although PCL provides the conceptual basis for
ECL, the code-base for ECL is entirely new.

An important finding from this thesis was that the
interpretation of behavioural patterns was, in certain
circumstances, ambiguous. Such ambiguity would occur as
a result of behavioural specifications that could not

distinguish between behavioural branches at a point where
some future event had not yet taken place. This problem
manifests itself not because of poor specification, but
because it is an inherent part of the nature of some
behavioural patterns; this becomes particularly complex
where a calculation is performed resulting in some part of
the pattern’s state being updated. Under such conditions,
the PCL interpreter allows all branches to be
simultaneously taken and then later resolved as future
events eliminate the ambiguity. When the ambiguity is
resolved, the correct values for the state of the pattern can
be determined. Much of the work from this PhD involved
the development of techniques which permitted this
problem to be solved in a computationally efficient manner.

A similarity was noticed between the problems
addressed by PCL and the problem of monitoring contracts,
and this led to the development of ECL. In both areas there
is some specification of required behaviour (of the pattern
or the contract), and there is a requirement to determine if
this is being adhered to. This similarity is deeper than it
may initially seem, as both patterns and contracts specify
certain obligations as well as certain permissions and
prohibitions on the behaviour of entities in a system. It is
intuitive that contracts consist of obligations, permissions
and prohibitions, but not as immediately apparent that
patterns do too. Proof of this is evident, however, in the
Observer pattern, where there exists an obligation to notify
all Observers of any changes to the Subject, and in the
Singleton pattern where there is a prohibition to create more
than one instance of the singleton class.

ECL is based upon a Community Model [1] which
extends the concepts described by the ODP enterprise
language [11]; with this model contracts are modelled as a
community of parties bound to some contract. The model
supports essential aspects of contracting, such as
permissions, burdens and delegation. Under this model, a
community comprises of a number of roles and describes
some overall goal that it is trying to achieve. The
permissions, prohibitions and obligations imposed on these
roles will describe the bounds placed upon the communities
members in order that they may achieve this goal. The roles
of the communities also specify cardinality which may
impose their being filled upon instantiation of a community
instance. Communities may also be regarded as members of
a community; this allows community nesting, with a sub-
community filling a role within its parent community.

Architecturally, the ECL system consists of three main
parts: a target system, a community model and an
interpreter. The community model stores the definition of
the community representing the contract, and this model is
made use of by the interpreter, whose primary function is to
receive input events from the target system and determine
whether the contract has been violated.

When an event is received by the system, the interpreter
checks to see which communities have specified an interest
in the event, it then checks to see what impact that event
has on those communities. The most significant impact the
event may have is violating the conditions of the putative
community, but additionally it may trigger the removal of
an obligation from a role, trigger the assignment of a party
to a particular role, or perform any other manipulation of
the community model. To check whether the event violated
the community’s conditions, the interpreter will check that
the roles playing a part in the action have the necessary
permission to perform that action. The interpreter also
needs to interpret the policies within the community which
will include valid patterns of events that the roles are
expected/obliged to perform; these patters are described
using operators which may be used to specify sequential
and parallel sequences of events, in addition to complex
timing predicates.

Because updates to the community are considered
actions like any other, they may also be subject to the
communities policies. This allows us to specify policies
which determine the ways in which the community may
legally evolve.

3.3 Comparison of existing solutions

Both systems are designed to facilitate electronic
contracting, and while ECL focuses on generic monitoring
using an underlying community model, the focus of BCA is
to provide support across the entire contract life-cycle.

ECL allows the contract writer to add blocks of ordinary
Java code into policy definitions. This feature effectively
allows the interpreter to do anything that can be done with
Java; this allows us to quickly experiment with new
language features before deciding whether they will be
fully implemented as high level ECL language operators.

ECL is based upon a formal model of behaviour and a
community structure, whereas the BCA approach was more
pragmatic and was driven by the need for a flexible,
extendable architecture on which to build contract
management features. The design of the language for
specifying the semantic behaviour of the components
within the BCA architecture is continually evolving to meet
the needs as domain knowledge is gathered. Given the
requirement for security additions to the BCL language,
future versions of BCL will include a similar community
model to that used by ECL.

