
December 16, 2003 10:33 WSPC/117-ijseke 00149

International Journal of Software Engineering
and Knowledge Engineering
Vol. 13, No. 6 (2003) 627–654
c© World Scientific Publishing Company

A PROCEDURE TO TRANSLATE PARADIGM SPECIFICATIONS

TO PROPOSITIONAL LINEAR TEMPORAL LOGIC

AND ITS APPLICATION TO VERIFICATION

JUAN CARLOS AUGUSTO

Department of Electronics and Computer Science, University of Southampton,

Southampton, Hampshire SO17 1BJ, UK

jca@ecs.soton.ac.uk

RODOLFO SABAS GOMEZ

Department of Computer Science, University of Kent,

Canterbury CT2 7NZ, Kent, UK

rsg2@kent.ac.uk

Received 3 January 2003
Revised 25 April 2003

Software systems have evolved from monolithic programs to systems constructed from
parallel, cooperative components, as can be currently found in object-oriented applica-
tions. Although powerful, these cooperative systems are also more difficult to verify.

We show that it is possible to automatically translate a PARADIGM specification
to a Propositional Linear Temporal Logic based program. This has several interesting
consequences: a) on one hand we allow a more declarative view of PARADIGM specifica-
tions, b) the resulting translation is an executable specification and c) as we show in this
work it can also be used to verify correctness properties by automatic means. We think
this will contribute to enhance the understanding, usability and further development of
PARADIGM, and related methods like SOCCA, within both the Software Engineering
and the Knowledge Engineering communities.

Keywords: Software process; PARADIGM , temporal logic; verification.

1. Introduction

PARADIGM [20] is a high-level modelling language which has been proposed to

design parallel and cooperative systems. It is well known as being the sub-language

of SOCCA [9] used for modelling object communication, coordination and cooper-

ation.

SOCCA and PARADIGM have received notable attention by both Software

and Knowledge Engineering communities. For example, SOCCA has been used to

describe an adaptive software process [21] and an industrial maintenance case study

[8], which are typical problems in the area of SE, as well as to describe Blackboard

627

December 16, 2003 10:33 WSPC/117-ijseke 00149

628 J. C. Augusto & R. S. Gomez

Systems [19], which is a problem in the area of Knowledge Engineering. It can also

be argued that PARADIGM and SOCCA are likely to find important applications

in the area of multi-agent systems. For example, [1] shows a UML statechart-based

design of multi-agent systems which can be benefited by the coordination-modelling

capabilities of PARADIGM . Other works (see, for example, [11]) can be consulted

for details about multi-agent coordination.

Propositional Linear Temporal Logic (PLTL) has been used in the specification

of dynamic systems and verification of their behavior correctness ([16] and [18]).

Different specification and verification systems have been proposed in the literature,

notably STeP [5] and SPIN [14]. In the STeP framework SPL can be used to specify

a system that is translated to a Fair Transition System. Then, behavior properties

expressed by temporal logic formulas can be verified using a deductive approach. In

the SPIN framework a system is specified using the Promela language to represent a

system conceived through a Global State Automata. Then temporal logic formulas

can again be verified but in this case using the model checking technique [4]. Other

approaches to verification are based on more complex temporal assumptions like

branching time, e.g., Kronos [15], here we focus on linear time leaving verification

over branching time and other issues for future exploration.

We show it is possible to automatically translate a PARADIGM model into a

PLTL-based program, thus obtaining an executable specification of the real system.

This program will be composed by a number of logic rules implying, at any time,

the current state of process executions. These rules can be entirely generated from

the information provided in any PARADIGM model.

One benefit that can be expected from such a translation is that the temporal

logic framework allows us to prove correctness properties by automatic means.

Properties are expressed as queries to a PLTL interpreter with the logic program

as a knowledge base. One such implementation of a deductive system we used for

our proposal is ETP [7], which provides interpretation for a subset of PLTL covering

more of the properties discussed at the end of this article. This program can also

be used as a simulation tool: process executions can be traced to any situation of

interest. This feature can be useful in the design stage of the software development:

we can change the PARADIGM model, translate it to a logic program, and study

the process behavior until functional system requirements have been met. Finally,

the logic approach offers a different, declarative way to study PARADIGM models.

We think this new result will contribute to enhance the understanding, usability

and further development of PARADIGM, and related methods like SOCCA, within

both the Software Engineering and the Knowledge Engineering communities.

This article is an extended and improved version of [2] and is organized as fol-

lows. Section 2 explains the main concepts about PARADIGM models. Section 3

explains the logic framework (PLTL) we use to specify the outcome of the trans-

lation process. The translation process itself is conceptually explained in Sec. 4. In

Sec. 5 we show an algorithm which can be used to implement the translator, in-

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 629

cluding a complexity analysis to show that the algorithm runs in polynomial time.

Section 6 shows how the resulting translation can be used to verify correctness of

behavior by quering the PLTL program with temporal properties. Conclusions are

given in Sec. 7. Due to space constraints we were forced to omit interesting sections

as those exemplifying the translation procedure. The reader is kindly invited to see

the whole exercise in the full version [3].

2. PARADIGM

PARADIGM models a dynamic system as a set of parallel processes. Processes are

modelled as state transition diagrams (std from now on), and they can be regarded

as employees or managers. Managers coordinate their employees by prescribing

them a proper set of subprocesses.

A subprocess is a temporal constraint placed on the employee’s behavior. It is

modelled as an std which inherits a subset of an employee’s states and transitions,

meaning that as long as this subprocess is prescribed the employee can only achieve

part of its complete behavior. Because any employee can be controlled by several

managers, its behavior at anytime results from the composite behavior assigned by

each of its currently prescribed subprocesses. For example, employees can only take

transitions which are included in all subprocesses currently prescribed to them. For

the sake of simplicity, we have assumed that all processes of the PARADIGM model

are always active.

Traps model those states in execution where employees need coordination. They

are defined as subsets of subprocess states. Once an employee enters the first state

of those defining a trap, the manager which prescribed the subprocess containing

that trap is notified, and the employee can now only perform transitions that are

inside the trap.

Manager states are assigned a set of subprocesses, one per employee. This set is

currently prescribed as long as the manager remains on that state, but the same sub-

process can be prescribed in several manager states. A manager cannot prescribe,

at a given time, more than one subprocess per employee. Manager transitions are

assigned a set of traps, meaning that transitions can only be taken if all employees

are currently inside these traps. Employee executions cannot proceed outside of

traps until the manager prescribes the proper set of subprocesses, thus changing

their behavioral restrictions, and in another way managers cannot proceed until the

proper employees are inside their traps. An interesting example of a PARADIGM

model is explained in [9].

3. The Temporal Logic

This section is devoted to introduce the temporal language to be used later for

the specification of temporal properties. We just give a short introduction to the

temporal logic layer of this proposal. More details about the formal theory, its use

December 16, 2003 10:33 WSPC/117-ijseke 00149

630 J. C. Augusto & R. S. Gomez

to extend Prolog with temporal operators and the algorithm used to implement an

interpreter for the resulting language, ETP, can be found in [7].

