
Testing and Tracing Lazy Functional Programs

using QuickCheck and Hat

Koen Claessen1, Colin Runciman2,
Olaf Chitil2, John Hughes1, and Malcolm Wallace2

1 Chalmers University of Technology, Sweden
2 University of York, United Kingdom

1 Introduction

It is a very undesirable situation that today’s software often contains errors.
One motivation for using a functional programming language is that it is more
difficult (or even impossible) to make low-level mistakes, and it is easier to reason
about programs. But even the most advanced functional programmers are not
infallible; they misunderstand the properties of their own programs, or those of
others, and so commit errors.

We therefore aim to provide functional programmers with tools for testing and
tracing programs. In broad terms, testing means first specifying what behaviour
is acceptable in principle, then finding out whether behaviour in practice matches
up to it across the input space. Tracing means first recording the internal details
of a computation, then examining what is recorded to gain insight, to check
hypotheses or to locate faults. Although we have emphasised the motivation of
eliminating errors, tools for testing and tracing can often be useful even for pro-
grammers who rarely make mistakes. For example, the increased understanding
gained by testing and tracing can lead to improved solutions and better docu-
mentation.

In these lecture notes we concentrate on QuickCheck [3, 4], a tool for testing
Haskell programs, and Hat [15, 2], a tool for tracing them. Each tool is useful
in its own right but, as we shall see, they are even more useful in combination:
testing using QuickCheck can identify failing cases, tracing using Hat can reveal
the causes of failure.

Section 2 explains what QuickCheck is and how to use it. Section 3 similarly
explains Hat. Section 4 shows how to use QuickCheck and Hat in combination.
Section 5 outlines a much larger application than those of earlier sections, and
explains some techniques for testing and tracing more complex programs. Sec-
tion 6 discusses related work. Section 7 details almost twenty practical exercises.

Source programs and other materials for the examples and exercises in these
notes can be obtained from http://www.cs.york.ac.uk/fp/afp02/.

2 Claessen, Runciman et al.

2 Testing Programs with QuickCheck

In this section we give a short introduction to QuickCheck1, a system for speci-
fying and randomly testing properties of Haskell programs.

2.1 Testing and Testable Specifications

Testing is by far the most commonly used approach to ensuring software quality.
It is also very labour intensive, accounting for up to 50% of the cost of software
development. Despite anecdotal evidence that functional programs require some-
what less testing (‘Once it type-checks, it usually works’), in practice it is still a
major part of functional program development.

The cost of testing motivates efforts to automate it, wholly or partly. Automatic
testing tools enable the programmer to complete testing in a shorter time, or to
test more thoroughly in the available time, and they make it easy to repeat tests
after each modification to a program.

Functional programs are well suited to automatic testing. It is generally accepted
that pure functions are much easier to test than side-effecting ones, because one
need not be concerned with a state before and after execution. In an imperative
language, even if whole programs are often pure functions from input to output,
the procedures from which they are built are usually not. Thus relatively large
units must be tested at a time. In a functional language, pure functions abound
(in Haskell, only computations in the IO monad are hard to test), and so testing
can be done at a fine grain.

A testing tool must be able to determine whether a test is passed or failed;
the human tester must supply a passing criterion that can be automatically
checked. We use formal specifications for this purpose. QuickCheck comes with a
simple domain-specific language of testable specifications which the tester uses to
define expected properties of the functions under test. It is then checked that the
properties hold in a large number of cases. We call these testable specifications
properties. The specification language is embedded in Haskell using the class
system. This means that properties are just normal Haskell functions which can
be understood by any Haskell compiler or interpreter. Property declarations are
either written in the same module as the functions they test, or they can be
written in a separate Haskell module, importing the functions they test, which
is the preferred way we use in these notes. Either way, properties serve also as
checkable documentation of the behaviour of the code.

A testing tool must also be able to generate test cases automatically. Quick-

Check uses the simplest method, random testing, which competes surprisingly
favourably with systematic methods in practice. However, it is meaningless to
talk about random testing without discussing the distribution of test data. Ran-
dom testing is most effective when the distribution of test data follows that
1 Available from http://www.cs.chalmers.se/~rjmh/QuickCheck/

Testing and Tracing 3

of actual data, but when testing reusable code units as opposed to whole sys-
tems this is not possible, since the distribution of actual data in all subsequent
reuses is not known. A uniform distribution is often used instead, but for data
drawn from infinite sets this is not even meaningful! In QuickCheck, distribution
is put under the human tester’s control, by defining a test data generation lan-

guage (also embedded in Haskell), and a way to observe the distribution of test
cases. By programming a suitable generator, the tester can not only control the
distribution of test cases, but also ensure that they satisfy arbitrarily complex
invariants.

2.2 Defining Properties

As a first example, we are going to test the standard function reverse which
reverses a list. This function satisfies a number of useful laws, such as:

reverse [x] = [x]

reverse (xs++ys) = reverse ys++reverse xs

reverse (reverse xs) = xs

(In fact, the first two of these characterise reverse uniquely.)

Note that these laws hold only for finite, total values. In all QuickCheck prop-
erties, unless specifically stated otherwise, we quantify over completely defined
finite values.

In order to check such laws using QuickCheck, we represent them as Haskell
functions. To represent the second law for example, we write:

prop_RevApp xs ys = reverse (xs++ys) == reverse ys ++ reverse xs

We use the convention that property function names always start with the pre-
fix prop . Nevertheless, prop RevApp is still a normal Haskell function. If this
function returns True for every possible argument, then the properties hold.
However, in order for us to actually test this property, we need to know on what
type to test it! We do not know this yet since the function prop RevApp has a
polymorphic type. Thus the programmer must specify a fixed type at which the
property is to be tested. So we simply give a type signature for each property,
for example:

prop_RevApp :: [Int] -> [Int] -> Bool

prop_RevApp xs ys = reverse (xs++ys) == reverse ys ++ reverse xs

Lastly, to access the library of functions that we can use to define and test
properties, we have to include the QuickCheck module. Thus we add

import QuickCheck2

4 Claessen, Runciman et al.

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : y : ys

else y : insert x ys

Fig. 1. An insertion-sort program.

at the top of our module. QuickCheck2 is a special version of QuickCheck with
a facility to interoperate with the tracing tools (explained in Section 4).

Now we are ready to test the above property! We load our module into a Haskell
system (we use GHCi in these notes), and call for example:

Main> quickCheck prop_RevApp

OK, passed 100 successful tests.

The function quickCheck takes a property as an argument and applies it to a
large number of randomly generated arguments — 100 by default — reporting
“OK” if the result is True in every case.

If the law fails, then quickCheck reports the counter-example. For example, if
we mistakenly define

prop_RevApp :: [Int] -> [Int] -> Bool

prop_RevApp xs ys = reverse (xs++ys) == reverse xs++reverse ys

then checking the property might produce

Main> quickCheck prop_RevApp

Falsifiable, after 1 successful tests:

[2]

[-2,1]

where the counter model can be reconstructed by taking [2] for xs (the first
argument of the property), and [-2,1] for ys (the second argument). We will
later see how we can use tracing to see what actually happens with the functions
in a property when running it on a failing test case.

2.3 Introducing Helper Functions

Take a look at the insertion sort implementation in Figure 1. Let us design a
test suite to test the functions in that implementation.

First, we test the function sort. A cheap way of testing a new implementation
of a sorting algorithm is to use an existing implementation which we trust. We

Testing and Tracing 5

say that our function sort produces the same result as the standard function
sort which comes from the List module in Haskell.

import qualified List

prop_SortIsSort :: [Int] -> Bool

prop_SortIsSort xs = sort xs == List.sort xs

But what if we do not trust the implementation of the standard sort either?
Then, we have to come up with properties that say when exactly a function is a
sorting function. A function sorts if and only if: (1) the output is ordered, and
(2) the output has exactly the same elements as the input.

To specify the first property, we need to define a helper function ordered which
checks that a given list is ordered.

ordered :: Ord a => [a] -> Bool

ordered [] = True

ordered [x] = True

ordered (x:y:xs) = (x <= y) && ordered (y:xs)

Then, the orderedness property for sort is easy to define:

prop_SortOrdered :: [Int] -> Bool

prop_SortOrdered xs = ordered (sort xs)

For the second property, we also need to define a helper function, namely one
that checks if two lists have the same elements.

sameElems :: Eq a => [a] -> [a] -> Bool

[] ‘sameElems‘ [] = True

(x:xs) ‘sameElems‘ ys = (x ‘elem‘ ys) &&

(xs ‘sameElems‘ (ys \\ [x]))

_ ‘sameElems‘ _ = False

The second sorting property is then rather easy to define too:

prop_SortSameElems :: [Int] -> Bool

prop_SortSameElems xs = sort xs ‘sameElems‘ xs

2.4 Conditional Properties and Quantification

It is good to define and test properties for many functions involved in an im-
plementation rather than just, say, the top-level functions. Applying such fine
grained testing makes it more likely to find mistakes.

So, let us think about the properties of the function insert, and assume we do
not have another implementation of it which we trust. The two properties that

6 Claessen, Runciman et al.

should hold for a correct insert function are: (1) if the argument list is ordered,
so should the result list be, and (2) the elements in the result list should be the
same as the elements in the argument list plus the first argument.

