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ABSTRACT
Static analysis of object-oriented applications has become
widespread over the last decade, mainly in the context of
compile-time optimizations. The paper describes how static
analysis of virtual method calls can be employed to provide a
high-level view of Java applications. The result is a method
call graph that can be built from either source or bytecode,
and a graphical browser that enables the user to analyze con-
trol flow and the coupling between classes and packages in
an intuitive fashion, thereby supporting application design
as well as refactoring and debugging. In order to achieve
the necessary bijection between source and bytecode repre-
sentations of classes, we implement a new approach based
on source code pre-processing.
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1. THE GOAL
Object-oriented programming, combining inheritance and

polymorphism, provides a powerful means of describing the
world. Although object-oriented programming can produce
reusable, modular, well structured code, program develop-
ment and maintenance is still hard, especially for systems
that consist of many objects interacting in complex ways.
Our goal is to provide programmers with a tool to allow
exploration, at a high level, of the relationships between ob-
jects used in their program. Such a view should reveal the
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class Library {

void newItem(boolean isBook, String title) {

LibItem item;

if (isBook) item = new Book();

else item = new DVD();

item.setTitle(title);

...

}

}

Figure 1: The need for virtual method calls.

void aMethod() {

LibItem item = new Book();

LibItem otherItem = new DVD();

otherItem.setTitle(...);

}

Figure 2: More precise type analysis is possible.

caller/callee relationships between all methods1 in a Java
application. Once this relationship is established, one can
examine how methods interact. The view should be intu-
itive, and should allow the programmer to explore these re-
lationships in order to understand the consequences of a
change to one class on this and other classes.

The mathematical entity for such a relation is a directed
graph, here called a method call graph; it may be cyclic in
the case of direct or indirect recursion. The graph com-
prises nodes representing methods, and edges representing
method calls. In order to build such a call graph, we need
to determine method call sites and those methods that may
be called at each such site.

2. DYNAMIC DISPATCH
Like other object-oriented programming languages, Java

has one awkward property: virtual method calls. Java must
determine, for each method call, the run-time type of the
object to which this method belongs. In Java this is im-
plemented by the invokevirtual bytecode. For example,
the newItem method shown in Figure 1 creates new ob-
jects whose type depends on the parameters passed. The
method Book.setTitle is called if and only if isBook is
true, otherwise DVD.setTitle is called. Virtual method
calls are not just useful but necessary. In this case, our

1The notion of method includes constructors.



aMethod() Book.setTitle(...)

DVD.setTitle(...)

LibItem.setTitle(...)a

b

c

Figure 3: Virtual calls derived from the example in

Figure 2.

tool must allow the programmer to explore (at least) the
edges from Library.newItem to both Book.setTitle and
DVD.setTitle.

3. CALL GRAPH CONSTRUCTION
Three well-known techniques for call graph construction

have been suggested in the literature. The simplest of these
is Class Hierarchy Analysis (CHA) [2]. CHA analyses a
program statically to construct a graph of all possible edges
between callees and callers. For Figure 1 it gives edges from
newItem(...) to the setTitle(...) methods in the class
LibItem and all its subclasses, since item could be of any
subtype at run-time. In our case, this would create all three
edges of Figure 3, which is rather wrong and inefficient.

Fortunately, such graphs may be optimised if the run-
time type of a caller can be determined at compile-time,
as in the example from Figure 2. Although the classes
Book and DVD are subclasses of LibItem, for the method
call setTitle(...) it is clear at compile-time that the
otherItem is a DVD.

Rapid Type Analysis (RTA) [1] is somewhat slower in
practice than CHA but can eliminate some edges from the
call graph. RTA first builds a call graph using CHA and
then deletes any edges to classes for which no objects are
instantiated inside the calling method. This is still quite
quick and often trims the invoke graph substantially but
usually still leaves ‘dead edges’. In our example, only the
edge a would be deleted.

Finally, Variable Type Analysis (VTA) [4] is the most ex-
pensive but also most sophisticated of the three algorithms.
VTA uses type propagation to determine the static type.
From every instantiation (by new), the type is propagated
to the method call by examining all statements that could
change the type (such as assignments). In our example, this
would delete all edges but c in Figure 3. The drawback of
VTA is that it is expensive of time and space.

4. IMPLEMENTATION
We considered analysing both source and bytecode. Byte-

code leads to a more accurate representation of run-time
behaviour (consider compile-time optimization), is easier to
parse, quicker to process and always accessible. Any addi-
tional information provided by source code is unnecessary
for our analysis. The chief drawback of bytecode is that it
must be converted into a human readable form for display.

Our work combines the analysis techniques mentioned
above with a powerful visualization tool that supports refac-
toring by enabling the user to investigate the application in
a user-friendly way. Our analysis framework was provided
by the SOOT bytecode analysis package [5] from the Sable2

2http://www.sable.mcgill.ca/

group at McGill University, which provides all three anal-
yses. Call graph visualization is provided through OpenJ-
Graph3.

Our tool JAnalyzer4 enables developers to load and store
projects containing source or bytecode files. Source files are
pre-processed into an intermediate representation (one ex-
pression per line) in order to gain a bijection between single
expressions in the source code and lines in the bytecode.
This is performed using a JavaCC generated parser whose
output is used directly to highlight syntax errors. As a re-
sult, the user can invoke the bytecode analysis by clicking on
the appropriate sourcecode item. The size of the call graph
can be limited by selecting specific methods as analysis en-
try points and filtering ‘uninteresting’ classes; filtered classes
are considered as phantom classes in SOOT and represented
as leaves of the call graph.

Once the graph is build, the user can enter the high-level
view by simply clicking on a method invocation in the source
code. A subset of the call graph, centred on this invocation,
is displayed and can be further explored. Remaining in this
high-level view, the user can follow control flow by follow-
ing edges of the graph displayed and can investigate further
method calls by direct interaction with its method nodes.

5. CONCLUSIONS
We believe that we have provided a useful tool to support

program debugging and refactoring [3]. Once the call graph
has been constructed, it is sufficiently fast to allow direct ex-
ploration of the relationships between methods. Complexity
is controlled, and comprehensibility enhanced, through fil-
tering out uninteresting classes and by restricting the graph
displayed to the nodes currently of interest. We intend to
integrate it into the Eclipse IDE5 and to provide enhance-
ments such as a browser-like history for the visual graph,
and incorporation of new SOOT 2.0 functionality.
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