Both of the systems interact with the systems they are
observing in a similar manner, receiving their input as
structured events. The main difference is that ECL takes
into consideration a broader community model. BCA will
be gradually incorporating a similar model which will

provide a more expressive means for the specification of
event patterns.

Both systems have comparable expression operators,
covering the usual range found in a typical programming
language, e.g. relational operators (>, >=, =, etc) and
mathematical operators (+, -, /, etc)

ECL's structure focuses on behaviour and so is akin to
that found in a programming language, except it is tailored
towards the specification of behavioural constraints for
communities. It has more powerful support for event
patterns, and has support for sequences of events, and
parallel execution of events, whereas BCA will be
incorporating this in near future. On the other hand, BCA's
style is more declarative, and so consists more of distinct
specifications of items such as events, states, policies and
notifications.

BCA has more explicit expression of state variables and
both events and states are used as building blocks to
express policy and other contract-related constraints.
Indeed, the link between the parts of a BCA specification is
via the events that trigger them, referred to by the event's
identifier, and the data that they use, referred to by its
identifier. ECL's approach, on the other hand, is more
behaviour-centric; the primary organizational element is the
behaviour specification, and state is referenced wherever it
is updated. In short, BCA's architecture is based around the
data provided by its infrastructure, while ECL's is based
more around the specification of the required behaviour of
the system.

As a result of this, states are handled quite differently by
the two systems. In BCA, states are distinct entities whose
values and updating are managed locally by the state
component. In ECL, states are stored within a community
instance, and the code for updating a state may be contained
within any of the policy definitions in that community.

Because of its behavioural orientation, it is simpler to
express causal policy relations in ECL; for example, a
policy which is triggered in response to a contract violation
may be syntactically adjacent to a policy which detects the
violation. In BCA, this is not the case as policies filter
which events they react to according to their identifiers.
Therefore a policy which reacts to a violation will detect
that violation by receiving an event with a particular
identifier; it is not possible to simply refer to a policy by
name in the same community file.

Another area of comparison concerns the dynamic
modification of systems. While BCA adopts a loosely
coupled architecture, ECL is more tightly coupled. BCA’s
loosely coupled design enables straightforward dynamic
modifications to contracts, e.g. adding new definitions,
modifying existing ones and removing old ones. A

drawback of this design, though, is that unchecked logical
errors might occur.

Specific features - Time is handled differently by the
two systems. In ECL, event patterns can include temporal
constraints, allowing them to express things such as “after
event A has occurred, we must receive event B within 5
seconds”.

BCA currently does not have a special mechanism for
expressing temporal constraints within event patterns. In
BCA the points in time that constitute a temporal constraint
are represented as events. Thus, to handle temporal
constraints consistently they are specified as event patterns,
with events being defined for the relevant time points in the
pattern. So, to express the constraint given above, we must
set up a temporal event to be generated 5 seconds after A
occurs. If we receive this event before B, then the constraint
has been violated. The aim is that with temporal matters
handled in a consistent fashion with events, all the
mechanisms for dealing with events and different types of
event patterns can also be applied to temporal issues.

In summary we found that there were no fundamental
conflicts between these two languages and that it is possible
to align them as will be discussed in section 4 .

3.4 Integration

In the previous section we outlined the different
approaches used in the design of the BCA and ECL
toolsets. The aim of our research was to integrate these
systems and carry out a comparative investigation of their
capabilities. Architecturally, the main similarity between
the systems was that they both received an incoming event
stream which held details of the contract related events in
the system under observation. In this section, we describe
how we exploited this similarity in order to integrate the
components of the respective systems, we highlight the
difficulties that we encountered and we discuss what future
enhancements could be made in order that the systems work
more closely together.

Integrating the software components was fairly
straightforward. As BCA had a more comprehensive suite
of test case scenarios, we chose to use this as the main
source of contract events. This meant that the ECL
interpreter component had to be integrated with the BCA
event stream. In order that the two tools could be used
simultaneously, an extra event listener was added to the
external event handling component in BCA; in reality this
constituted an extra event sink listening to a JMS topic (a
queue which guarantees that all subscribers will see all
events).

Figure 1 - High level integration architecture

The above architecture ensured that both BCA and ECL
event interpreters were guaranteed the same views of the
system under observation.