We can specifying the second property in a similar way to the property for sort
defined earlier:

prop_InsertSameElems :: Int -> [Int] -> Bool

prop_InsertSameElems x xs = insert x xs ‘sameElems‘ (x:xs)

However, if we try to express the first property, we immediately run into prob-
lems. It is not just a simple equational property, but a conditional property.
QuickCheck provides an implication combinator, written ==>, to represent such
conditional laws. Using implication, the first property for the insertion function
can be expressed as:

prop_InsertOrdered :: Int -> [Int] -> Property

prop_InsertOrdered x xs = ordered xs ==> ordered (insert x xs)

Testing such a property works a little differently. Instead of checking the property
for 100 random test cases, we try checking it for 100 test cases satisfying the

condition. If a candidate test case does not satisfy the condition, it is discarded,
and a new test case is tried. So, when a property with an implication successfully
passes 100 test cases, we are sure that all of them actually satisfied the left hand
side of the implication.

Note that the result type of a conditional property is changed from Bool to
Property. This is because the testing semantics is different for conditional laws.

Checking prop_InsertOrdered succeeds as usual, but sometimes, checking a
conditional property produces an output like this:

Arguments exhausted after 64 tests.

If the precondition of a law is seldom satisfied, then we might generate many
test cases without finding any where it holds. In such cases it is hopeless to
search for 100 cases in which the precondition holds. Rather than allow test case
generation to run forever, we generate only a limited number of candidate test
cases (the default is 1000). If we do not find 100 valid test cases among those
candidates, then we simply report the number of successful tests we were able
to perform. In the example, we know that the law passed the test in 64 cases.
It is then up to the programmer to decide whether this is enough, or whether it
should be tested more thoroughly.

2.5 Monitoring Test Data

Perhaps it seems that the implication operator has solved our problems, and
that we are happy with the property prop InsertOrdered. But have we really
tested the law for insert thoroughly enough to establish its credibility?

Testing and Tracing 7

Let us take a look at the distribution of test cases in the 100 tests that we per-
formed on prop InsertOrdered, by modifying prop_InsertOrdered as follows:

prop_InsertOrdered :: Int -> [Int] -> Property

prop_InsertOrdered x xs = ordered xs ==>

classify (null xs) "trivial" $

ordered (insert x xs)

Checking the law now produces the message

OK, passed 100 successful tests (43% trivial).

The QuickCheck combinator classify does not change the logical meaning of
a law, but it classifies some of the test cases. In this case those where xs is the
empty list were classified as “trivial”. Thus we see that a large proportion of the
test cases only tested insertion into an empty list.

We can do more than just labelling some test cases with strings. The combinator
collect gathers all values that are passed to it, and prints out a histogram of
these values. For example, if we write:

prop_InsertOrdered :: Int -> [Int] -> Property

prop_InsertOrdered x xs = ordered xs ==>

collect (length xs) $

ordered (insert x xs)

we might get as a result:

OK, passed 100 successful tests.

40% 0.

31% 1.

19% 2.

8% 3.

2% 4.

So we see that only 29 (=19+8+2) cases tested insertion into a list with more
than one element. While this is enough to provide fairly strong evidence that
the property holds, it is worrying that very short lists dominate the test cases
so strongly. After all, it is easy to define an erroneous version of insert which
nevertheless works for lists with at most one element.

The reason for this behaviour, of course, is that the precondition ordered xs

skews the distribution of test cases towards short lists. Every generated list of
length 0 or 1 is ordered, but only 50% of the lists of length 2 are ordered, and
not even 1% of all lists of length 5 are ordered. Thus test cases with longer
lists are more likely to be rejected by the precondition. There is a risk of this
kind of problem every time we use conditional laws, so it is always important to
investigate the proportion of trivial cases among those actually tested.

8 Claessen, Runciman et al.

It is comforting to be able to monitor the test data, and change the definition
of our properties if we find the distribution too biased. The best solution in this
case is to replace the condition with a custom test data generator for ordered
lists. We write

prop_InsertOrdered :: Int -> Property

prop_InsertOrdered x = forAll orderedList $ \xs ->

ordered (insert x xs)

which specifies that values for xs should be generated by the test data gen-
erator orderedList. This test data generator can make sure that the lists in
question are ordered and have a more reasonable distribution. Checking the law
now gives “OK, passed 100 successful tests”, as we would expect. Quick-

Check provides support for the programmer to define his or her own test data
generators, with control over the distribution of test data, which we will look at
next.

2.6 Test Data Generation

So far, we have not said anything about how test data is generated. The way we
generate random test data of course depends on the type. Therefore, QuickCheck

provides a type class Arbitrary, of which a type is an instance if we know how
to generate arbitrary elements in it.

class Arbitrary a where

arbitrary :: Gen a

Gen a is an abstract type representing a generator for type a. The programmer
can either use the generators built in to QuickCheck as instances of this class, or
supply a custom generator using the forAll combinator, which we saw in the
previous section.

Since we will treat Gen as an abstract type, we define a number of primitive
functions to access its functionality. The first one is:

choose :: (Int, Int) -> Gen Int

This function chooses a random integer in an interval with a uniform distribution.
We program other generators in terms of it.

We also need combinators to build complex generators from simpler ones; to
do so, we declare Gen to be an instance of Haskell’s class Monad. This involves
implementing the methods of the Monad class:

return :: a -> Gen a

(>>=) :: Gen a -> (a -> Gen b) -> Gen b

Testing and Tracing 9

The first method constructs a constant generator, i.e. return x always generates
the same value x; the second method is the monadic sequencing operator, i.e. g
>>= k first generates an a using g, and passes it to k to generate a b.

Monads are heavily used in Haskell, and there are many useful overloaded stan-
dard functions which work with any monad; there is even syntactic sugar for
monadic sequencing (the do notation). By making generators into a monad, we
are able to use all of these features to construct them.

Defining generators for many types is now straightforward. As examples, we give
generators for integers and pairs:

instance Arbitrary Int where

arbitrary = choose (-20, 20)

instance (Arbitrary a, Arbitrary b) => Arbitrary (a,b) where

arbitrary =

do a <- arbitrary

b <- arbitrary

return (a,b)

QuickCheck contains such declarations for most of Haskell’s predefined types.

Looking at the instance of pairs above, we see a pattern that occurs frequently. In
fact, Haskell provides a standard operator liftM2 for this pattern. An alternative
way of writing the instance for pairs is:

instance (Arbitrary a, Arbitrary b) =>

Arbitrary (a,b) where

arbitrary = liftM2 (,) arbitrary arbitrary

We will use this programming style later on too.

Since we define test data generation via an instance of class Arbitrary for each
type, then we must rely on the user to provide instances for user-defined types.

Instead of producing generators automatically, we provide combinators to enable
a programmer to define his own generators easily. The simplest, called oneof, just
makes a choice among a list of alternative generators with a uniform distribution.

For example, a suitable generator for booleans could be defined by:

instance Arbitrary Bool where

arbitrary = oneof [return False, return True]

As another example, we could generate arbitrary lists using

instance Arbitrary a => Arbitrary [a] where

arbitrary = oneof

[return [], liftM2 (:) arbitrary arbitrary]

10 Claessen, Runciman et al.

where we use liftM2 to apply the cons operator (:) to an arbitrary head and
tail. However, this definition is not really satisfactory, since it produces lists
with an average length of one element. We can adjust the average length of list
produced by using frequency instead, which allows us to specify the frequency
with which each alternative is chosen. We define

instance Arbitrary a => Arbitrary [a] where

arbitrary = frequency

[(1, return [])

, (4, liftM2 (:) arbitrary arbitrary)

]

to choose the cons case four times as often as the nil case, leading to an average
list length of four elements.

2.7 Generators with Size

Suppose we have the following datatype of binary trees and the operations size
and flatten:

data Tree a = Leaf a

| Branch (Tree a) (Tree a)

deriving (Show)

size :: Tree a -> Int

size (Leaf a) = 1

size (Branch s t) = size s + size t

flatten :: Tree a -> [a]

flatten (Leaf a) = [a]

flatten (Branch s t) = flatten s ++ flatten s

An obvious property we would like to hold is that the length of a list which is a
flattened tree should be the same as the size of the tree. Here it is:

prop_SizeFlatten :: Tree Int -> Bool

prop_SizeFlatten t = length (flatten t) == size t

However, to test this property in QuickCheck, we need to define our own test
data generator for trees. Here is our first try:

instance Arbitrary a => Arbitrary (Tree a) where

arbitrary = frequency -- wrong!

[(1, liftM Leaf arbitrary)

, (2, liftM2 Branch arbitrary arbitrary)

]

Testing and Tracing 11

We want to avoid choosing a Leaf too often (to avoid small trees), hence the
use of frequency.

However, this definition only has a 50% chance of terminating! The reason is
that for the generation of a Branch to terminate, two recursive generations must
terminate. If the first few recursions choose Branches, then generation terminates
only if very many recursive generations all terminate, and the chance of this is
small. Even when generation terminates, the generated test data is sometimes
very large. We want to avoid this: since we perform a large number of tests, we
want each test to be small and quick.

Our solution is to limit the size of generated test data. But the notion of a
size is hard even to define in general for an arbitrary recursive datatype (which
may include function types anywhere). We therefore give the responsibility for
limiting sizes to the programmer defining the test data generator. We define a
new combinator

sized :: (Int -> Gen a) -> Gen a

which the programmer can use to access the size bound: sized generates an a by
passing the current size bound to its parameter. It is then up to the programmer
to interpret the size bound in some reasonable way during test data generation.
For example, we might generate binary trees using

instance Arbitrary a => Arbitrary (Tree a) where

arbitrary = sized arbTree

where

arbTree n = frequency $

[(1, liftM Leaf arbitrary)

] ++

[(4, liftM2 Branch arbTree2 arbTree2)

| n > 0

]

where

arbTree2 = arbTree (n ‘div‘ 2)

With this definition, the size bound limits the number of nodes in the generated
trees, which is quite reasonable.