Here we conceive the dynamics of the system specified with PARADIGM as a

discrete sequence of steps associated to a linear conception of time ordered under

the relation ≤. The system being specified will then evolve along a sequence of

states σ = s0, s1, . . . where s0 is the initial state. The system can or cannot have

a final state sf , allowing the consideration of reactive systems, a class of systems

PARADIGM is well equipped to deal with. Each state si is defined by a set of

atomic propositions, those who are true at that state. A set of properties θ is

assumed to hold at the initial state. After n steps a computation σ = s0, . . . , sn

had gone through |σ| = n + 1 states. Time here is used to refer to the different

stages the system goes through. We assume a propositional language LP based on

the traditional temporal operators ♦A (A is true in some future state) and �A (A

is always true from the next state onward). To simplify we consider in this article

only the future fragment. Other well known operators like ⊕, U (until) and the past

fragment can be added to the proposal in the future with interesting benefits during

the verification stage. The set of well formed formulas of the temporal language can

be defined inductively as follows:

φ = p|¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1 → φ2|♦φ|�φ

where p is an atomic proposition. We define when a proposition φ is true in st where

0 ≤ t ≤ |σ| in a process σ, (σ, t) |= φ, as follows:

(σ, t) |= p iff p ∈ st with p atomic (where st |= p means “p is true at st”)

(σ, t) |= ¬φ1 iff (σ, t) 6|= φ1

(σ, t) |= φ1 ∨ φ2 iff (σ, t) |= φ1 or (σ, t) |= φ2

(σ, t) |= φ1 ∧ φ2 iff (σ, t) |= φ1 and (σ, t) |= φ2

(σ, t) |= φ1 → φ2 iff (σ, t) 6|= φ1 or (σ, t) |= φ2

(σ, t) |= ♦φ iff there exists s > t : (σ, s) |= φ

(σ, t) |= �φ iff for all s > t : (σ, s) |= φ

This language will give us a set of well formed formulas that is expressive enough

to encode the PARADIGM specification in a declarative way. It also allows us to

represent well known schema formulas [17] that can be used to query the result-

ing temporal logic program in order to verify the correctness of behavior. Some

examples of these formulas are: �φ (safety) and others from the “liveness family”

like ♦φ (guarantee), �(φ1 → ♦φ2) (response/recurrence), ♦�φ (persistence) and

�♦φ1 → �♦φ2 (progress). The framework assumes sets of propositions whose car-

dinality depends on the sets of manager and employee processes, they should not

be prohibitively large as modularity will demand to keep the number of processes

reasonably small.

Finally, we give our temporal logic a persistence semantics. This means a propo-

sition P is considered true from the time it is asserted until the time it is denied,

i.e., until the time proposition ¬P is explicitly asserted. This helps us to express

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 631

time periods: if a given information is modelled by proposition P , and it is con-

sidered valid from time t to time t + n, n ∈ N, then this period can be expressed

by asserting P at time t and ¬P at time t + n + 1. In our system, P remains true

during t, . . . , t + n.

4. The Translation Process, Conceptually

The goal of the translation process is to produce a PLTL program, P , which simu-

lates the behavior of the processes included in the PARADIGM model.

The evolution of process executions is mapped to the state-sequence semantics

of the temporal logic. We call these states global states in contrast to state changes

in stds appearing in the PARADIGM model. Every global state will be a set of

propositions of three possible different schemas:

(a) proposition st, where st denotes a state of a given process p, will be true anytime

p remains on st,

(b) proposition sp, where sp denotes a subprocess of a given employee e, will be

true anytime sp remains prescribed to e, and

(c) proposition tp, where tp denotes a trap of a given employee e, will be true

anytime e remains inside tp.

We assume that all propositions denoting states, subprocesses and traps are unique.

For example, propositions cpNotChecking, cPs3 and tcP3 denote, respectively, that

process checkPIN is currently on state NotChecking, that subprocess checkPIN s3

is currently prescribed and that checkPIN is currently inside the trap T-cP3.

The logic program P includes a set of rules which model different aspects of

the PARADIGM dynamics, either by asserting or denying the truth of proposi-

tions st, sp and tp. These rules will be conceptually introduced in Secs. 4.1 to 4.5.

Rules which model transitions in employee and manager process are presented first

because they are the core of the system execution simulation. State changes in

PARADIGM processes can be seen as a transformation of the global state at time t,

Gt, into a global state at time t + n, n ∈ N, Gt+n.

Process transitions modify the global state in different ways, and in turn

global states impose different constraints on them depending on whether they

are employee or manager transitions. Therefore, transitions are modelled by rules

�(Pre → ♦Pos), where Pre is a set of preconditions which must hold on Gt to al-

low the state change, and Pos is a set of post-conditions holding on the new global

state Gt+n, after the change. Operator ♦ expresses the fact that a state change

will eventually occur, but does not say when this will happen. So rules will only

reflect the order in which states can be visited. This is due to PARADIGM’s lack

of information concerning the time that processes spend on particular states and

the time that transitions require to be performed.

Rules composing P will be better explained through an example we have

adapted from [9]. In [9] the ATM system is modelled in SOCCA. Strictly speaking,

December 16, 2003 10:33 WSPC/117-ijseke 00149

632 J. C. Augusto & R. S. Gomez

Fig. 1. Data perspective.

class ATM

class BankComputer

Fig. 2. Behavior perspective.

only Figs. 3 to 20 describe the PARADIGM model because it is just one of the four

perspectives which are used in SOCCA to model a system. Nevertheless, we have

decided to show other perspectives to make the example more readable.

The data perspective describes the static nature of a system as a collection

of related classes (SOCCA is object-oriented). Figure 1 shows two classes, ATM

and BankComputer with a number of methods defining their interfaces. Also, a

“use” relationship is shown describing which methods of BankComputer are called

by ATM in order to perform its services. In particular, verifyAccount() and

processTransaction()will be respectively called by checkPIN() and getMoney()

as part of their functionality.

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 633

Fig. 3. Employee process checkPIN.

checkPIN s1 checkPIN s2

Fig. 4. Subprocesses of checkPIN w.r.t manager ATM.

checkPIN s3 checkPIN s4

Fig. 5. Subprocesses of checkPIN w.r.t. manager BankComputer.

The behavior perspective describes, by means of state transition diagrams, the

visible (external) behavior of the objects of a class in terms of the allowed se-

quence of method calling. Figure 2 shows the behavior perspective for ATM and

Bankcomputer. There we can see, for example, that getMoney() is never called

before checkPIN().

The communication perspective is specified in PARADIGM. All methods are

assigned an employee process, and all classes are assigned a manager process. Each

manager related to a given class C controls all employees related to methods of C

plus all employees related to methods of other classes which call methods of C. For

instance, process checkPIN (Fig. 3) is responsible for checking the user’s magnetic

December 16, 2003 10:33 WSPC/117-ijseke 00149

634 J. C. Augusto & R. S. Gomez

Fig. 6. Employee process getMoney.

getMoney s1 getMoney s2

Fig. 7. Subprocesses of getMoney w.r.t manager ATM.

getMoney s3

getMoney s4

Fig. 8. Subprocesses of getMoney w.r.t. manager BankComputer.