An immediate problem that we encountered was that
BCA events would only detail the type of the event, a
timestamp and a contract id. In order that the ECL toolset
could work with the events, extra information was required
detailing which signatories were responsible for which role
in the events that had been reported. For example, in a
‘goods-paid-for’ event, ECL required information regarding
which signatory had been the payer and which had been the
payee. The BCA toolset comprises a number of
components, one of which stores contract signatory
information (the Notary). By intercepting messages as they
were added to the Queue, we could adjust their formatting,
contact the Notary, and add the extra information that was
required to the events.

There are further ways in which these toolsets may be
integrated, including: exposure of internally generated
events; data sharing, possibly via a common data gateway
component; and also the inclusion of a common community
model. The current state of integration allows us to achieve
our key objective for this exercise, namely the capability to
perform black box comparison of the toolsets.

4. A business contracts language

4.1 Motivation

The collaborative work carried out not only highlighted
the differences in approaches that had been taken towards
implementing a contract framework, but also the difference
in expressive capabilities of our respective contract
languages. It was noted that each of these languages had
particular strengths and weaknesses and were each better
suited to expressing specific types of requirement in
contracts. In response to this, we formulated a common set
of requirements for contract specification languages which
we used to drive the development of a new language for
contract specification: the Business Contract Language, or
BCL.

The remainder of this section will discuss these
requirements, the following section presents a case study
which illustrates how BCL syntax deals with them.

4.2 Requirements

Contracts cover a wide range of subject areas but most
will share many common features; for example, deadlines
pertaining to actions that the signatories to the contract are
obliged to perform are a feature found in all but the most
trivial of contracts. By identifying these features, we form
the core requirements for BCL.

Time – There are different types of time constraint and
different ways of expressing them. A simple use of time
might be to mark start and end dates between which the
contract is deemed to be in effect; such markers may be
static in nature or dynamic. For example, a tenancy
agreement may specify a static start marker to indicate that
the contract start date may not be moved, but could allow
the end marker to be dynamic to permit the contract to be
extended at the end of its regular period. Dynamic time
markers may be the subject of other types of constraint,
perhaps which apply penalties to signatories which alter
them – e.g. a late delivery of goods penalty.

If our goal is to create high-level language to specify
contracts, then we should try and find natural and succinct
ways to express more complex temporal constraints; for
example durations.

We propose a syntax which allows durations to be
specified in a variety of intuitive ways, such as: 1 year, 2
months, and 7 days. Durations must be specified relative to
some point on the time line; for example, we can tie the
duration “7 days” down to a specific point by expressing
something along the lines of: 7 days after goods have been
received. Symbolic names may also be used to represent
durations, such as: except on Public Holidays.

These basic temporal elements permeate the conditions
of most contracts, but their occurrences may be specified in
a number of different ways. The following example
demonstrates a sliding time window operator which will
allow constraints over a moving duration of time: in any 3
day period the total value of orders placed must not exceed
a thousand dollars.

A sliding window can be considered conceptually as a
simple polling construct which requires re-evaluation every
time there is a clock tick. In practice though, implementing
a sliding window, for all but the largest of clock
granularities, will require a different approach in order that
polling may be avoided.

One possible solution to implementing this might be to
explicitly specify the times at which the window’s
predicates should be evaluated. If we consider the above
example which restricts the total value of orders in any 3
day period, then we might decide that this should be
evaluated every 24 hours at midnight.

Figure 2 - Value of orders received each day

If we assume that each order event is for 100 dollars,
then the above figure illustrates how periodic checking of a
sliding window’s predicate (every midnight in this case)
will detect that the limit of order value has been exceeded.
However, the limit of 1000 dollars was reached when the
orders for Wednesday totalled 200, but the violation of the
predicate was only trapped after a further 500 had been
spent. A simple solution to this shortcoming would be to
ensure that the predicate is evaluated every time there is an
event of interest received. This would allow the window’s
predicate to trap the exact event that caused the limit to be
exceeded and move the contract into a state whereby
subsequent order events should be denied or cause a
contract violation.