We can now test the property about size and flatten:

Main> quickCheck prop_SizeFlatten

Falsifiable, after 3 successful tests:

Branch (Branch (Leaf 0) (Leaf 3)) (Leaf 1)

The careful reader may have previously noticed the mistake in the definition of
flatten which causes this test to fail.

Now that we have introduced the notion of a size bound, we can use it sensibly
in the generators for other types such as integers (with absolute value bounded

12 Claessen, Runciman et al.

by the size) and lists (with length bounded by the size). So the definitions we
presented earlier need to be modified accordingly. For example, to generate ar-
bitrary integers, QuickCheck really uses the following default generator:

instance Arbitrary Int where

arbitrary = sized (\n -> choose (-n, n))

We stress that the size bound is simply an extra, global parameter which every
test data generator may access; every use of sized sees the same bound. We do
not attempt to ‘divide the size bound among the generators’, so that for example
a longer generated list would have smaller elements, keeping the overall size of
the structure the same. The reason is that we wish to avoid correlations between
the sizes of different parts of the test data, which might distort the test results.

We do vary the size between different test cases: we begin testing each property
on small test cases, and then gradually increase the size bound as testing pro-
gresses. This makes for a greater variety of test cases, which both makes testing
more effective, and improves our chances of finding enough test cases satisfying
the precondition of conditional properties. It also makes it more likely that we
will find a small counter example to a property, if there is one.

3 Tracing Programs with Hat

In this section we give a basic introduction to the Hat tools2 for tracing Haskell
programs.

3.1 Traces and Tracing Tools

Without tracing, programs are like black boxes. We see only their input-output
behaviour. To understand this behaviour our only resort is the static text of
a program, and it is often not enough. We should like to see the component
functions at work, the arguments they are given and the results they return. We
should like to see how their various applications came about in the first place.
The purpose of tracing tools like Hat is to give us access to just this kind of
information that is otherwise invisible.

For more than 20 years researchers have been proposing ways to build tracers
for lazy higher-order functional languages. Sadly, most of their work has never
been widely used, because it has been done for locally used implementations
of local dialect languages. A design-goal for Haskell was to solve the language-
diversity problem. The problem will always persist to some degree, but Haskell
is the nearest thing there is to a standard lazy functional language. Now the
challenge is to build an effective tracer for it, depending as little as possible on
the machinery of specific compilers or interpreters.
2 Available from http://www.cs.york.ac.uk/fp/hat/.

Testing and Tracing 13

Tracers for conventional languages enable the user to step through a computa-
tion, stopping at selected points to examine variables. This approach is not so
helpful for a lazy functional language where the order of evaluation is not the
order of appearance in a source program, and in mid computation variables may
be bound to complex-looking unevaluated expressions. Like some of its prede-
cessors, Hat is instead based on derivation graphs for complete computations.
This representation liberates us from the time-arrow of execution. For example,
all arguments and results can be shown in the most fully evaluated form that
they ever attain. The established name for this technique is strictification, but
this name could be misleading: we do not force functions in the traced program
into strict variants; all the lazy behaviour of the normally-executed program is
preserved.

When we compile a program for tracing it is automatically transformed by a pre-
processor called hat-trans into a self-tracing variant. The transformed program
is still in Haskell, not some private intermediate language, so that Hat can be
ported between compilers. When we run the transformed program, in addition
to the I/O behaviour of the original, it generates a graph-structured trace of
evaluation called a redex trail. The trace is written to file as the computation
proceeds. Trace files contain a lot of detail and they can be very large — tens or
even hundreds of megabytes. So we should not be surprised if traced programs
run much less quickly than untraced ones, and we shall need tools to select and
present the key fragments of traces in source-level terms.

There are several Hat tools for examining traces, but in these notes we shall
look at the two used most: hat-trail and hat-observe. As a small illustrative
application we take sorting the letters of the word ‘program’ using insertion sort.
That is, to the definitions of Figure 1 we now add

main = putStrLn (sort "program")

to make a source program Insort.hs. At first we shall trace the working pro-
gram; later we shall look at a variant BadInsort.hs with faults deliberately
introduced.

3.2 Hat Compilation and Execution

To use Hat, we first compile the program to be traced, giving the -hat option
to hmake:

$ hmake -hat Insort

hat-trans Insort.hs

Wrote TInsort.hs

ghc -package hat -c -o TInsort.o TInsort.hs

ghc -package hat -o Insort TInsort.o

A program compiled for tracing can be executed just as if it had been compiled
normally.

14 Claessen, Runciman et al.

$ Insort

agmoprr

The main difference from untraced execution is that as Insort runs it records
a detailed trace of its computation in a file Insort.hat. The trace is a graph
of program expressions encoded in a custom binary format. Two further files
Insort.hat.output and Insort.hat.bridge record the output and associated
references to the trace file. Trace files do not include program sources, but they
do include references to program sources, so modifying source files may invalidate

existing traces.

3.3 Hat-trail: Basics

After we have run a program compiled for tracing, creating a trace file, we can
use Hat tools to examine the trace. The first such tool we shall look at is hat-
trail. The idea of hat-trail is to answer the question ‘Where did that come from?’
in relation to the values, expressions, outputs and error messages that occur in
a traced computation. The immediate answer will be a parent application or
name. More specifically:

– errors: the application or name being reduced when the error occurred (eg.
head [] might be the parent of a pattern-match failure);

– outputs: the monadic action that caused the output (eg. putStr "Hello

world" might the parent of a section of output text);
– non-value expressions: the application or name whose defining body contains

the expression of which the child is an instance (eg. insert 6 [3] might be
the parent of insert 6 []);

– values: as for non-value expressions, or the application of a predefined func-
tion with the child as result (eg. [1,2]++[3,4] might be the parent of
[1,2,3,4]).

Parent expressions, and their subexpressions, may in turn have parents of their
own. The tool is called hat-trail because it displays trails of ancestral redexes,
tracing effects back to their causes.

We can think of redex trails as a generalisation of the stack back-traces for
conventional languages, showing the dynamically enclosing call-chain leading
to a computational event. Because of lazy evaluation, the call-stack may not
actually exist when the event occurs, but there is sufficient information in a
Hat trace to reconstruct it. When we are tracing the origins of an application
using hat-trail we have five choices: we can trace the ancestry not only of (1) the
application itself, as in a stack back-trace, but also of (2) the function, or (3)
an argument — or indeed, any subexpression of these. We can also ask to see
a relevant extract of the source program: either (4) the expression of which the
application is an instance, or (5) the definition of the function being applied.

Testing and Tracing 15

Hat-trail sessions and requests We can start a hat-trail session from a shell
command line, or from within existing sessions of hat tools. If we give the shell
command

$ hat-trail Insort

a new window appears with an upper part headed Output and a lower part
headed Trail:

Output: ---

agmoprr\n

Trail: ------ hat-trail 2.00 (:h for help, :q to quit) -------

The line of output is highlighted3 because it is the current selection.

Requests in hat-trail are of two kinds. Some are single key presses with an
immediate response; others are command-lines starting with a colon and only
acted upon when completed by keying return. A basic repertoire of single-key
requests is:

return add to the trail the parent expression of the current selection
backspace remove the last addition to the trail display
arrow keys select (a) parts of the output generated by different actions, or

(b) subexpressions of expressions already on display

And a basic repertoire of command-line requests is:

:source show the source expression of which the current selection is an
instance

:quit finish this hat-trail session

It is enough to give initial letters, :s or :q, rather than :source or :quit.

Some insertion-sort trails To trace the output from the Insort computation,
we key return and the Trail part of the display becomes:

Trail: ----------------------- Insort.hs line: 10 col: 8 ------

<- putStrLn "agmoprr"

The source reference is to the corresponding application of putStrLn in the
program. If we give the command :s at this point, a separate source window
shows the relevant extract of the program. We can only do two things with a
source window: (1) look at it; (2) close it. Tracing with Hat does not involve
annotating or otherwise modifying program sources.

Back to the Trail display. We key return again:
3 In these notes, highlighted text or expressions are shown boxed; the Hat tools actually

use colour for highlighting.

16 Claessen, Runciman et al.

Trail: ----------------------- Insort.hs line: 10 col: 1 ------

<- putStrLn "agmoprr"

<- main

That is, the line of output was produced by an application of putStrLn occurring
in the body of main.

So far, so good; but what about the sorting? How do we see where putStr’s string
argument "agmoprr" came from? By making that string the current selection
and requesting its parent:

backspace (removes main),
right-arrow (selects putStrLn),
right-arrow (selects "agmoprr"),
return (requests parent expression)

Trail: ----------------------- Insort.hs line: 7 col: 19 -----

<- putStrLn "agmoprr"

<- insert ’p’ "agmorr" | if False

The | symbol here is a separator between a function application and the trace
of a conditional or case expression that was evaluated in its body; guards are
shown in a similar way. The string "agmoprr" is the result of inserting ’p’, the
head of the string "program", into the recursively sorted tail. More specifically,
the string was computed in the else-branch of the conditional by which insert

is defined in the recursive case (because ’p’ <= ’a’ is False).

And so we could continue. For example, following the trail of string arguments:

<- insert ’p’ "agmorr" | if False

<- insert ’r’ "agmor" | if False

<- insert ’o’ "agmr" | if False

<- insert ’g’ "amr" | if False

<- insert ’r’ "am" | if False

<- insert ’a’ "m" | if True

<- insert ’m’ []

But let’s leave hat-trail for now.