Fig. 9. Employee process verifyAccount.

card with the personal identification number, but to do this it needs to call process

verifyAccount (Fig. 9). Both processes are employees of manager BankComputer

(Fig. 13), which coordinates the calling-called relationship by prescribing each em-

ployee a different set of subprocesses as needed. Figures 5 and 10 show the subpro-

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 635

verifyAccount s1 verifyAccount s2

Fig. 10. Subprocesses of verifyAccount.

Fig. 11. Employee process processTransaction.

processTransaction s1

processTransaction s2

Fig. 12. Subprocesses of processTransaction.

cesses that can be prescribed by BankComputer to checkPIN and verifyAccount,

respectively. checkPIN is also an employee of manager ATM (Fig. 20), which coordi-

nates the operation of the ATM device. Fig. 4 shows which subprocesses ATM may

prescribe to checkPIN. Traps are shown as shaded boxes.

Because this section is devoted to explain the concepts behind the translation

procedure, it will be enough to comment on only part of the PARADIGM model,

thereby postponing the translation of the complete example to Sec. 6.

Notational conventions are as follows. To keep graphics small we were forced

to use acronyms inside figures. A guide to relate our abbreviations in figures with

their references in expanded form, when used inside formulas or paragraphs: “cP”

means “checkPin”, “gM” means “getMoney”, “pT” means “processTransaction”,

“vA” means “verifyAccount”, “eC” means “ejectCard”, “rC” means “readCard”,

December 16, 2003 10:33 WSPC/117-ijseke 00149

636 J. C. Augusto & R. S. Gomez

Fig. 13. Manager process BankComputer.

Fig. 14. Employee process readCard.

readCard s1 readCard s2

Fig. 15. Subprocesses of readCard.

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 637

Fig. 16. Employee process ejectCard.

ejectCard s1 ejectCard s2

Fig. 17. Subprocesses of ejectCard.

Fig. 18. Employee process cancel.

cancel s1 cancel s2

Fig. 19. Subprocesses of cancel.

“cA” means “cancel”, “T-. . .” means “Trap-. . .”. An example of a trap reference

could be “T-vA3” to refer the 3rd trap in a subprocess of “verifyAccount”.Another

minor difference in notation is that when we consider the translation we are forced to

write labels for the different elements of a PARADIGM specification (e.g., processes,

traps, etc.) starting in small caps, because we feed the translation into a Prolog

system and that is the way to represent propositions in Prolog programs.

4.1. State changes in employee processes

These rules are related to the time each employee remains on a given state. Let tsij

be a transition from state sti to state stj in a given employee e. This transition can

be taken (at a given time t) only if:

(a) e is currently on sti and

(b) tsij is included in all subprocesses currently prescribed to e

December 16, 2003 10:33 WSPC/117-ijseke 00149

638 J. C. Augusto & R. S. Gomez

Fig. 20. Manager process ATM.

Precondition (a) can be expressed by requesting proposition sti to be valid at t.

Precondition (b) needs more explanation. Let Me = {m1, . . . , mq} be the set of

all managers of employee e. Of all subprocesses which can be prescribed to e by

manager mr ∈ Me, let Sr = {spr
1, . . . , sp

r
n} be the set of those which contains tsij .

Then, tsij can be taken if for each manager mr at least one of the subprocesses

included in Sr is currently prescribed to e at time t. Let sets S1, . . . ,Sq denote the

subprocesses prescribed by managers m1, . . . , mq (as defined before); containing,

respectively: {sp1
1, . . . , sp

1
r}, . . . , {sp

q
1, . . . , sp

q
s}. This precondition is expressed by

the following conjunction:

((sp1
1 ∨ . . . ∨ sp1

r) ∧ . . . ∧ (spq
1 ∨ . . . ∨ spq

s))

After the state change, i.e., at time t + n, n ∈ N, employee e will no longer be in

state sti but in stj . This can be expressed by asserting propositions ¬sti and stj
at time t + n. The complete schema for rules modelling state changes in employee

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 639

processes is shown next:

�((sti ∧ (sp1
1 ∨ . . . ∨ sp1

r) ∧ . . . ∧ (spq
1 ∨ . . . ∨ spq

s)) → ♦(¬sti ∧ stj))

Example 1. Here we consider a state change from Connected to Processed in

employee getMoney. Figure 7 shows that transition “call PT” is allowed in both

subprocesses which can be prescribed by ATM: getMoney s1 and getMoney s2. But

Fig. 8 shows that getMoney s4 is the only subprocess, of those which can be pre-

scribed by BankComputer, which includes “call PT”. Thus, it does not matter

which subprocess is ATM currently prescribing, getMoney s1 or getMoney s2 but

BankComputer must be prescribing getMoney s4. Otherwise, i.e., if getMoney s3

is currently prescribed, the state change cannot happen. To express that both, ei-

ther getMoney s1 or getMoney s2, and getMoney s4 must be prescribed we write:

((gMs1 ∨ gMs2) ∧ gMs4). The complete formula is:

�((gmConnected∧ ((gMs1 ∨ gMs2) ∧ gMs4) → ♦(¬gmConnected∧ gmProcessed))

This schema can be simplified: it can be proved that the disjunction (gMs1∨gMs2)

is not really needed. Manager ATM is always prescribing a subprocess to

getMoney, either getMoney s1 or getMoney s2, and thus it will always be

the case that one of these two subprocesses will be prescribed by the

time getMoney tries to change from state Connected to Processed. There-

fore the disjunction (gMs1 ∨ gMs2) is always true. In other words, a transi-

tion schema can be simplified w.r.t a given manager if the transition is in-

cluded in all possible subprocesses which can be prescribed by that man-

ager. In our example, both getMoney s1 and getMoney s2 contain transition

“call PT”, i.e., manager ATM can never impose a restriction on getMoney per-

forming the change from Connected to Processed. The rule above can then be

re-written as follows:

�((gmConnected∧ gMs4) → ♦(¬gmConnected∧ gmVerifying))

This simplification strategy is included in the algorithm of Sec. 6, step [5]. A refine-

ment of this step is provided in [12] for the case of mutually exclusive conditions.

4.2. State changes in manager processes

The rules described in this section not only model the state changes in manager

processes but also the time when subprocesses are prescribed and the time when

employees are allowed to leave the traps. Let tsij be a transition from state sti to

state stj in a given manager m. This transition can be taken (at a given time t)

only if:

(a) m is currently on sti and

(b) the proper employees are currently inside the traps related to tsij (see Sec. 2).

December 16, 2003 10:33 WSPC/117-ijseke 00149

640 J. C. Augusto & R. S. Gomez

Precondition (a) can be expressed by requesting proposition sti to be valid at t.

Let Tentered = {tp1, . . . , tpn} be the set of traps related to transition tsij . Precon-

dition (b) can be expressed by requesting proposition tpi to be valid at t, for all

tpi ∈ Tentered. After the state change, i.e., at time t + n,

(a) m will be no longer on sti but on stj and

(b) some of the subprocesses prescribed in sti may not be so in stj , and thus all

traps included in them will be left.