The problem with evaluating in response to events is that
sometimes it is the lack of an event that is of interest. To
illustrate this, we consider another example which specifies
that within any three day period there must be at least ten
orders placed. If we evaluate this in response to order
events being detected, then there is a risk that too much
time may pass before a relevant event is generated. The
figure below shows a count of order events received on
consecutive days. If we rely upon events to trigger an
evaluation, then the predicate will not be checked until
Sunday; however, the predicate was clearly violated at the
end of Thursday.

Figure 3 – Number of orders received each day

It should be possible to determine, given the state of a
contract, exactly when a sliding window’s predicate will
need to be checked. So, in the above example, when the ten
orders are placed on Monday we should schedule a timer to
re-evaluate the predicate at the earliest time that it could be
violated; i.e. on Thursday.

When timers are used to detect the absence of events, it
will be prudent to re-evaluate their necessity in response to
events that affect the sliding window’s predicate. If, in the
above figure, ten order events were received on the
Wednesday, then the Thursday timer could be cancelled
and a new timer set to ensure that the predicate is checked
by Saturday at the latest. To summarise, once a predicate of
this nature is satisfied, we can safely ignore any further
checking of the window’s predicate until such a time that
any of the events which caused the predicate to be satisfied
have left the window.

As we have seen, the necessity to re-evaluate the sliding
window’s predicate is influenced by events entering and
leaving the time window. If the window moves every
millisecond, then there is a possibility that the events may
enter and leave the window at the same rate; this could lead
to a situation where there are a vast number of re-
evaluations of the window’s predicate required. By limiting
the movement of the window, we can also limit the required
number of re-evaluations required; this allows us to greatly
optimise the implementation of a sliding window operator.

Fortunately, business contracts seem rarely to require
very fine grained sliding windows. A term such as “a one
week period” in a business contract, may be interpreted in a
number of ways. It could refer to mutually exclusive,
consecutive slots of time (e.g. consecutive series of seven
days starting on Monday) or it could mean a number of
overlapping time periods of a shorter duration (e.g. within
the last seven days). In the latter of these cases it is the
length of the ‘shorter duration’ that will determine the
granularity of the checking required. Typically, a business
contract will be interested in complete days which allows
the granularity of the windows steps to be set at 24 hours.

Once a predicate for a sliding window is satisfied,
whether it will be re-evaluated or not is dependent upon the
behaviour in which it is embedded.

Behavioural patterns – The behaviour of a signatory is
defined by the actions that they perform and will be
subjected to the restrictions that the contract imposes upon
them. In order to define behavioural constraints upon
signatories, the contract syntax must be capable of
specifying complex patterns of actions.

In a simple case, such a pattern may just be a linear
sequence of actions; for example: order, deliver, and pay.
Many contracts, though, are more complex than this and
may involve parallel threads of behaviour. In the case of a
home purchase contract, for example, there will be a
number of preliminary actions that need to be completed
before the final purchase contracts are signed. These
preliminary actions will include a successful mortgage
application, credit checks, land registry checks, etc. These
actions could complete in any order, but only once they
have all completed may the final contract be approved.

In practice, we would expect behavioural patterns to
have an equivalent expressive power to that normally
associated with process algebra.

Authorisation & Accountability model – Concepts
similar to those used in community models are already used
to model authorisation. Role Based Access Control
(RBAC) is a widely accepted means for controlling access
to restricted resources; for example, in operating systems.
We propose an extended model which expresses not only

the permissions associated with contracts, but also the
obligations.

In order that penalties may be applied to signatories,
contracts will need to specify accountability. For example,
if a payment for goods is late, then the obligation to pay has
not been met and there may be a financial penalty - perhaps
interest on the amount due. The contract must be able to
identify who is responsible for the late payment and also
who is liable to pay the penalty (these may not be the same
signatory).

A further requirement of the accountability model is
delegation. In many situations, the responsibility for
completing a task may be delegated. Under these
circumstances, the contract must still be capable of
identifying the accountable party. Delegation of a task does
not necessarily indicate delegation of accountability. For
example; a contractor may agree that work will be
completed by a certain date but will delegate the actions
required to complete the work to a sub-contractor. If the
work is not completed as agreed, we must be able to
identify whether the contractor delegated the accountability
along with the responsibility to perform the actions to the
sub-contractors. In addition to this, we will also need to be
able to express whether the contractor is entitled to delegate
either the actions or the accountability.