:quit

Testing and Tracing 17

3.4 Hat-observe: Basics

The idea of hat-observe is to answer the question ‘To which arguments, if any,
was that applied, and with what results?’, mainly in relation to a top-level func-
tion. Answers take the form of a list of equational observations, showing for each
application of the function to distinct arguments what result was computed. In
this way hat-observe can present all the needed parts of an extensional spec-
ification for each function defined in a program. We also have the option to
limit observations to particular patterns of arguments or results, or to particular
application contexts.

Hat-observe sessions and requests We can start a hat-observe session from a
shell command line, or from within an existing session of a Hat tool.

$ hat-observe Insort

hat-observe 2.00 (:h for help, :q to quit)

hat-observe>

In comparison with hat-trail, there is more emphasis on command-lines in hat-
observe, and the main user interface is a prompt-request-response cycle. Requests
are of two kinds. Some are observation queries in the form of application patterns:
the simplest observation query is just the name of a top-level function. Others
are command-lines, starting with a colon, similar to those of hat-trail. A basic
repertoire of command-line requests is

:info list the names of functions and other defined values that can be
observed, with application counts

:quit finish this hat-observe session

Again it is enough to give the initial letters, :i or :q.

Some insertion-sort observations We often begin a hat-observe session with an
:info request, followed by initial observation of central functions.

hat-observe> :info

19 <= 21 insert 1 main 1 putStrLn 8 sort

hat-observe> sort

1 sort "program" = "agmoprr"

2 sort "rogram" = "agmorr"

3 sort "ogram" = "agmor"

4 sort "gram" = "agmr"

5 sort "ram" = "amr"

6 sort "am" = "am"

7 sort "m" = "m"

8 sort [] = []

18 Claessen, Runciman et al.

Here the number of observations is small. Larger collections of observations are
presented in blocks of ten (by default).

hat-observe> <=

1 ’a’ <= ’m’ = True

2 ’r’ <= ’a’ = False

3 ’g’ <= ’a’ = False

4 ’o’ <= ’a’ = False

5 ’p’ <= ’a’ = False

6 ’r’ <= ’m’ = False

7 ’g’ <= ’m’ = True

8 ’o’ <= ’g’ = False

9 ’r’ <= ’g’ = False

10 ’p’ <= ’g’ = False

--more-->

If we key return in response to --more-->, the next block of observations ap-
pears. Alternatively, we can make requests in the colon-command family. Any
other line of input cuts short the list of reported observations in favour of a fresh
hat-observe> prompt.

--more--> n

hat-observe>

Observing restricted patterns of applications Viewing a block at a time is not the
only way of handling what may be a large number of applications. We can also
restrict observations to applications in which specific patterns of values occur as
arguments or result, or to applications in a specific context. The full syntax for
observation queries is

identifier pattern* [= pattern] [in identifier]

where the * indicates that there can be zero or more occurrences of an argument
pattern and the [...] indicate that the result pattern and context are optional.
Patterns in observation queries are simplified versions of constructor patterns
with _ as the only variable. Some examples for the Insort computation:

hat-observe> insert ’g’ _

1 insert ’g’ "amr" = "agmr"

2 insert ’g’ "mr" = "gmr"

hat-observe> insert _ _ = [_]

1 insert ’m’ [] = "m"

2 insert ’r’ [] = "r"

hat-observe> sort in main

1 sort "program" = "agmoprr"

hat-observe> sort in sort

Testing and Tracing 19

sort :: Ord a => [a] -> [a]

-- FAULT (1): missing equation for [] argument

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y

-- FAULT (2): y missing from result

then x : ys

-- FAULT (3): recursive call is same

else y : insert x (y:ys)

main = putStrLn (sort "program")

Fig. 2. BadInsort.hs, a faulty version of the insertion-sort program.

1 sort "rogram" = "agmorr"

2 sort "ogram" = "agmor"

3 sort "gram" = "agmr"

4 sort "ram" = "amr"

5 sort "am" = "am"

6 sort "m" = "m"

7 sort [] = []

Enough on hat-observe for now.

hat-observe> :quit

3.5 Tracing Faulty Programs

We have seen so far some of the ways in which Hat tools can be used to trace a
correctly working program. But a common and intended use for Hat is to trace
a faulty program with the aim of locating the source of the faults. A faulty
computation has one of three outcomes: (1) termination with a run-time error,
or (2) termination with incorrect output, or (3) non-termination.

A variant of Insort given in Figure 2 contains three deliberate mistakes, each
of which alone would cause a different kind of fault, as indicated by comments.
In the following sections we shall apply the Hat tools to examine the faulty
program, as if we didn’t know in advance where the mistakes were.

Tracing a Run-time Error We compile the faulty program for tracing, then
run it:

$ hmake -hat BadInsort

...

$ BadInsort

No match in pattern.

20 Claessen, Runciman et al.

Using hat-trail We can easily trace the immediate cause of the error message,
which hat-trail displays as a starting point. We key return once to see the erro-
neous application, then again to see its parent application:

$ hat-trail BadInsort

Error: --

No match in pattern.

Trail: ------------------- BadInsort.hs line: 3 col: 25 -------

<- sort []

<- sort "m"

This information can be supplemented by reference to the source program. With
sort [] selected, we can give the :source command to see the site of the
offending application in the recursive equation for sort. If necessary we could
trace the ancestry of the [] argument or the sort application.

Using hat-observe Although hat-trail is usually our first resort for tracing run-
time errors, it is instructive to see what happens if instead we try using hat-
observe.

$ hat-observe BadInsort

hat-observe 2.00 (:h for help, :q to quit)

hat-observe> :info

7+0 insert 1 main 1 putStrLn 1+7 sort

What do the M+N counts for insert and sort mean? M is the number of
applications that never got beyond a pattern-matching stage involving evaluation
of arguments; N is the number of applications that were actually reduced to an
instance of the function body. Applications are only counted at all if their results
were demanded during the computation. Where a count is shown as a single
number, it is the count N of applications actually reduced, and M = 0.

In the BadInsort computation, we see there are fewer observations of insert
than there were in the correct Insort computation, and no observations at all
of <=. How can that be? What is happening to ordered insertion?

hat-observe> insert

1 insert ’p’ _|_ = _|_

2 insert ’r’ _|_ = _|_

3 insert ’o’ _|_ = _|_

4 insert ’g’ _|_ = _|_

5 insert ’a’ _|_ = _|_

6 insert ’m’ _|_ = _|_

Testing and Tracing 21

The symbol _|_ here is an ASCII approximation to ⊥ and indicates an unde-
fined value. Reading the character arguments vertically "program" seems to be
misspelt: is there an observation missing between 4 and 5? There are in fact
two separate applications insert ’r’ _|_ = _|_, but duplicate observations
are not listed (by default).

The insert observations explain the fall in application counts. In all the ob-
served applications, the list arguments are undefined. So neither of the defining
equations for insert is ever matched, there are no <= comparisons (as these oc-
cur only in the right-hand side of the second equation) and of course no recursive
calls.

Why are the insert arguments undefined? They should be the results of sort
applications.

hat-observe> sort

1 sort "program" = _|_

2 sort "rogram" = _|_

3 sort "ogram" = _|_

4 sort "gram" = _|_

5 sort "ram" = _|_

6 sort "am" = _|_

7 sort "m" = _|_

8 sort [] = _|_

Though all the sort results are _|_, the reason is not the same in every case.
Observations 1 to 7 show applications of sort that reduced to applications of
insert, and as we have already observed, every insert result is _|_4. Obser-
vation 8 is an application that does not reduce at all; it also points us to the
error.

Tracing a Non-terminating Computation Suppose we correct the first
fault, by restoring the equation:

sort [] = []

Now the result of running BadInsort is a non-terminating computation, with
an infinite string aaaaaaa... as output. It seems that BadInsort has entered
an infinite loop. The computation can be interrupted5 by keying control-C.

$ BadInsort

Program interrupted. (^C)

aaa$

4 This insight requires knowledge of the program beyond the listed applications in hat-
observe: for example, it could be obtained by a linked use of hat-trail (see Section 3.6)

5 When non-termination is suspected, interrupt as quickly as possible to avoid working
with very large traces.

22 Claessen, Runciman et al.

Using hat-trail The initial hat-trail display is:

Error: --

Program interrupted. (^C)

Output: ---

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...

We have a choice. We can follow the trail back either from the point of interrup-
tion (the initial selection) or from the output (reached by down-arrow). In this
case, it makes little difference6; either way we end up examining the endless list
of ’a’s. Let’s select the output:

Output: ---

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa...

Trail: ----------------- BadInsort.hs line: 7 col: 19 ---------

<- putStrLn "aaaaaaaa..."

<- insert ’p’ (’a’:) | if False

Notice two further features of expression display:

– the ellipsis ... in the string argument to putStrLn indicates the tail-end of
a long string that has been pruned from the display;

– the symbol _ in the list argument to insert indicates an expression that
was never evaluated.

The parent application insert ’p’ (’a’:_) | if False gives us several im-
portant clues. It tells us that in the else-branch of the recursive case in the
definition of insert the argument’s head (here ’a’) is duplicated endlessly to
generate the result without ever demanding the argument’s tail. This tells us
enough to discover the fault if we didn’t already know it.

Using hat-observe Once again, let us also see what happens if we use hat-observe.

hat-observe> :info

78 <= 1+83 insert 1 main 1 putStrLn 8 sort

The high counts for <= and insert give us a strong clue: as <= is primitively
defined, we immediately suspect insert.

hat-observe> insert

1 insert ’p’ (’a’:_) = "aaaaaaaaaa..."