Postcondition (a) can be expressed by asserting propositions ¬sti and stj . Let

Sleft = {sp1, . . . , spm} be the set of subprocesses prescribed in sti but not in stj ,

and Tleft = {tpq, . . . , tpu} be the set of traps included in subprocesses of Sleft.

Postcondition (b) can be expressed by asserting ¬spi, for all spi ∈ Sleft, and ¬tpi,

for all tpi ∈ Tleft. Finally, those subprocesses of sti which remain prescribed in stj
and those which are prescribed only in stj can be inferred from the assertion of

proposition stj and the rule schemas describing subprocess prescriptions in stj (see

Sec. 4.3). Rules modelling state changes in manager processes have the following

schema:

�((sti ∧ (tp1 ∧ . . .∧ tpn)) → ♦(¬sti ∧stj ∧ (¬sp1 ∧ . . .∧¬spm)∧ (¬tpq ∧ . . .∧¬tpu)))

Example 2. Here we consider a state change from state Waiting to state

Verifying in manager BankComputer (Fig. 13). This change cannot be performed

until both traps T-cP5 and T-vA1 have been entered. As in state Waiting the man-

ager is prescribing subprocesses checkPIN s4 and verifyAccount s1. Therefore,

for the manager to change to state Verifying the following conditions must hold:

1. checkPIN must be in state Connected, i.e it should have called verifyAccount

(see checkPIN s4 in Fig. 5), and

2. verifyAccount must be in state NotVerifying, i.e., it must be ready to accept

a new call (see verifyAccount s1 in Fig. 10).

Once the manager is in state Verifying, employee verifyAccount must be al-

lowed to proceed with its execution, i.e., it must be allowed to leave trap T-vA1.

Then, the manager prescribes verifyAccount s2 instead of verifyAccount s1

and trap T-vA1 is left because it is included in verifyAccount s1. Proposition

(¬ vAs1 ∧ ¬ TvA1) expresses that verifyAccount s1 is no longer prescribed

and trap T-vA1 is left. Figure 13 also shows that subprocess checkPIN s4 remains

prescribed in state Verifying, and thus that checkPIN cannot leave trap T-cP5.

This means checkPIN cannot proceed until verifyAccount finishes. Proposition

bcVerifying and the rule shown in Example 3 express that a new subprocess,

verifyAccount s2, is now prescribed and that checkPIN s4 remains prescribed.

The dynamic of subprocesses is further explained in the following section. The

complete formula to represent a change from state Waiting to state Verifying in

manager BankComputer is:

�((bcWaiting∧ tcP5∧ tvA1) → ♦(¬bcWaiting∧ bcVerifying∧¬vAs1∧¬tvA1))

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 641

4.3. Subprocess prescription

These rules relate to the time subprocesses remain prescribed. To be more specific,

for every state of a manager process there will be a rule expressing the set of

subprocesses which are prescribed while the manager remains on that state. Let sti

be a manager state and Si = {sp1, . . . , spn} be the set of subprocesses prescribed

in this state. The translation process will generate the following rule:

�(sti → (sp1 ∧ . . . ∧ spn))

Example 3. The formula below describes the set of subprocesses which

BankComputer prescribes in states Waiting and Verifying (Fig. 13). Those whose

labels have the prefices cP and vA denote subprocesses of checkPIN (Figs. 4 and 5)

and verifyAccount (Fig. 10), respectively. For example cPs4 denotes subprocess

checkPIN s4. We can also see that other subprocesses are prescribed, those whose

labels have the prefices gM and pT are subprocesses of getMoney (Figs. 7 and 8) and

processTransaction (Fig. 12), respectively.

�(bcWaiting→ (cPs4 ∧ gMs4 ∧ pTs1 ∧ vAs1))

�(bcVerifying→ (cPs4 ∧ gMs4 ∧ pTs1 ∧ vAs2))

4.4. Inside a trap

These rules model the conditions for a employee to enter and remain on a given

trap. Specifically, for every trap tp in subprocess sp, where sp is a subprocess of

employee e, there will be a rule expressing that e is currently inside tp. Note that

this information is needed by the rules which express state changes in manager

processes (see Sec. 4.3 above).

Let Stp = {st1, . . . , stn} be the set of states which defines trap tp. Employee e

will remain inside tp as long as sp remains prescribed to e and e remains on any

state sti ∈ Stp. Thus, the translation will generate rules with the following schema:

�((sp ∧ (st1 ∨ . . . ∨ stn)) → tp)

Example 4. The formula below expresses that employee checkPIN remains inside

trap T-cP2 as long as it is prescribed subprocess checkPIN s2 and remains on states

Connected, Verifying or Checked.

�((cPs2 ∧ (cpConnected∨ cpVerifying∨ cpChecked)) → tcP2)

4.5. Initial conditions

All processes are supposed to start their executions coordinately. Of course, sub-

processes which are prescribed to every employee at this time are those related to

the set of initial states of manager processes. Let init be a proposition which only

holds at the initial time, and st1, . . . , stn the set of initial states of all processes.

The translation will generate rules with the following schema:

December 16, 2003 10:33 WSPC/117-ijseke 00149

642 J. C. Augusto & R. S. Gomez

init

init → (st1 ∧ . . .∧ stn)

Example 5. Below we show the initial conditions for the processes of our example.

NotChecking, NotVerifying and Waiting are the initial states of em-

ployees checkPIN, verifyAccount and manager BankComputer, respectively.

State Waiting implies that the first subprocesses to be prescribed by

BankComputer to checkPIN and verifyAccount are, respectively, checkPIN s4 and

verifyAccount s1 (see Fig. 13 and Example 3).

init

init → (cpNotChecking ∧ vaNotVerifying ∧ bcWaiting)

These rules provide a coordinated start of process executions and thus enables

a consistent simulation of the PARADIGM model.

Although for simplicity we assumed that the initial conditions, i.e., the initial

global state G0, are generated by the translation process, it is still possible for the

user to supply this information. S/he can specify different global states G′
0, G′′

0 , . . .,

to obtain different simulations. For example, processes may be assumed to start in

states other than those explicitly marked as initial in the PARADIGM model.

Also the reader may notice we had just made explicit the positive information,

i.e., true facts. All facts which are not explicitly mentioned in the rule above are

assumed false. This is in agreement with the negation as failure semantics used in

our Prolog-based translation. Naturally, a different framework could demand that

the user makes negative information explicit as well.

5. The Translation Process as an Algorithm

The translation process will be described as a set of steps that takes a

PARADIGM specification as input and generates a PLTL program as output. We

take the PARADIGM specification “as it is”, i.e., the quality of its content is the

user’s responsibility. At least we expect a correct specification from a purely syn-

tactic perspective, i.e., we assume it contains all the information needed for the

algorithm to produce the PLTL program.

As a matter of fact, not all elements of the PARADIGM specification are needed

to obtain an executable translation. For example, it can be noticed in Sec. 4 that

transition labels are not used to generate any rule.

