
 1

Deficiencies in LDAP when used to support Public
Key Infrastructures
Author: David Chadwick, University of Salford, Salford M5 4WT, England.
Email: d.w.chadwick@salford.ac.uk

Introduction
The lightweight directory access protocol (LDAP) is the Internet standard way of
accessing directory services that conform to the X.500 data model. It is very widely
supported by all the leading software vendors, and is part of Windows 2000 Active
Directory. LDAP comes in two versions:

LDAPv2 - the original lightweight variation of the X.500 Directory Access
Protocol (DAP), and
LDAPv3 [10] - the heavyweight version.

Whilst the DAP was designed from its inception to support public key infrastructures
(PKIs), being part of the same X.500 family of standards as X.509, LDAP was not.
LDAP has however become the predominant protocol in support of PKIs accessing
directory services for certificates and certificate revocation lists (CRLs), but because
of its lineage, it has some deficiencies. This paper describes the deficiencies in both
the LDAPv2 and v3 protocols, along with the solutions that have been and are being
standardised within the IETF to rectify them. The deficiencies are documented firstly
for a centralised directory service, in which a single standalone LDAP server is used
to support a single PKI, and secondly for a distributed directory service, in which
there are many LDAP servers that need to co-operate in order to support a network of
interconnected PKIs.

Centralised LDAP Deficiencies

Certificate and CRL retrieval
The first attempt to support certificate retrieval using LDAPv2, was documented in
[6]. Unfortunately it did not work. The reason for this is that the LDAP native
encoding of a certificate converted it from its ASN.1 BER type, length, value binary
encoding, into a simple LDAP ASCII string, and this is an irreversible process for
distinguished names. It is a many-to-one encoding as relative distinguished names
(RDNs) can be of type teletex, printable or universal string. Consequently when the
LDAP client tries to reconstitute the ASN.1 binary from the ASCII string (in order to
validate the signature on the certificate) it proves to be impossible without producing
possibly hundreds of different ASN.1 BER encodings. Checking the signature against
each is not practical. A more sophisticated LDAP native encoding for RDNs, for
example by encoding the type as well as the value, could have solved the problem for
certificates, but this would have been at the expense of complicating all LDAP
operations, since RDNs are a predominant data type. The most obvious solution is to
deprecate the LDAP native encoding in [6] and to transfer the certificate or CRL in its
binary format so that the ASN.1 BER encoding is preserved. This solution was
adopted for LDAPv2 and is documented in [1]. The solution by and large works, and
is used by PKI LDAPv2 clients successfully. (However some LDAP clients, such as
some versions of Netscape Communicator, still do not interpret the certificate

 2

properly when it is retrieved. They attempt to display it as a single stream of binary
characters in the browser window, rather than decoding the ASN.1 it into its
constituent parts.)

When LDAPv3 was specified, it overcame the encoding bug of LDAPv2, by
introducing the concept of transfer encodings as part of the new attribute descriptions.
Attribute descriptions are used to optionally qualify attribute type definitions,
primarily to indicate attribute subtypes. However one special option, the ;binary
transfer option, was built into the base LDAPv3 specification [10]. The ;binary option
was used to indicate a special type of transfer encoding (ASN.1 BER) rather than an
attribute subtype. When the ;binary option, e.g. userCertificate;binary, is used by a
client to describe an attribute that it wants to retrieve, it mandates that the LDAPv3
server must return the attribute values encoded using the ASN.1 BER rather than in
their LDAP defined native encodings. In this way, when used to retrieve signed
attributes such as certificates and CRLs, the client can validate the signatures against
the binary values.
Many LDAPv3 clients and servers correctly support the ;binary transfer option as
defined in the proposed standard [10]. However, some do not, and further, some
LDAP servers do not recognise that a userCertificate attribute stored by an LDAPv2
client is the same attribute that an LDAPv3 client is trying to retrieve as a
userCertificate;binary attribute. Finally, if LDAPv3 were to define a new transfer
encoding, say ;xml, then implementations that did not recognise this would think it
was an unrecognised attribute subtype rather than a new transfer encoding (which
only goes to confirm the folly of using the same protocol feature to indicate two
different concepts). For these reasons the current revision of LDAPv3 [9] has
removed the concept of ;binary from its specification and the PKIX Internet Draft
(ID) [4] has said that the native LDAP encoding for PKI attributes is ASN.1 BER
rather than ASCII, thus bringing equality to LDAPv2 and LDAPv3. Unfortunately
this will cause some interoperability problems in the short term as products migrate
from the old specification of LDAPv3 to the new one.