6 However, the trace from point of interruption depends on the timing of the interrupt.

Testing and Tracing 23

2 insert ’r’ (’a’:_) = ’a’:_

3 insert ’o’ (’a’:_) = ’a’:_

4 insert ’g’ (’a’:_) = ’a’:_

5 insert ’a’ "m" = "a"

6 insert ’m’ [] = "m"

searching ... (^C to interrupt)

{Interrupted}

Many more observations would eventually be reported because hat-observe lists
each observation that is distinct from those listed previously. When the compu-
tation is interrupted there are many different applications of the form insert

’p’ (’a’:_) in progress, each with results evaluated to a different extent.

But observation 1 is enough. As the tail of the argument is unevaluated, the
result would be the same whatever the tail. For example, it could be []; so
we know insert ’p’ "a" = "aaaa...". This specific and simple failing case
directs us to the fault in the definition of insert.

Tracing Wrong Output We correct the recursive call from insert x (y:ys)

to insert x ys, recompile, then execute.

$ BadInsort

agop

Using hat-observe Once again, we could reach first for hat-trail to trace the fault,
but the availability of a well-defined (but wrong) result also suggests a possible
starting point in hat-observe:

hat-observe> insert _ _ = "agop"

1 insert ’p’ "agor" = "agop"

Somehow, insertion loses the final element ’r’. We should like to see more details
of how this result is obtained — the relevant recursive calls, for example:

hat-observe> insert ’p’ _ in insert

1 insert ’p’ "gor" = "gop"

2 insert ’p’ "or" = "op"

3 insert ’p’ "r" = "p"

Observation 3 makes it easy to discover the fault by inspection.

Using hat-trail If we instead use hat-trail, the same application could be reached
as follows. We first request the parent of the output; unsurprisingly it is putStrLn
"agop". We then request the parent of the string argument "agop":

24 Claessen, Runciman et al.

Output: --

agop\n

Trail: ----------------- BadInsort.hs line: 10 col: 26 -------

<- putStrLn "agop"

<- insert ’p’ "agor" | if False

As in hat-observe, we see the insert application that loses the character ’r’.

3.6 Linked use of hat-observe and hat-trail

Although we have so far made use of hat-observe and hat-trail separately, each
can be applied within the other using the following commands:

:o in hat-trail, with an application of f as the current selection, starts
a new hat-observe window listing all the traced applications of f

:t N in hat-observe, following the display of a list of at least N appli-
cations, starts a new hat-trail window with the Nth application
as the initial expression

Returning to the last example in the previous section, suppose we begin the
investigation in hat-trail

Trail: ----------------- BadInsort.hs line: 10 col: 26 -------

<- putStrLn "agop"

<- insert ’p’ "agor" | if False

and see that insert is broken. Wondering if there is an even simpler failure
among the traced applications of insert we use :o to list them all in hat-
observe. The list begins:

1 insert ’p’ "agor" = "agop"

2 insert ’r’ "ago" = "agor"

3 insert ’o’ "ag" = "ago"

4 insert ’g’ "ar" = "ag"

5 insert ’r’ "a" = "ar"

6 insert ’a’ "m" = "a"

7 insert ’m’ [] = "m"

8 insert ’r’ [] = "r"

9 insert ’g’ "r" = "g"

10 insert ’o’ "g" = "go"

--more-->

Testing and Tracing 25

Observation 6 (or 9) is the simplest so we use :t 6 to request a new session of
hat-trail at this simpler starting point:

Trail: ----------------- BadInsort.hs line: 10 col: 26 -------

<- insert ’a’ "m"

We sometimes find it useful to start additional windows for sessions of the same

Hat tool but looking at different parts of the trace:

:o [P] in hat-observe, where P is an application pattern, starts a new
hat-observe window with P (if given) as the first observation
request

:t in hat-trail, starts a new hat-trail window with the current
selection as the initial expression

Apart from the determination of its starting point, a hat-observe or hat-trail
session created by a :o or :t command is quite independent of the session from
which it was spawned.

Finally, some facilities so far shown only in one tool are available in the other in
a slightly different form. Two frequently used examples are:

:s N in hat-observe, following the display of a list of at least N

applications, creates a source window showing the expression
of which application N is an instance

= in hat-trail, if the outermost expression enclosing the current
selection is a redex, complete the equation with that redex
as left-hand side, adding = and a result expression (which be-
comes the new selection); or if the current selection is within
an already completed equation, revert to the display of the
left-hand-side redex only (which becomes the new selection)

There is a particular reason for the = command in hat-trail. Following trails of
ancestral redexes means working backwards, from results expressed in the body of
a function to the applications and arguments that caused them. The movement
is outward, from the details inside a function to an application context outside
it. Using = is one way to go forwards when the key information is what happens
within an application, not how the application came about. Returning once more
to our running example, here is how = can be used to reach inside the insert

’a’ "m" computation.

Trail: ----------------- BadInsort.hs line: 8 col: 28 -------

<- insert ’a’ "m" = "a"

<- insert ’a’ "m" | if True

<- ’a’ <= ’m’

26 Claessen, Runciman et al.

4 Combined Testing and Tracing

When testing identifies a test that fails, we may need to trace the failing com-
putation to understand and correct the fault. But it is usually too expensive to
trace all tests just in case one of them fails. In this section, we describe a way
of working with the tools that addresses this requirement.

We have defined a variant of the top-level testing function quickCheck, called
traceCheck. It has two modes of working:

– In running mode, traceCheck seems to behave just like quickCheck, but
actually keeps track of what test cases succeeded and what test case failed.
In does this in a special file in the working directory called .tracecheck.

– In tracing mode, traceCheck reads this file, and will repeat the exact test
case that led to failure, and only that one.

Suppose, for example, that we wish to test an insert function defined (incor-
rectly) in the file Insert.hs:

module Insert where

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys

else y : insert x ys

We could write a test program (Iprop.hs) like this:

import Insert

import QuickCheck2

sameElems :: Eq a => [a] -> [a] -> Bool

[] ‘sameElems‘ [] = True

(x:xs) ‘sameElems‘ ys = (x ‘elem‘ ys) &&

(xs ‘sameElems‘ (ys \\ [x]))

_ ‘sameElems‘ _ = False

prop_InsertSameElems :: Int -> [Int] -> Bool

prop_InsertSameElems x xs = insert x xs ‘sameElems‘ (x:xs)

We can load this module into GHCi as usual, and run quickCheck on the prop-
erty:

Main> quickCheck prop_InsertSameElems

Falsifiable, after 1 successful tests:

1

[0,1,0]

Testing and Tracing 27

But when we want to trace what is going on here we will have to use traceCheck.
Notice that traceCheck is a bit slower than quickCheck since it has to save its
random seed to a file each time before it evaluates a test — the test might crash
or loop, and it might never come back.

Main> traceCheck prop_InsertSameElems

Falsifiable, after 0 successful tests:

0

[-1,1,0]

(Seed saved -- trace the program to reproduce.)

We now add the following definition of main to our property module Iprop.hs

so that we have a complete Haskell program which can be compiled for tracing.

main :: IO ()

main = traceCheck prop_InsertSameElems

Leaving this definition of main in the file Iprop.hs does not hurt, and reduces
work when tracing the property again later. Let us compile and trace the pro-
gram:

$ hmake -hat -package quickcheck2 Iprop

...

$./Iprop

Again, the property is falsifiable:

0

[-1,1,0]

The output from traceCheck is now a little different. It only carries out the
failing test that was saved by the previous traceCheck application, and confirms
the result.

A .hat file is now generated, and the tracing tools can be applied as usual. It is
usually best to start with hat-observe when tracing a failed property, and observe
the function calls of the functions mentioned in the property. The hat-trail tool
can then be called upon from hat-observe.

For our illustrative example hat-observe immediately reveals that the recursive
call is an even simpler failed application:

hat-observe> insert

1 insert 0 [-1,1,0] = [-1,0,0]

2 insert 0 [1,0] = [0,0]

If necessary, :t 2 allows us to examine details of the derivation using hat-trail.

28 Claessen, Runciman et al.

Trail: ----------------------- Insert.hs line: 5 col: 24 -----

<- insert 0 [1,0] = [0,0]

<- insert 0 [1,0] | if True

<- 0 <= 1

And so on.

5 Working with a Larger Program

So far our example programs have been miniatures. In this section we introduce a
rather larger program —a multi-module interpreter and compiler— and discuss
how to handle some of the problems it poses for testing and tracing.

5.1 An Implementation of Imp

We begin by outlining an interpreter and compiler for Imp, a simple imperative
language. Imp programs are command sequences with the following grammar:

comseq = com {; com}

com = skip
| print exp
| if exp then comseq else comseq fi
| while exp do comseq od
| name := exp

exp = term {op2 term}

term = name | value | op1 term | (exp)

Names are lower-case identifiers; values are integers or booleans; op1 and op2
are the usual assortments of unary and binary operators. Here, for example, is
an Imp program (gcd.in) to compute the GCD of 148 and 58:

x := 148; y := 58;

while ~(x=y) do

if x < y then y := y - x

else x := x - y

fi

od;

print x

The operational behaviour of an Imp program can be represented by a value of
type Trace String, with Trace defined as follows.