Those elements which are really used comprise processes, subprocesses, states,

traps and some relationships between them. They will be described as a collection

of sets (Sec. 5.1), which is a suitable form which future implementations can be

obtained from. Indeed, the algorithm itself will be described as an “imperative-

like” pseudo-code with set-manipulation primitives (Sec. 5.2).

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 643

5.1. Input sets

Next we present the sets that must be provided for the translation could be per-

formed. They encode some elements of the PARADIGM models, but we do not

assume any particular tool to construct these sets. It should be easy for any tool

allowed to write a PARADIGM specification to extract the basic information in a

plain ASCII file with the information we need as input to our procedure.

We have chosen a set of labels to denote process, states, subprocess and traps

which may differ from those appearing in the figures. However, these labels are

quite obvious and easy to recognize. In some cases, they were needed to ensure

uniqueness. For example, both employees checkPIN and getMoney have a state

named Connected (Figs. 3 and 6), so we have renamed each state with a prefix

denoting the process it belongs to: cpConnected and gmConnected, respectively.

We can also see that subprocess labels can be quite long. Thus we have renamed

them with the prefix of the process which they belong to and the number of sub-

process. For example, cPs4 denotes subprocess checkPIN s4. When in doubt, the

reader can review the notational explanation given in page 635.

Due to space restrictions we are forced to provide a general description and just

a few samples of the elements for each set. The complete input sets are given in [3].

1. A finite set EMP denoting all employee processes. In the example (Figs. 3, 6,

9 and 11) we have:

EMP = { checkPIN, getMoney, verifyAccount,

processTransaction, readCard, ejectCard, cancel }

2. A finite set MAN denoting all manager processes. In the example (Figs. 13

and 20) we have:

MAN = {atm, bankComputer}

3. A finite set PROtransitions denoting the set of transitions of every process:

PROtransitions =

n⋃

i=1

{(pi,

m⋃

j=1

{(stj , stk)})}

for all k, 1 ≤ k ≤ m, such that pi denotes a process and (stj , stk) denotes a

transition from state stj to state stk in process pi. In the example (Figs. 3, 6,

9, 11, 13, 14, 16, 18 and 20) we have:

PROtransitions = {

(checkPIN, { (cpNotChecking, cpConnected),

. . .

(cpCheckNotOK, cpNotChecking) }),

. . .

(bankComputer, { (bcWaiting, bcVerifying),

. . .

(bcAccountVerifiedNotOK, bcWaiting) })}

December 16, 2003 10:33 WSPC/117-ijseke 00149

644 J. C. Augusto & R. S. Gomez

4. A finite set MANsubprocesses denoting the set of subprocess prescribed in every

manager state:

MANsubprocesses =

n⋃

i=1

{(sti,

m⋃

j=1

{spj})}

where sti denotes a manager state and spj denotes a subprocess prescribed in

sti. In the example (Figs. 13 and 20) we have:

MANsubprocesses = {

(atmWaiting, {cPs1, gMs1, eCs1, rCs1, cAs1}),

. . .

(bcAccountVerifiedNotOK, {cPs3, gMs4, pTs1, vAs1})}

5. A finite set TRPstates denoting the set of states defining every trap:

TRPstates =

n⋃

i=1

{(tpi,

m⋃

j=1

{stj})}

where tpi, denotes a trap and stj denotes a state inside the trap tpi. In the

example (Figs. 3 to 12 and 14 to 19) we have:

TRPstates = {

(tcP1, {cpNotChecking}),

. . .

(tcP4, {cpNotChecking, cpConnected, cpCheckOK, cpCheckNotOK}),

. . .

(tcA2, {caWillingToCancel, caCancelled})}

6. A finite set SPRtraps denoting the set of traps of every subprocess:

SPRtraps =

n⋃

i=1

{(spi,

m⋃

j=1

{tpj})}

where spi denotes a subprocess and tpj denotes a trap of spi. In the example

(Figs. 4, 5, 7, 8, 10, 12, 15, 17 and 19) we have:

SPRtraps = {

(cPs1, {tcP1}), (cPs2, {tcP2, tcP3}), (cPs3, {tcP5}), (cPs4,

{tcP5}),

. . .

(cAs1, {tcA1}), (cAs2, {tcA2}) }

7. A finite set EMPsubprocesses denoting, for every employee, the set of subpro-

cesses which can be prescribed by every manager:

EMPsubprocesses =

n⋃

i=1

m⋃

j=1

{(ei, mj ,

q⋃

k=1

{spk})}

where ei denotes an employee, mj denotes a manager for ei and spk denotes a

subprocess of e that can be prescribed by mj . In the example (Figs. 4, 5, 7, 8,

12, 15, 17 and 19) we have:

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 645

EMPsubprocesses = {

(checkPIN, atm, {cPs1, cPs2}),

(checkPIN, bankComputer,{cPs3, cPs4}),

. . .

(cancel, atm, {cAs1, cAs2})}

8. A finite set INIstates denoting the initial state of every process:

INIstates =

n⋃

i=1

{sti}

where sti denotes the initial state of a process. In the example (Figs. 3, 6, 9,

11, 13, 14, 16 and 18) we have:

INIstates = { cpNotChecking, gmNotGetting, vaNotVerifying,

ptNotProcessing, rcNotReading, ecNotEjecting,

caNotCancelling, atmWaiting, bcWaiting }

9. A finite set TRSsubprocesses denoting, for every employee transition, the set of

subprocesses it is included in:

TRSsubprocesses =

n⋃

i=1

{((sti, stj),

m⋃

k=1

{spk})}

for all j, 1 ≤ j ≤ n, where (sti, stj) denotes a transition of a given employee e

from state sti to state stj and spk denotes a subprocess of e containing such a

transition. In the example (Figs. 4, 5, 7, 8, 10, 12, 15, 17 and 19) we have:

TRSsubprocesses = {

((cpNotChecking, cpConnected),{cPs2, cPs3, cPs4}),

((cpConnected, cpVerifying), {cPs2, cPs4}),

. . .

((caCancelled, caNotCancelling), {cAs1})}

10. A finite set MANtraps denoting the set of traps that must be entered for every

state change in a manager process could be performed:

MANtraps =

n⋃

i=1

{((sti, stj),

m⋃

k=1

{tpk})}

for all j, 1 ≤ j ≤ n, where (sti, stj) denotes a transition of a given manager m

from state sti to state stj and tpk denotes a trap that must be entered for such

a transition could be performed. In the example (Figs. 13 and 20) we have:

MANtraps = {

((atmWaiting, atmReadingCard), {trC1}),

((atmReadingCard, atmChekingPIN), {trC2, tcP1}),

. . .