4.3 Our approach

The fundamental concept in BCL is the community. A
community represents a collection of enterprise objects
which share a common goal. An enterprise object is an
object which can be used to represent anything of interest in
the system we are modelling; this could be a human user of
the system, a computational object or even an element of
data. Importantly, an enterprise object can be used to
represent a community; therefore, communities may be
composed, at a high level, from other communities. The
remainder of this section will use the term object
generically to refer to all types of enterprise objects.

Within a community there will be roles defined. A role
is a group within a community to which objects may belong
that identifies the position of the object within that
community. All members of a community must belong to at
least one role in that community and, subject to the
restrictions specified by the community, may belong to
multiple roles at any time. Further to this the community
may specify constraints on the cardinality of the roles to
indicate minimum and maximum permissible number of
members.

A community will also specify policies that its members
must adhere to. The policies will not refer to the members
directly, but will instead refer to the roles. This separation
of policy from a particular object allows the model to
evolve dynamically and for objects to move between roles
over time.

In our model, a contract is simply a special case of a
community where the members of the community are
legally bound by the policies of that community. We can
therefore use our model to represent models of individual
enterprises as well as of the collaborations between them.

Permissions and obligations are expressed in a novel
way as transferable objects that place constraints via the
action semantics on the objects holding them. Following the
usage in [1], these are called permits and burdens.

In addition, we unify temporal and other constraints such
as those that relate to state and the actions of parties as
defined in the community model - so that they can be
treated as an integral part of policy and other contract
constraints.

5. Case study

The implementation of BCL is work in progress. To
illustrate some of the features that the BCL currently
provides, we use an example that reflects a realistic quality
of service contract. For reasons of clarity and space, we
only show the elements of this contract that are of relevance
to this discussion.

5.1 QoS example contract

Our case study will examine the specification of a
contract which defines an agreement between a service
provider and a client. The service provider provides web
servers which must adhere to uptime guarantees, and the
client has purchased space on these servers. The agreement
will conform to the following criteria:
• The contract will be for a fixed period of twelve months

from an agreed start date.
• The maximum permitted downtime for the server will be

twenty minutes in any one week period.
• Downtime is defined by there not being HTTP access to

the server.
• In calculating downtime, the contract will exclude any

times where:
• 48hrs maintenance notice has been given to the client,
• emergency maintenance is required,
• the client has not paid outstanding invoices by the

agreed payment deadline,

• service has been made unavailable by events of Force
Majeure.

• In the event that the agreed downtime limit has been
exceeded, the service provider will, upon request of the
client, credit the clients account with a pro-rated charge
for one weeks service.

• All invoices are to be paid within 28 days.
Many different sequences of events will be possible,

even in this simple contract. In order for a contracting
framework to provide automated support for such a
contract, it is important to define a set of events that the
framework must generate and handle in response to key
events between the contracting parties. For example,
fundamental events might include details of when HTTP
access to the servers is possible, and may also be used to
signal when invoice payments have been made.

It will be a requirement of the framework that events are
reported; this may imply a need for insertion of event
generation code which will allow the reporting of the key
events as they take place. Such code could be implemented
within applications, but is more likely to be useful if
intelligent stubs can be created which analyse the use of the
components in the system under observation and send
events reporting its behaviour to the monitor at appropriate
times. Implementing event reporting code at this low level
would allow it to be managed, and automatically inserted
and removed from the system, without affecting the
business logic or deployment of the application being
monitored.

5.2 Specifying the contract with BCL

In order to specify a contract to maintain the above
requirements, we must first determine which actions in the
system under observation we are interested in and specify
an appropriate type hierarchy for these.

In our prototype implementation, BCL is an XML based
language. The decision to use XML was made in light of
the excellent range of tool support available, including
parsers, transformation engines and document validity
checkers.