Testing and Tracing 29

data Trace a = a :> Trace a | End | Crash | Step (Trace a)

Each printing of a value is represented by a :>. A program may terminate nor-
mally (End), terminate with an error (Crash) or fail to terminate by looping
infinitely. For example, the following trace is generated by a program that prints
out 1, 2 and then crashes:

1 :> 2 :> Crash

In order to deal with non-termination, we have introduced the Step constructor,
as we explain later (in Section 5.3).

Our implementation of Imp includes both direct interpretation of syntax trees
and a compiler for a stack machine. Here is a module-level overview.

Behaviour Defines behavioural traces, their concatenation and ap-
proximate equality based on bounded prefixes.

Compiler Generates machine instructions from the abstract syntax
of a program.
(Depends on Machine, Syntax, StackMap, Value.)

Interpreter Computes the behavioural trace of a program by directly
interpreting abstract syntax.
(Depends on Syntax, Behaviour, Value)

Machine Defines stack machine instructions and the execution rules
mapping instruction sequences to behavioural traces.
(Depends on Behaviour, Value.)

Main Reads an Imp program and reports the behavioural traces
obtained when it is interpreted and when it is compiled.
(Depends on Syntax, Parser, Interpreter, Machine,
Compiler.)

Parser Defines parser combinators and an Imp parser using them.
(Depends on Syntax, Value.)

StackMap Models the run-time stack during compilation.

Syntax Defines an abstract syntax for the language.
(Depends on Value.)

Value Defines basic values and primitive operations over them.

5.2 Tracing bigger computations

Even compiling an Imp program as simple as gcd.in, the binary-coded Hat trace
exceeds half a megabyte. If we were tracing a fully-fledged compiler processing

30 Claessen, Runciman et al.

a more typical program, the .hat file could be a thousand times larger. The
development of Hat was motivated by a lack of tracing information for Haskell
programs, but clearly we could have too much of a good thing! How do we cut
down the amount of information presented when tracing larger programs? (1)
At compile-time we identify some modules as trusted — details of computation
within these modules are not recorded in traces. (2) At run-time we use simple
inputs. It is helpful that QuickCheck test-case generators usually start with the
simplest values. (3) At trace-viewing time we set options in the Hat tools to
control how much information is shown and to what level of detail.

Working with trusted modules Usually, untrusted modules depend on trusted
ones, rather than the other way round, so trusted modules need to be compiled
first7. It is usually simplest first to compile all modules as trusted, then to
recompile selected modules for full tracing. For example, if we want to compile
the Imp system to trace only the details of computation in module Compiler:

$ hmake -hat -trusted Main

Compiles everything, with all modules trusted.

$ touch Compiler.hs

$ hmake -hat Main

Recompiles Compiler, and Main which depends on it, as fully traced modules.

How effectively does this reduce the amount of trace information? With no mod-
ules trusted (apart from the prelude and libraries), and gcd.in as input, the
:info table in hat-observe lists 88 top-level functions; more than a dozen have
over 100 traced applications and several have over 300. With all but Main and
Compiler trusted the :info table has just 23 entries; all but four of these show
fewer than 10 applications and all have less than 30.

When a module T is compiled as trusted, applications of exported T functions
in untrusted modules are still recorded, but the details of the corresponding
computation within T are not. For example, in the StackMap module there is a
function to compute the initial map of the stack when execution begins:

stackMap :: Command -> StackMap

stackMap c = (0, comVars c)

Details of the Command type (the abstract syntax of Imp programs) and the
significance of the StackMap values need not concern us here; the point is that
even with StackMap trusted, hat-observe reports the application of stackMap:

1 stackMap

("x" := Val (Num 148) :->

("y" := Val (Num 58) :->

(While (Uno Not (Duo Eq (Var "x") (Var "y")))

7 The Haskell prelude and standard libraries are pre-compiled and trusted by default.

Testing and Tracing 31

(If (Duo Less (Var "x") (Var "y"))

("y" := Duo Sub (Var "y") (Var "x"))

("x" := Duo Sub (Var "x") (Var "y"))) :->

Print (Var "x"))))

=

(0,["x","y"])

But hat-observe does not report the application of the auxiliary function comVars

that computes the second component ["x","y"]. This component is not just left
orphaned —with no trace of a parent— instead it is adopted by the stackMap

application, as this is the nearest ancestral redex recorded in the trace. In hat-
trail, if we select the ["x","y"] component of the result and request the parent
redex it is the stackMap application that is displayed.

Some applications within a trusted module are still recorded. For example, there
may be applications of untrusted functional arguments in trusted higher-order
functions, and there may be applications of constructors recorded because they
are part of a result.

Controlling the volume of displayed information Even when traces are confined
to specific functions of interest, there may be many applications of these func-
tions, and the expressions for their arguments and results may be large and
complex. In hat-trail, the number of applications need not concern us: only ex-
plicitly selected derivations are explored, and each request causes only a single
expression to be displayed. In hat-observe, the counts in :info tables warn us
where there are large numbers of applications, by default only unique repre-
sentatives are shown when a function is applied more than once to the same
arguments, and patterns can be used to narrow the range of a search. But if the
volume of output from hat-observe is still too high, we have two options:

:set recursive off Recursive applications (ie. applications of f in the
body of f itself) are not shown.

:set group N Show only N observations at a time — the default
is 10.

In both hat-trail and hat-observe, large expressions can be a problem. Within a
single window, the remedy8 is to control the level of detail to which expressions
are displayed. The main way we can do so is:

:set cutoff N Show expression structure only to depth N — the
default is 10.

Rectangular placeholders (shown here as) are displayed in place of pruned
expressions, followed by ellipses in the case of truncated lists. For example, here
once again is the application of stackMap to the abstract syntax for gcd.in, but
lightly pruned (:set cutoff 8):

8 Apart from making the window larger! After which a :resize command may be
needed.

32 Claessen, Runciman et al.

stackMap

("x" := Val (Num 148) :->

("y" := Val (Num 58) :->

(While (Uno Not (Duo Eq (Var) (Var)))

(If (Duo Less (Var) (Var)) ("y" := Duo)

("x" := Duo)) :-> Print (Var "x"))))

More severely pruned (:set cutoff 4) it becomes a one-liner:

stackMap ("x" := Val :-> (:= :-> (:->)))

One limitation of depth-based pruning is its uniformity. We face a dilemma if
two parts of an outsize expression are at the same depth, the details of one
are irrelevant but the details of the other are vital. In hat-trail we can explicitly
over-ride pruning for any selected expression by keying +, and we can explicitly
prune any other selected expression by keying -. A more extravagant solution is
to view the expression in a cascade of hat-trail windows. Returning once more to
the stackMap example, in a first hat-trail window suppose we have the heavily
pruned redex, with a subexpression of interest selected:

stackMap ("x" := Val :-> (:= :-> (:->)))

We give the command :t to spawn a fresh hat-trail session starting with this
subexpression. Pruned to the same cutoff depth it is now revealed to be:

While (Uno Not (Duo)) (If (Duo) (:=) (:=)) :->

Print (Var "x")

Within this subexpression, we can select still deeper subexpressions recursively.
We can continue (or close) the hat-trail session for each level of detail quite
independently of the others.

5.3 Specifying properties of Imp

Let us think about how we are going to test the compiler and interpreter. There
might be many properties we would like to test for, but one important property
is the following:

[Congruence Property] For any program p, interpreting p should pro-
duce the same result as first compiling and then executing p.

To formulate this as a QuickCheck property, the first thing we need to do is to
define test data generators for all the types that are involved. We will show how
to define the test data generators for the types Name and Expr. The other types
have similar generators — see Compiler/Properties.hs for details.

For the type Name, we will have to do something more than merely generating an
arbitrary string. We want it to be rather likely that two independently generated
names are the same, since programs where each occurrence of a variable is dif-
ferent make very boring test data. One approach is to pick the name arbitrarily

Testing and Tracing 33

from a limited set of names (say {”a”, . . . , ”z”}). It turns out that it is a good
idea to make this set small when generating small test cases, and larger when
generating large test cases.

arbName :: Gen String

arbName = sized gen

where

gen n = elements [[c] | c <- take (n ‘div‘ 2 + 1) [’a’..’z’]]

To generate elements of type Expr (the datatype representing Imp expressions),
we assume that we know how to generate arbitrary Vals (representing Imp val-
ues), Op1s and Op2s (representing unary and binary operators, respectively). The
Expr generator is very similar to the one for binary trees in Section 2.7. We keep
track of the size bound explicitly when we generate the tree recursively. When
the size is not strictly positive any more, we generate a leaf of the tree.

instance Arbitrary Expr where

arbitrary = sized arbExpr

where

arbExpr n =

frequency $

[(1, liftM Var arbName)

, (1, liftM Val arbitrary)

] ++

concat

[[(2, liftM2 Uno arbitrary arbExpr’)

, (4, liftM3 Duo arbitrary arbExpr2 arbExpr2)

]

| n > 0

]

where

arbExpr’ = arbExpr (n-1)

arbExpr2 = arbExpr (n ‘div‘ 2)

There is no right or wrong way to choose frequencies for the constructors. A
common approach is to think about the kinds of expressions that are likely
to arise in practice, or that seem most likely to be counter-examples to our
properties. The rationale for the above frequencies is the following: We do not
want to generate leaves too often, since this means that the expressions are
small. We do not want to generate a unary operator too often, since nesting Not

or Minus a lot does not generate really interesting test cases. Also, the above
frequencies can easily be adapted after monitoring test data in actual runs of
QuickCheck on properties.

Finally, we can direct our attention towards specifying the congruence property.
Without thinking much, we can come up with the following property, which

34 Claessen, Runciman et al.

pretty much directly describes what we mean by congruence; for all p, obey p

should be equal to exec (compile p).

prop_Congruence :: Command -> Bool

prop_Congruence p = obey p == exec (compile p) -- wrong!