((bcAccountVerifiedNotOK, bcWaiting), {tcP4})}

December 16, 2003 10:33 WSPC/117-ijseke 00149

646 J. C. Augusto & R. S. Gomez

5.2. Steps

Now we describe the translation algorithm as a set of steps, each one taking one or

more input sets (Sec. 5.1) and generating a kind of rule for the PLTL program. We

assume the existence of a procedure generateRule() which performs the output

of a rule to the PLTL program. All variables are considered local to each step

environment. Set variables are denoted with uppercase calligraphic letters, e.g.,

A. Element variables are denoted with uppercase italic letters, e.g., A. Constant

elements will be denoted with lowercase italic letters, e.g., a. Readers will note that

some algorithm lines are distinguished with a label [n], with n > 0. This will make

sense in Sec. 5.3 where we offer a complexity study.

1) State changes in employee processes

INPUT: EMP, PROtransitions, TRSsubprocesses, EMPsubprocesses

PROCEDURE:
% for each employee

Tmp1 := EMP ;

[1] Repeat until Tmp1 = Ø;

begin

Let e ∈ Tmp1 ;

Tmp1 := Tmp1/{e} ;

[2] Let Te such that (e, Te) ∈ PROtransitions ;

% for each transition of this employee

Tmp2 := Te ;

[3] Repeat until Tmp2 = Ø ;

begin

Let (sti, stj) ∈ Tmp2 ;

Tmp2 := Tmp2/{(sti, stj)} ;

% Sij is the set of all subprocesses containing this transition

[4] Let Sij such that ((sti, stj),Sij) ∈ TRSsubprocesses ;

% Se is the set of all subprocesses prescribed by each manager

% to this employee

[5] Let Se = { Sm | ∃m ∈ MAN ((e, m,Sm) ∈ EMPsubprocesses) } ;

% intersect each subset of Se with Sij, and form the set Sm
ij

% Strict inclusion I ⊂ Sm expresses the optimization

% described in Sec. 4.1

[6] Let Sm
ij = { I | ∃Sm ∈ Se (I = Sm ∩ Sij ∧ I ⊂ Sm) } ;

Suppose Sm
ij = { {sp1

1, . . . , sp
1
r}, . . . , {sp

q
1, . . . , sp

q
s} } ;

[7] GenerateRule(

�((sti ∧ (sp1
1 ∨ . . . ∨ sp1

r) ∧ . . . ∧ (spq
1 ∨ . . . ∨ spq

s))→ ♦(¬sti ∧ stj)))

end % {Repeat until Tmp2 = Ø}

end % {Repeat until Tmp1 = Ø}

This algorithm has been extended in [12] to provide a more efficient consideration

of mutually exclusive conditions”.

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 647

2) State changes in manager processes.

INPUT: MAN, PROtransitions, MANtraps, MANsubprocesses

PROCEDURE:

% for each manager

Tmp1 := MAN ;

Repeat until Tmp1 = Ø

begin

Let m ∈ Tmp1

Tmp1 := Tmp1/{m} ;

% Tm is the set of transitions of this manager

Let Tm such that (m, Tm) ∈ PROtransitions ;

Tmp2 := Tm ;

% for each transition of Tm

Repeat until Tmp2 = Ø ;

begin

Let (sti, stj) ∈ Tmp2 ;

Tmp2 := Tmp2/{(sti, stj)} ;

% Tij is the set traps of this transition, i.e., those traps

% that must be entered for this transition could be performed

Let Tij such that ((sti, stj), Tij) ∈ MANtraps ;

% I is the set of subprocesses prescribed in state sti

Let I such that (sti, I) ∈ MANsubprocesses ;

% J is the set of subprocesses prescribed in state stj

Let J such that (stj ,J) ∈ MANsubprocesses ;

D = I/J ;

% Tleft is the set of traps included in subprocesses of D,

% i.e., those traps that are left after the state change

Let Tleft = {tp | ∃sp ∈ D ((sp, Tsp) ∈ SPRtraps ∧ tp ∈ Tsp) } ;

Suppose Tij = {tp1, . . . , tpn} ;

Suppose D = {sp1, . . . , spm} ;

Suppose Tleft = {tpq, . . . , tpu} ;

GenerateRule(

�((sti∧ (tp1 ∧ . . . ∧ tpn) →

♦(¬sti ∧ stj∧ (¬sp1 ∧ . . . ∧ ¬spm) ∧ (¬tpq ∧ . . . ∧ ¬tpu))))

end % {Repeat until Tmp2 = Ø}

end % {Repeat until Tmp1 = Ø}

3) Subprocess prescriptions

INPUT: MANsubprocesses

PROCEDURE:

% for each manager state

Tmp1 := MANsubprocesses ;

Repeat until Tmp1 = Ø

December 16, 2003 10:33 WSPC/117-ijseke 00149

648 J. C. Augusto & R. S. Gomez

begin

% Sst is the set of all subprocesses prescribed in this state

Let (st,Sst) ∈ Tmp1 ;

Tmp1 := Tmp1/{(st,Sst)} ;

Suppose Sst = {sp1, . . . , spn} ;

GenerateRule(�(st → (sp1 ∧ . . . ∧ spn)))

end % {Repeat until Tmp1 = Ø}

4) Inside a trap.

INPUT: SPRtraps, TRPstates

PROCEDURE:

% for each subprocess

Tmp1 := SPRtraps ;

Repeat until Tmp1 = Ø

begin

% T is the set of traps of this subprocess

Let (sp, T) ∈ Tmp1 ;

Tmp1 := Tmp1/{(sp, T)} ;

% for each trap in T

Repeat until T = Ø ;

begin

Let tp ∈ T ;

T := T /{tp} ;

% Stp is the set of states defining this trap

Let Stp such that (tp,Stp) ∈ TRPstates ;

Suppose Stp = {st1, . . . , stn} ;

GenerateRule(�((sp ∧ (st1 ∨ . . . ∨ stn)) → tp))

end % {Repeat until T = Ø}

end % {Repeat until Tmp1 = Ø}

5) Initial conditions.

INPUT: INIstates

PROCEDURE:

GenerateRule(init) ;

Suppose INIstates = {st1, . . . , stn} ;

GenerateRule(init → (st1 ∧ . . . ∧ stn))

The reader can see the complete set of rules obtained from translating the

example considered in this article in [3].

5.3. Complexity

It can be proved that our translation algorithm runs in polynomial time. We will

develop our complexity analysis using the asymptotic notation often known as “the

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 649

order of” or “big Oh” (see, for example, [6]). Thus we will find an upper bound for

the worst-case execution time of the algorithm steps presented previously. Formally,

Definition 1. Let n ∈ N be the size of the algorithm input and t : N → R
≥0 a

function expressing the algorithm execution time for input n. Let f : N → R
≥0 an

arbitrary function, then t is “in the order of” f iff t(n) ∈ O(f(n)), where

O(f(n)) = {g : N → R
≥0|(∃c ∈ R

+)(∃n0 ∈ N)(∀n ≥ n0)[g(n) ≤ c · f(n)]}

Therefore, we can state our claim in the asymptotic notation as:

Theorem 1. Let n be the size of a given PARADIGM model M, i.e., the input

size for the translation algorithm. Let t(n) be the function expressing the algorithm

execution time. Let St, Sp and Tp be, respectively, the sets of all states, subpro-

cesses and traps of M. Let IS1, . . . , ISm be the input sets derived from M, i.e.,

those sets obtained as shown in Sec. 5.1. Then t(n) is polynomial on the size of n,

where n = max(|St|, |Sp|, |Tp|, |IS1|, . . . , |ISm|). N

We defined the model size n as being the maximum cardinality among partic-

ular sets because a) the algorithm performs its computation over different input

sets and b) we must operate with a unified input size to obtain a unique function

expressing the order of the entire algorithm. It is also worth to mention that some

execution times are considered negligible in the broader computation. These com-

prise assignments and the time which takes to remove an element from a set once

it has already been found. In addition we assume that sets are simply implemented

as lists, that all operations on sets are performed as sequential searches over their

data structures and the time that takes to generate a rule is proportional to the

number of propositions included in the rule schema.