Actions – Actions represent observable behaviour in the
system under observation. All actions in BCL are part of a
single type hierarchy with a single root type known simply
as ‘action’; this hierarchy enables the generalisation of
actions. Contracts will refer to the actions from this
hierarchy in order to define bounds for the behaviour of
their signatories. The following example illustrates the
syntax required to specify a new action type:
<action-defn name="service" type-of="action">
 <action-role name="provider/>
</action-defn>

Note that the super-type for the new action is specified
as ‘action’, the root of the action hierarchy. The definition
for an action will contain action roles which allow the
actions to be parameterised with the enterprise objects
involved in the action; therefore, in this example, all
reported service actions will contain a reference to the
enterprise object that played the provider role in the action
when it was performed. A role defined within an action is
also present in all subtypes of that action. Action definitions
which represent interactions must specify a role for each
party involved in the interaction.

action

service

service-on

service-off

emergency-service-
maintenance-start

service-
maintenance-start

notify-service-
maintenance

send-
invoice

send-
payment

accounting

Figure 4 - An action type hierarchy

In addition to this, action types may also specify data
that should be contained in the events that report them; for
example, the accounting action in Figure 4 might specify an
invoice number field that all subtypes will contain. We will
use the above action hierarchy to specify the QoS contract.

Contract lifecycle – All contracts will follow the same
basic lifecycle stages: specification, negotiation, active,
expired. All contract instances must therefore identify the
period for which they are active in order that an
interpreter/checker may monitor them. All contracts must
therefore contain two expressions indicating the start and
end dates of the contract; these expressions can be
evaluated dynamically, allowing a contract to specify non-
static start or termination time.

The following syntax illustrates how start and end times
are specified on our case study contract (note that a contract
is a community, hence the community tag where we might
have expected to see contract; for brevity, all subsequent
code snippets are assumed to be declared within these tags):

<community name=”QOS Agreement”>
 <value name="contractStartTime" type="date"
 expr="?"/>

 <value name="contractEndTime" type="date"
 expr="?"/>

 <!— remaining contract details go here -->

</community>

The question marks must be substituted at the
negotiation stage of the contracts lifecycle with either a date
formatted string for static date values, or an expression
which can used to evaluate the time point dynamically.

Contract roles – Our case study contract will need to be
signed by a service provider and a client. Appropriate roles
are therefore specified within the contract:
<community-role name="service-provider"/>
<community-role name="client”/>

The default cardinality for roles is one; so in this
example, there must be one service provider and one client
for this contract at all times.

Contract state – Contracts will need to maintain contract
relevant state. This could be negotiated state that has been
set prior to the contract becoming active, a constant value
shared by all contract instances, or a value specific to a
particular contract instance.

For our case study we might declare the following
within our contract specification:
<constant name="paymentTimeLimit"
 type="time" value="28 days"/>

<variable name="numOverdueInvoices"
 type="int" init="0"/>

The constant definition introduces an immutable value
called ‘paymentTimeLimit’ into the contracts scope which
can be used to calculate whether a contract has been paid on
time. We also declare a variable which will be used by
contract instances to keep a track of the number of overdue
invoices the client has with the service provider.

Accountability – To illustrate how accountability can be
expressed we will examine the assignment of a burden. Our
contract specifies that invoices must be paid within 28 days.
This means that the client attracts a timed burden as a
consequence of the invoice delivery action to pay the
outstanding invoice.

We have already introduced the variable which keeps a
count of outstanding invoices; we will now examine how
burdens can be used to update this variable in reaction to
payment violations. The code for the policy that monitors
the invoice payments is verbose, so we use pseudo code to
illustrate this instead:

upon receipt of an invoice action:
 record the invoice’s number and total amount
 apply a burden to the client to pay the invoice
 set a timer to violate this burden in 28 days
 loop:
 upon receipt of a payment for this invoice:
 record the amount of the payment
 if the invoice has been fully paid:
 discharge the burden
 if the burden was violated:
 decrement the overdue invoice counter
 else:
 repeat the loop

upon burden violation:
 increment the overdue invoice counter

The above algorithm uses a loop and a record of the
received invoice’s number to allow a number of payments
to be made for a single invoice. Note also in this example
that we set a timer to violate the burden in 28 days. If the
burden is discharged before this period, then the timer will
have no effect.

Event filtering and time windows – The contract
specifies that if there is more than 20 minutes of downtime
in a week then the client is eligible for a refund. There are a
number of influences that can affect this eligibility too,
including: prompt payment of invoices by the client, fair
notification of service interruptions for maintenance
purposes, emergency maintenance, and interruptions due to
events of Force Majeure.