However, what happens when the program p is a non-terminating program? In
the case where obey works correctly, the trace will either be an infinite trace
of printed values, or the computation of the trace will simply not terminate. In
both cases, the comparison of the two traces will not terminate either! So, for
non-terminating programs, the above property does not terminate.

We have run into a limitation of using an embedded language for properties, and
testing the properties by running them like any other function. Whenever one
of the functions in a property does not terminate, the whole property does not
terminate. Similarly, when one of the functions in a property crashes, the whole
property crashes. To avoid solving the Halting Problem, we take the pragmatic
viewpoint that properties are allowed to crash or not terminate, but only in cases
where they are not valid.

The solution to the infinite trace problem consists of two phases.

First, we have to make the passing of time during the execution of a program
explicit in its trace. We do this so that any non-terminating program will gen-
erate an infinite trace, instead of a trace that is stuck somewhere. The Step

constructor is added to the Trace datatype for that reason — the idea is to
let a trace make a ‘step’ whenever the body of a while-loop in the program has
completed, so that executing the body of a while loop infinitely often produces
infinitely many Steps in the trace.

The second change we make is that when we compare these possibly infinite
traces for equality, we only do so approximately, by comparing a finite prefix of
each trace. The function approx n compares the first n events in its argument
traces for equality9:

approx :: Eq a => Int -> Trace a -> Trace a -> Bool

approx 0 _ _ = True

approx n (a :> s) (b :> t) = a == b && approx (n-1) s t

approx n (Step s) (Step t) = approx (n-1) s t

approx n End End = True

approx n Crash Crash = True

approx n _ _ = False

Now we can define a trace comparison operator on the property level, which
compares two traces approximately: For arbitrary strictly positive n, the traces
should approximate each other up to n steps. (We choose strictly positive n since

9 A looser definition of approx would not require each occurrence of Step to match up,
allowing more freedom in the compiler, but the current definition will do for now.

Testing and Tracing 35

for n = 0 the approximation is trivially true which makes an uninteresting test
case.)

(=~=) :: Eq a => Trace a -> Trace a -> Property

s =~= t = forAll arbitrary $ \n ->

n > 0 ==>

approx n s t

The new version of the congruence property thus becomes:

prop_Congruence :: Command -> Property

prop_Congruence p = obey p =~= exec (compile p)

Note that this is still not the final version of the property; there are some issues
related to test coverage, which will be discussed in the exercises in Section 7.3.

6 Related Work

There are two other automated testing tools for Haskell. HUnit is a unit testing
framework based on the JUnit framework for Java, which permits test cases to
be structured hierarchically into tests which can be run automatically [9]. HUnit
allows the programmer to define “assertions” — boolean-valued expressions —
but these apply only to a particular test case, and so do not make up a specifica-
tion. There is no automatic generation of test cases. However, because running
QuickCheck produces a boolean result, any property test in QuickCheck could
be used as a HUnit test case.

Auburn [10, 11] is a tool primarily intended for benchmarking alternative imple-
mentations of abstract data types. Auburn generates random “datatype usage
graphs” (dugs), representing specific patterns of use of an ADT, and records the
cost of evaluating them under each implementation. Based on these benchmark
tests, Auburn can use inductive classification to obtain a decision tree for the
choice of implementation, depending on application characteristics. It may also
reveal errors in an ADT implementation, when dugs evaluated under different
implementations produce different results, or when an operation leads to run-
time failure. Auburn can produce dug generators and evaluators automatically,
given the signature of the ADT. Dug generators are parameterised by a vector
of attributes, including the relative frequency of the different operations and
the degree of persistence. Auburn avoids generating ill-formed dugs by track-
ing an abstract state, or “shadow”, for each value of the ADT, and checking
preconditions expressed in terms of it before applying an operator.

The more general testing literature is voluminous. Random testing dates from the
1960s, and is now used commercially, especially when the distribution of random
data can be chosen to match that of the real data. It compares surprisingly
favourably in practice with systematic choice of test cases. In 1984, Duran and

36 Claessen, Runciman et al.

Ntafos compared the fault detection probability of random testing with partition
testing, and discovered that the differences in effectiveness were small [5]. Hamlet
and Taylor corroborated the original results [8]. Although partition testing is
slightly more effective at exposing faults, to quote Hamlet’s excellent survey [7],
“By taking 20% more points in a random test, any advantage a partition test

might have had is wiped out.” QuickCheck’s philosophy is to apply random testing
at a fine grain, by specifying properties of most functions under test. So even
when QuickCheck is used to test a large program, we always test a small part at
a time, and are therefore likely to exercise each part of the code thoroughly.

Many other automatic testing tools require preprocessing or analysis of spec-
ifications before they can be used for testing. QuickCheck is unique in using
specifications directly, both for test case generation and as a test oracle. The
other side of the coin is that the QuickCheck specification language is necessarily
more restrictive than, for example, predicate calculus, since properties must be
directly testable.

QuickCheck’s main limitation as a testing tool is that it provides no information
on the structural coverage of the program under test: there is no check, for exam-
ple, that every part of the code is exercised. We leave this as the responsibility
of an external coverage tool. Unfortunately, no such tool exists for Haskell! It is
possible that Hat could be extended to play this rôle.

Turning now to tracing, the nearest relative to Hat —indeed, the starting point
for its design— is the original redex-trail system [14, 13]. Whereas Hat uses a
source-to-source transformation and a portable run-time library, the original sys-
tem was developed by modifying a specific compiler and run-time system. Pro-
grams compiled for tracing built trail-graphs within the limits of heap memory.
Large computations often exceeded these limits, even if most parts of a program
were trusted; to obtain at least partial trails in such cases, when trail-space
was exhausted the garbage collector applied pruning rules based on trail-length.
Users had a single viewing tool by which to access the in-heap trail; this tool
supported backward tracing along the lines of hat-trail, but with a more elabo-
rate graphical interface. The stand-alone trace files of Hat greatly increase the
size of feasible traces, and give more permanent and convenient access to traces.

Another system that had an important influence on the design of the Hat tools is
HOOD [6]. HOOD (for Haskell Observation-Oriented Debugger) defines a class
of observable types, for which an observe function is defined. Programmers
annotate expressions whose values they wish to observe by applying observe

label to them, where label is a descriptive string. These applicative annotations
act as identities with a benign side-effect: each value to which an annotated
expression reduces —so far as it is demanded by lazy evaluation— is recorded to
file, listed under the appropriate label. As an added bonus, the recording of each
value in the trace can be “played back” in a way that reveals the order in which its
components were demanded. Among HOOD’s attractions, it is simply imported
like any other library module, and programmers observe just the expressions
that they annotate. Among its drawbacks, expressions do have to be selected

Testing and Tracing 37

somehow, and explicitly annotated, and there is no record of any derivation
between expressions, only a collection of final values.

Then there is Freja [12], a compiler for a large subset of Haskell. Code generated
by Freja optionally builds at run-time an evaluation dependence tree (EDT) in
support of algorithmic debugging. In some ways Freja is similar to the redex
trails prototype: a compiler is specially modified, a trace structure recording
dependencies is built in the heap, and the programmer’s use of the trace is
mediated by a single special-purpose tool. Tracing overheads in Freja are kept
to a minimum by supporting trace-building operations at a low level in a native
code generator, and by constructing only an initial piece of the trace at the EDT
root — if a new piece is needed, the program is run again. But the most important
distinctive feature of Freja is that its algorithmic debugger supports a systematic
search for a fault. Each node in the EDT corresponds to an equation between
an application and its result. Shown such an equation, the user gives a yes/no
response depending on whether the equation correctly reflects their intended
specification for the function. Only subtrees rooted by an incorrect equation are
examined; eventually, an incorrect parent equation with only correct children
indicates an error in the definition of the parent function. Applied to small
exercises, algorithmic debugging is a superb tool. But for big computations the
top-down exploration regime demands too much: even if the user is able to judge
accurately the correctness of many large equations, the route taken to a fault
may be far longer than, for example, the backward trail from a run-time error.
Freja can be applied directly to EDT subtrees for specified functions, but this
only helps if the user knows by some other means which functions to suspect.

For tracing programs in a language like Haskell, the program-point observations
of HOOD and the top-down exploration of declarative proof-trees as in Freja are
the main alternatives to backward tracing based on redex trails. An evaluation
exercise reported in [1] concluded that none of these approaches alone meets
all the requirements for tracing, but used in combination they can be highly
effective. This finding directly motivated the reformulation of redex trails in Hat,
making it possible to extract equational observations and the equivalent of an
EDT, and so to provide a multi-view tracing system [15]. The three viewing tools
hat-detect (not described in earlier sections), hat-observe and hat-trail

reflect the influence of Freja, Hood and the redex-trail prototype.

7 Practical Exercises

Exercises in this section refer to various example programs. The sources of these
programs are available from http://www.cs.york.ac.uk/fp/afp02/.