The translation algorithm comprises five separate steps (see Sec. 5.2), all as-

sumed to be performed sequentially. Proving that each one of these steps runs in

polynomial time allows us to infer the entire algorithm is polynomial. These partial

proofs refer to some lines in the algorithm which has been marked with [n]. Func-

tion max(a1, . . . , an) returns the maximum value among a1, . . . , an. |S| denotes the

cardinality of set S.

Lemma 1. Rules expressing state changes in employee processes (see step 1 in

Sec. 5.2) can be generated in O(n5). N

Justification 1. The order of step 1 is

Ostep1 = Lo · max(O2, O3) (1)

where Lo is the number of iterations of the outer loop (line [1]),

Lo = |Tmp1| = |EMP | ≤ n (2)

and O2 is the order of a search over PROtransitions (line [2]),

O2 = n (3)

December 16, 2003 10:33 WSPC/117-ijseke 00149

650 J. C. Augusto & R. S. Gomez

and O3 is the order of the inner loop (line [3]),

O3 = Li · max(O4, O5, O6, O7) (4)

where Li is the number of iterations of the inner loop (line [3]), Li = |Tmp2| = |Te|,

where Te is the set of transitions in employee e,

Li ≤ n (5)

and O4 is the order of a search over TRPsubprocesses (line [4]),

O4 = n (6)

and O5 is the order of a search over EMPsubprocesses (line [5]),

O5 = n (7)

and O6 is the order of the time that takes to compose set SM
ij (line [6]), which

involves an intersection-inclusion proof for every element of set Se,

O6 = |Se| · max(O∩, O⊂) (8)

where O∩ is the order of the time that takes to perform Sm ∩Sij , which in turn can

be bounded by |Sm| · |Sij |. As |Sm| is at most the maximum number of subprocesses

that can be prescribed by a manager to a single employee, and |Sij | is at most the

maximum of subprocesses a given transition is part of, then |Sm| ≤ n and |Sij | ≤ n,

then

O∩ = n2 (9)

and O⊂ is the order of the time that takes to perform I ⊂ Sm, which in turn can

be bounded by |I| · |Sm|. As |I| is at most |Sm| ≤ n, then

O⊂ = n2 (10)

and |Se| is at most the maximum number of managers for a given employee,

|Se| ≤ n (11)

and O7 is the order of the time that takes to generate the rule (line [7]). We can

see the number of elements to be written in the PLTL program is clearly dominated

by |SM
ij |, which in turn is at most |Se| ≤ n and then

O7 = n (12)

From Eqs. (9), (10), (11) and (12) we have that O6 = n3 (Eq. (8)).

From Eqs. (5), (6), (7) and (8) we have that O3 = n4 (Eq. (4)).

From Eqs. (2), (3) and (4) we have that Ostep1 = n5 (Eq. (1)).

Due to space constraints we list just the other lemmas that have to be proved in

order to support our claim, omitting their proofs. The complete proof to our claim

can be seen in [3].

Lemma 2. Rules expressing subprocess prescriptions in manager states (see step

2 in Sec. 5.2) can be generated in O(n2). N

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 651

Lemma 3. Rules expressing state changes in manager processes (see step 3 in

Sec. 5.2) can be generated in O(n4). N

Lemma 4. Rules expressing state changes in manager processes (see step 4 in

Sec. 5.2) can be generated in O(n3). N

Lemma 5. Rules expressing initial conditions (see step 5 in Sec. 5.2) can be gen-

erated in O(n). N

From Lemmas 1, 2, 3, 4 and 5 it can be proved that the entire translation

algorithm runs in polynomial time. In fact, it is at most O(n5).

6. Model Verification

It is possible to link the output of our translation, a PLTL-based program, to a

procedure to verify correctness in the initial PARADIGM specification. Here we

show that well-known properties from the systems verification literature [17] can

be naturally associated to this translation. A later stage in our research will involve

linking this notion to the already available tools SPIN and STeP.

Before offering a number of examples for such properties, our notation must be

explained. Propositions vaAccountOK, vaAccountNotOK and vaNotVerifying are

true anytime verifyAccount (Fig. 9) remains on states AccountOK, AccountNotOK

and NotVerifying, respectively. Propositions cpVeryfing, cpChecked and

cpNotChecking are true anytime checkPIN (Fig. 3) remains on states Veryfing,

Checked and cpNotChecking, respectively. Propositions TcP4, TvA2 and TvA3 are

true anytime checkPIN (Fig. 5) and verifyAccount (Fig. 10) remain inside traps

T-cP4, T-vA2 and T-vA3, respectively. Proposition vAs2 is true anytime subprocess

verifyAccount s2 (Fig. 10) is prescribed.

Example 6. (A safety property) “Any account can be either accepted or rejected,

but it can never be in both states”

�¬(vaAccountOK∧ vaAccountNotOK)

Example 7. (A guarantee property) “It is possible that the ATM reports a PIN as

checked while BankComputer is still verifying it”

♦(cpChecked∧ vAs2)

Example 8. (Some response properties) “Whenever the system reaches the state

Verifying during the checkPIN stage of the procedure it eventually reaches the state

where the PIN is already Checked, i.e. all PIN verifications will eventually end.”

�(cpVerifying→ ♦cpChecked)

“If ATM requests BankComputer to verify a PIN, it always gets an answer, either

positive or negative”

�(TcP4 → ♦(TvA2 ∨ TvA3))

December 16, 2003 10:33 WSPC/117-ijseke 00149

652 J. C. Augusto & R. S. Gomez

Example 9. (A response/recurrence property) “The stage of verifying an account

implies to check whether the account is acceptable or not. After that step the process

is reinitiated.”

�(vaNotVerifying→ ♦((vaAccountOK∨ vaAccountNotOK) ∧ ♦vaNotVerifying))

Example 10. (A recurrence property) “The process of checking a PIN can be

cyclically invoked”

�(♦cpNotChecking∧ ♦¬cpNotChecking)

It can be seen that the verification process can be set, either at the more general

level of the functionality of the system (Examples 6, 9 and 10) or at a subtler level

of traps and subprocesses (Examples 7 and 8).