In order to reduce the complexity of the events that the
sliding window must deal with, we can add filters to the
contract. Filters can receive the action notifications (system
events) and listen for variable updates before producing
higher-level events which delimit the start and end of
chargeable downtime periods. For instance, if the number
of overdue invoices variable has a value of one when a
server goes down, then a ‘downtime’ event will not get
forwarded to the sliding window until the invoice has been
paid and the client is eligible, once more, to claim for the
down time.

Filters for this contract will need to listen for changes to
the unpaid invoices variable, as well as all types of service
actions. Logic within the filters will determine when the
accountable periods of downtime start and end, before
creating new events to represent the relevant start and end
points. It is these new events that allow the following time-
window to calculate the total accountable downtime:

<policy name="monitor-service-events">
 <variable name="totalDownTime" type="time"/>
 <assign-burden id="maintain-service"
 community-role="service-provider">

 <sliding-window
 from="${contractStartTime}"
 until="${contractEndTime}"
 width="1 week"
 step="1 day">

 <evaluate>
 <for-each
 select="${window.events}" name="e">

 <!--examine all events and -->
 <!--calc the total downtime-->
 </for-each>

 <!-- if downtime is over 20 mins -->
 <violate-burden/>

 </evaluate>
 </sliding-window>
 <burden-violated>
 <email to="${clientEmailAddr}">
 WARNING: In the past week there has
 been ${totalDownTime} mins of downtime.
 </email>
 </burden-violated>
 </assign-burden>
</policy>

The above policy specification has been taken from a
working example of this contract in our prototype
interpreter and illustrates how the sliding window and
burden operators can be used in conjunction.

Within the burden to maintain the service levels, a
sliding window is used to periodically calculate the amount
of downtime detected. The evaluate element of the window
will be interpreted according to the ‘step’ attribute (in this
case every 24 hours) and will explicitly violate the burden
should the downtime limit be exceeded; this will result in
an email, detailing the total downtime value, being sent to
the address specified by the ‘clientEmailAddr’ variable.

ECL has been designed as a prototyping language. This
means that operators are continually being added and
removed in order that we may experiment with different
ways of expressing our contracting scenarios. At the time of
writing, operators for calculating summations of time
bounds between events are under development. As a result
of this, we have replaced the longhand evaluation of the
total-downtime value with comments in order to aid
readability.

6. Conclusions

This paper has presented the preliminary findings of an
attempt to combine experience with two different contract
monitoring systems. The result is an outline for an
enhanced contract definition language, BCL, which the
collaborators hope to complete in the near future and then
to test with a variety of contract types.

7. Acknowledgements

The work reported in this paper has been funded in part
by the Co-operative Research Centre for Enterprise
Distributed Systems Technology (DSTC) through the
Australian Federal Government's CRC Programme
(Department of Industry, Science & Resources).

This project was supported by the Innovation Access
Programme-International Science and Technology, an
initiative of the Government's Innovation Statement,
Backing Australia's Ability.

8. References

[1] P. Linington, S. Neal, Using Policies in the Checking of
Business to Business Contracts, Policy 2003 Workshop.

[2] Z. Milosevic, G. Dromey, On Expressing and Monitoring
Behaviour in Contracts, EDOC2002 Conference, Lausanne,
Switzerland

[3] R. Lee, A Logic Model for Electronic Contracting, Decision
Support Systems, 4, 27-44.

[4] iMany, www.imany.com

[5] DiCarta, www.dicarta.com

[6] UpsideContracts, www.upsidecontract.com

[7] D. Luckham, The Power of Events, Addison-Wesley, 2002

[8] S. Neal, A Language for the Dynamic Verification of Design
Patterns in Distributed Computing, PhD Thesis, University
of Kent, 2001.

[9] Z. Milosevic. Enterprise Aspects of Open Distributed
Systems. PhD thesis, Computer Science Dept. The
University of Queensland, October 1995.

[10] S. Neal and P.F. Linington., “Tool Support for
Development using Patterns”, in Proc. 5th International
Enterprise Distributed Object Computing Conference,
Seattle, USA, September 2001.

[11] ISO\IEC IS 15414, Open Distributed Processing-Enterprise
Language, 2002.

[12] Oracle Contracts, http://www.oracle.com/appsnet/products/
contracts/content.html.

[13] Gamma et al, Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