7.1 About merge-sort (in the Sorting directory)

Exercise 1 Look at the simple merge-sort program in the source files Mmain.hs
and Msort.hs. If Mmain is run with words.in as input, what lengths of list

38 Claessen, Runciman et al.

arguments occur in the applications of merge in pairwise, and how many appli-
cations are there for each length? Try to answer by inspection before verifying
your answers using Hat. Hint: in hat-observe, either give a context to a merge

application query or :set recursive off. �
Exercise 2 Examine the recursive pairwise computation. How deep does the
recursion go? Are all equations in the definition of pairwise really necessary?
Hint: in hat-trail, trace the ancestry of the list of strings from which the output
is formed. �
Exercise 3 How many comparisons and merge’s does it take to sort a list that
is already sorted? What about a list that is reverse-sorted? �
Exercise 4 Write QuickCheck properties that characterise what each function
in the Msort module does. Check that your properties hold. What can you say
about test coverage? �
Exercise 5 Look at the improved(?) version of merge-sort in Nmain.hs and
Nsort.hs. Instead of starting the pairwise merging process merely with unit
lists, the idea is to find the largest possible ascending and descending sublists.
However, we have made a deliberate mistake! Find a test case where the property
of the msort function does not hold. Can you locate and fix the bug? Do all your
previously defined msort properties now hold? �
Exercise 6 How many comparisons and merge’s does the improved (and now
correct!) merge-sort take for already-sorted input? �
Exercise 7 What property should the function ascending have? Check that it
holds. How lazy is the ascends function? What happens if an element of its list
argument is undefined? Trace the computation to see why. Can you improve the
definition of ascends? �
7.2 About cryptarithmetic (in the SumPuzzle directory)

The next few exercises are about a program that solves cryptarithmetic puzzles
(source files SumPuz.hs and Main.hs). Inputs are lines such as SEND + MORE

= MONEY — an example provided in the file puzzle3.in. The program has to
find a mapping from letters to digits that makes the sum correct. Your task is to
understand how exactly the program works, and to formulate your understanding
in tested properties.

Testing and Tracing 39

Exercise 8 Compile the program for tracing, and run it with puzzle3.in as
input. In the process of searching for a solution, the program carries out many
additions of two digits. The digits are candidate values for letters in the same
column of the encrypted sum:

SEND

+ MORE

What is the maximum result actually obtained from any such digit addition? The
result occurs more than once: how many times? (Use :set all and appropriate
application patterns in hat-observe.) Select one example of a maximal sum to
investigate further using hat-trail. Which letters are being added and with what
candidate values? What values are assigned to other letters at that point? Why
does this branch of the search fail to reach a complete solution? �
Exercise 9 The function solutions is the heart of the program. As you can see in
the function solve in SumPuz.hs, the standard top-level way to call the function
solutions is with 0 as the fourth argument and [] as the fifth argument. In
Properties.hs, we have predefined a function find that does exactly that:

find :: String -> String -> String -> [Soln]

find xs ys zs = solutions xs ys zs 0 []

In this and the following exercises we are going to write properties about this
function find.

The first property to define is a soundness property: the program only reports
genuine solutions. It should say something like:

For all puzzles, every element in the found list of solutions is arithmeti-
cally correct.

Check that your property holds! Remember that your task is to characterise
exactly what kind of puzzles the program solves, and in what way. So if your
property does not hold, use the tracing tools to understand why, and then revise
your property (not the program) until it is correct. �
Exercise 10 Use a test data monitor to check how interesting the test cases
are. For example, is a test case where there are no solutions interesting? Try
to eliminate uninteresting tests by adding an appropriate precondition to your
property. How does this influence the size of the tested puzzles? �
Exercise 11 The next property to define is a completeness property: the program
always finds a solution if there is one. A handy way to do this is to say something
like:

40 Claessen, Runciman et al.

For all numbers x and y, if I supply as input the digits of x, plus, the
digits of y, equals, and the digits of x+y, then the list of found solutions
should include this digit-identity.

Again, check that your property holds. If not, use the tracing tools to understand
why, and revise your property accordingly. �
Exercise 12 Hypothetically, how would you change the soundness and complete-
ness properties if the solutions function worked in such a way that it always only
returned one solution even if there are many?

7.3 About Imp (in the Compiler directory)

The final group of exercises involve testing, tracing, fixing, specifying and ex-
tending the Imp interpreter and compiler.

Exercise 13 Recall the QuickCheck congruence property that should hold for
the Imp compiler and the interpreter. The version of the Imp system in the
Compiler directory has been deliberately broken, so it does not satisfy this
property. Indeed, it hardly works at all: try running it on gcd.in. Use Quick-

Check and Hat to find the two bugs we have introduced. Fix them! �
Exercise 14 There are some functions in which we can apparently introduce
as many bugs as we want; the congruence property will still hold! Which are
these functions? Hint: Which functions are used both by the compiler and the
interpreter? �
Exercise 15 Random testing works best if it is applied at a fine grain! Therefore,
formulate a property that is only going to test compilation and interpretation
of expressions. Hint: You can reuse the congruence property of programs, but
generate only programs that print a single expression (which cannot contain
variables). Is non-termination still an issue? �
Exercise 16 Now investigate the test coverage of QuickCheck for your property.
Insert a test data monitor that checks what kind of traces are generated by
the programs during test, and check the distribution. What do you think of the
distribution of test data? Most generated expressions are type incorrect! Adapt
your property by using the implication operator ==> to discard this rather large
amount of useless test data.

Note: To show that without this fix, your property does not have good test
coverage, introduce the following bug: flip the order of the arguments of binary
operators in the expression compiler. Can your old property find the bug? Can
your new one? �

Testing and Tracing 41

Exercise 17 The original congruence property for programs has a similar prob-
lem; the whole program crashes if the condition in an if or while statement
is type incorrect, and this happens a lot during testing. Adapt the program
congruence property to overcome this problem. �
Exercise 18 Suppose the Imp language is extended by generalising assignments
to multiple assignments. Instead of just one variable name on the left of each :=

there are one or more, separated by commas, and on the right an equal number
of expressions, also separated by commas. A multiple assignment is executed
by first evaluating all the right-hand expressions and then storing the results
in corresponding left-hand variables in left-to-right order. Here is an example
program (power.in) which raises 3 to the power 6:

a, n, x := 3, 6, 1;

while 0 < n do

if (n\2) = 1 then n, x := n-1, x*a else skip fi;

a, n := a*a, n/2

od;

print x

By making changes in the following places, revise the Imp interpreter and com-
piler to work with multiple assignments.

Syntax Change the := construction in the Command type.

Parser Change the final alternative in nonSeqCommand.
Hint: define listOf :: Parser a -> Parser [a].

Interpreter Change the := equation in the definition of run.
Hint: generalise the definition of update.

StackMap Change the := equation in the definition of comVars.

Compiler Change the := equation in the definition of compObey.
Hint: none — we hope you get it wrong!

Test your extension first on power.in, using Hat to investigate any faults. Revise
the program generator in the Properties.hs so that the congruence property
is asserted over the extended language. Apply QuickCheck and Hat as necessary
to achieve a solution that passes an appropriate range of tests. �
Exercise 19 Compare the assignments:

x, y := e1, e2 and y, x := e2, e1

Under what conditions do these two assignments mean the same thing? Formu-
late this conditional equivalence as a QuickCheck property and check that the
property holds. �

42 Claessen, Runciman et al.

Acknowledgements

The Hat tracing system was developed under grant number GR/M81953 of the
Engineering and Physical Sciences Research Council of the United Kingdom.

References

1. Olaf Chitil, Colin Runciman, and Malcolm Wallace. Freja, Hat and Hood – a
comparative evaluation of three systems for tracing and debugging lazy functional
programs. In Proc. 12th Intl. Workshop on Implementation of Functional Lan-
guages (IFL 2000), volume 2011, pages 176–193. Springer LNCS, 2001.

2. Olaf Chitil, Colin Runciman, and Malcolm Wallace. Transforming Haskell for
tracing. In Selected papers from 14th Intl. Workshop on the Implementation of
Functional Languages (IFL’02). to be published in Springer LNCS, 2003.

3. Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. In International Conference on Functional Programming,
pages 268–279. ACM, 2000.

4. Koen Claessen and John Hughes. Testing monadic code with QuickCheck. In
Haskell Workshop. ACM, 2002.

5. J. Duran and S. Ntafos. An evaluation of random testing. Transactions on Software
Engineering, 10(4):438–444, July 1984.

6. A. Gill. Debugging Haskell by observing intermediate datastructures. Electronic
Notes in Theoretical Computer Science, 41(1), 2001. (Proc. 2000 ACM SIGPLAN
Haskell Workshop).

7. D. Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia of Software
Engineering, pages 970–978. Wiley, 1994.

8. R. Hamlet and R. Taylor. Partition testing does not inspire confidence. Transac-
tions on Software Engineering, 16(12):1402–1411, December 1990.

9. Dean Herington. HUnit 1.0 user’s guide, 2002.
http://hunit.sourceforge.net/HUnit-1.0/Guide.html.

10. Graeme E. Moss. Benchmarking purely functional data structures. PhD thesis,
Dept. of Computer Science, University of York, UK, 2000.

11. Graeme E. Moss and Colin Runciman. Inductive benchmarking for purely func-
tional data structures. Journal of Functional Programming, 11(5):525–556, 2001.

12. H. Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis,
Linköping University, Sweden, 1998.

13. Jan Sparud and Colin Runciman. Complete and partial redex trails of functional
computations. In Selected papers from 9th Intl. Workshop on the Implementation
of Functional Languages (IFL’97), volume 1467, pages 160–177. Springer LNCS,
1997.

14. Jan Sparud and Colin Runciman. Tracing lazy functional computations using redex
trails. In Proc. 9th Intl. Symp. on Programming Languages, Implementations,
Logics and Programs (PLILP’97), volume 1292, pages 291–308. Springer LNCS,
1997.

15. Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-
view tracing for Haskell: a new Hat. In Haskell Workshop. ACM, September 2001.