Our PLTL translation can be coupled more or less easily with a PLTL inter-

preter, e.g., ETP [7], to verify temporal properties. Other alternatives include the

consideration of systems like STeP and SPIN. As mentioned earlier, SPIN is based

on model checking. Because in this technique the space of possible states of the

global automata is explored the tool is restricted to finite state systems. On the

other hand highly efficient algorithms made this tool very successful for industrial

applications. STeP instead is a collection of tools mainly focused on a deductive

approach to verification, although it also provides model checking support. Being a

deductive system it can deal with infinite state specifications and hence, provides

better scalability than tools centered on state-exploration like SPIN.

However some further work must yet be done in order to link our proposal with

either STeP and SPIN, we think that our work on making explicit the temporal

relationships implicitly encoded in each PARADIGM specification may help to

accomplish future goals, like finding translations from PARADIGM to SPL. It is

our conjecture that Etessami’s work [10] to translate an extended version of Linear

Temporal Logic (LTL) to Buchi Automata can be useful to link our specification

language with other verification frameworks.

We found that PLTL is a flexible language where one can easily encode a wide

range of distinctive features of PARADIGM, e.g., those relating to traps and supro-

cesses. It is our conjecture that encoding these notions in other formalisms could

not be so straightforward. For example, the reader must notice that model checkers

cannot deal with formulas containing operators from the past fragment of PLTL.

Although the encoding of these notions in Fair Transition Systems, in the case of

STeP, or global automata, in the case of SPIN, is a matter of further research,

we nevertheless have learnt some important insights on the dynamic aspects of

PARADIGM -based specifications. They hopefully will allow us to take some other

steps in order to improve the verification techniques available to Knowledge and

Software Engineers using PARADIGM.

December 16, 2003 10:33 WSPC/117-ijseke 00149

A Procedure to Translate Paradigm Specifications 653

7. Conclusions and Further Work

We have introduced a translation process that takes a PARADIGM specification

as input and generates a Temporal Logic based program which expresses, from a

declarative approach, the dynamic behavior of such specification. This program can

be used to trace process interactions. Also, it can be seen as a database that can be

queried to verify a system. For example, classical properties such as guarantee, per-

sistence, response and others can be queried to verify the correctness of a particular

PARADIGM model. A translation algorithm based on set-manipulation primitives

has been presented, which can be proved to run in polynomial time.

The only related work we know about, [13], considers a transition-like opera-

tional semantics for PARADIGM. This semantics is argued to be useful to compare

different PARADIGM models, e.g., to prove equivalence relations. Like ours, this

semantics can be translated into an executable model and used for verification

purposes. However, to our current knowledge there is no translation procedure to

automatically obtain this semantics from a PARADIGM model.

A very interesting issue to be considered in further work involves rule enhance-

ment to model processes that are not always active, as is usually the case in real

systems. Translation could also be extended to express some constraints that are

not included in PARADIGM models but which usually affect the system dynamics.

For example, SOCCA models, which include PARADIGM models as a perspec-

tive of the system modelled, also provides information about the order in which

processes are actually called.

References

1. T. Arai and F. Stolzenburg, Multiagent Systems Specification by UML Statecharts

Aiming at Intelligent Manufacturing, Universität Koblenz-Landau, December 2001.
2. J. C. Augusto and R. S. Gómez, “A temporal logic view of paradigm specifications”,

Proc. Fourteenth Int. Conf. on Software Engineering and Knowledge Engineering

(SEKE’02), Ischia, Italy, July (2002) 497–503.
3. J. C. Augusto and R. S. Gómez, A Procedure to Translate Paradigm Spec-

ifications to PLTL and its Application to Verification, Technical Report.
http://www.ecs.soton.ac.uk/∼jca/Par2PLTL.pdf, January (2002).

4. B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, Ph. Schnoebelen
and P. McKenzie, Systems and Software Verification (Model Checking Techniques and

Tools), (Springer Verlag, 1999).
5. N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, B. Sipma and T. Uribe,

“Verifying temporal properties of reactive systems: A STeP tutorial”, Formal Methods

in System Design, 16 (1999) 227–270.
6. G. Brassard and P. Bratley, Fundamentals of Algorithmics (Prentice Hall, 1996).
7. M. L. Cobo and J. C. Augusto, “Logical Foundations and Implementation of an

Extension of Temporal Prolog”, Journal of Computer Science & Technology 1 (1999)
22–36.

8. T. de Buntje, G. Engels, L. Groenewegen and A. Matsinger, “Industrial maintenance
modelled in SOCCA”, in Proc. Fourth Int. Conf. on the Software Process, ed. Rijn-
beek (IEEE Computer Society Press, 1996) 13–26.

December 16, 2003 10:33 WSPC/117-ijseke 00149

654 J. C. Augusto & R. S. Gomez

9. J. Ebert, L. Groenewegen and R. Süttenbach, A Formalization of SOCCA, Technical
Report, Universität Koblenz-Landau, 1999, pp. 10–99.

10. K. Etessami, “Stutter-invariant languages, omega-automata, and temporal logic”, in
Proc. 11th Int. Conf. on Computer-Aided Verification, 1999, pp. 236–248.

11. R. Frozza and L. O. Alvares, “Criteria for the analysis of coordination in multi-agent
applications”, 5th Int. Conf. on Coordination Models and Languages, eds. F. Arbab
and C. L. Talcott, Lecture Notes in Computer Science 2315, Springer Verlag, April,
2002, pp. 158–165.

12. R. S. Gómez and J. C. Augusto and S. T. Acuña, “An algorithm to translate
PARADIGM specifications to PLTL in polynomial time”, Proc. 3rd Ibero-American

Symposium on Software Engineering and Knowledge Engineering (JIISIC ’03),
Valdivia, Chile, November (2003).

13. L. Groenewegen and E. de Vink, Operational Semantics for Coordination in
PARADIGM, in 5th Int. Conference on Coordination Models and Languages, eds.
F. Arbab and C. L. Talcott, LNCS 2315, Springer Verlag, April, 2002, pp. 191–206.

14. G. Holzmann, “The model checker SPIN”, IEEE Transactions on Software Engineer-

ing 23 (1997) 279–295.
15. S.s Yovine, “Kronos: A verification tool for real-time systems”, Springer International

Journal of Software Tools for Technology Transfer, 1997.
16. Z. Manna and A. Pnuelli, “The anchored version of the temporal framework”, Linear

Time, Branching Time and Partial Order in Logics and Models for Concurrency,
Springer Verlag, 1989, pp. 201–284.

17. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems

(Specification) (Springer Verlag, 1992).
18. A. Pnueli, “Deduction is forever”, invited talk at Formal Methods ’99, Toulouse,

France, September (1999).
19. C. Spruit, Adaptive Software Process Modelling with SOCCA and PARADIGM,

University of Leiden, 1995.
20. M. van Steen, L. Groenewegen, and G. Oosting, “Parallel control processes:

Modular parallelism and communication”, in Proc. Intelligent Autonomous Systems,
eds. Hertzberger and Groen, Amsterdam, The Netherlands, 1987, pp. 562–579.

21. A. Wulms, Blackboard Systems Modelled in SOCCA Technical Report, Universität
Koblenz-Landau, 1997.