4.2 LDAPv3 complexity
LDAPv3 is a complex protocol. It has many sophisticated features built into it, so that
it can incorporate all the richness needed of a general-purpose directory access
protocol (just like the original X.500 DAP). Many of these features are not needed for
simple PKI certificate and CRL retrieval, and so an LDAPv3 profile [3] is being
specified by the PKIX working group. This profile specifies the features of LDAPv3
that are mandatory to support for a PKI, those features that are optional and those that
are not needed for a PKI. This ID was about to go to Last-Call in the PKIX working
group (Last-Call is the penultimate stage to becoming a proposed standard RFC in the
IETF standardisation process) when one item of controversy arose. The profile states
that LDAPv3 servers must support multi-valued RDNs as this allows RDNs to be both
user friendly and unique (e.g. CN=David Chadwick + SerialNumber =12345), but
Microsoft’s Active Directory does not support this feature and has no current plans to.
So this issue currently remains unresolved.

Searching for the correct certificate or CRL
Simple PKIs usually only store single certificates in each user’s directory entry, and
only one CRL in each distribution point. But how does an LDAP client know which
entry to retrieve? The client needs to be able to specify filtering criteria that tell the

 3

LDAP server which entry or entries to select. For example, “Find the entry for the
person named Carly Simon and return her userCertificate attribute”, or “Find the
userCertificate attribute containing the email address carly.simon@someorg.com”.
Unfortunately no certificate or CRL matching rules have been standardised for LDAP
(although they are for X.500 DAP). Thus the latter search cannot be requested without
some work-around.

PKI administrators cope with this problem today by creating one or more new
attributes in the user’s entry, in parallel with the userCertificate attribute. These new
attributes each contain the contents of one of the fields of the user’s certificate that are
to be searched for e.g. the mail attribute holds the contents of the rfc822 value from
the subjectAltName certificate extension, or the serialNumber attribute holds the
certificate serial number. The LDAP client can then search for the entry containing
these new attributes and ask for the accompanying userCertificate attribute to be
returned. Hopefully the certificate will be the one that matches the user’s search
criteria. But this ad-hoc approach places a large burden on the directory/PKI
administrator, as he has to ensure that the new attributes are kept synchronised with
the contents of the user’s certificate, and there is no agreed standard schema for these
new attributes. Furthermore, this solution has security implications. The underlying
security model for X.509 is that the directory service is not trusted; only the
Certification Authority (CA) is trusted. The directory server may be open to attack,
and wrong attributes inserted in there by the attacker. Consequently CRLs and
certificates are digitally signed by the CA to prevent unauthorised tampering, but the
new attributes inserted by the directory/PKI administrator are not signed, and thus can
be tampered with without it being immediately obvious. (The client would have to
check that the contents of the retrieved certificate truly did match his filtering criteria
and the directory/PKI administrator would continually have to check that the new
attributes matched the contents of their peer certificate.) Finally, this solution does not
work when the user has two or more certificates, since there is no way of pairing the
new attribute values with particular userCertificate values. (This is because attribute
values are held as an unordered set and not in any defined order.) Clearly a better
solution is required.

A relatively new ID [7] has started to standardise the schema for these new attributes
(but currently only for userCertificates), and also recommends that the each certificate
and its corresponding attributes should be stored in a separate entry subordinate to that
of the certificate holder (see Figure 1). This pragmatic approach solves many, though
not all, of the certificate searching problems.

The IETF PKIX group has published a more comprehensive though complex solution.
An ID [4] specifies LDAP encodings for matching rules and assertion values for both
certificates and CRLs, based on those in the X.500 standard. This allows the client to
specify its filtering criteria, and the server will match directly on the contents of the
certificate or CRL, rather than on the contents of some peer attributes. The client can
then be assured that the returned certificate or CRL matches the one(s) requested. The
simplest of these matching rules, certificateExactMatch, has already been
implemented in OpenLDAP release 2.1. And at least one vendor of X.500 based
LDAP servers also supports a subset of these ma tching rules in their server. However,
clients will need to be updated in order to support these new matching rules and
assertion values.

 4

Users with multiple certificates
As PKIs become more advanced, users will start to be issued with several certificates.
For example, a user might have a certificate for creating digitally signed messages, a
certificate for receiving encrypted S/MIME email, and a certificate to be used for non-
repudiable e-commerce transactions. If all these certificates are stored in the user’s
entry - which is the natural place to store them - then LDAP clients have an additional
problem (this is assuming that the matching rules mentioned above have been
implemented so that a client can search for a particular certificate e.g. find the
S/MIME encryption certificate for A.Person@e-commerce.site.com). The problem is
that there is no standard way in LDAP to ask the directory server to only return one
certificate from the user’s entry. Both LDAP protocols are only capable of returning
all the attribute values from a particular attribute, or none of them. It is not possible to
ask for a subset of the attribute values. This causes the client software a problem if
several certificates are returned when only one was being sought. The client software
will have to implement complex matching rules to parse each certificate and find the
correct one. This is both time consuming and unnecessary. If the LDAP server has
already implemented the certificate matching rules mentioned above in order to find
the correct certificate, it should surely be able to return just the desired certificate to
the client, rather than all or none of them. DAP already has a solution to this problem,
a boolean variable that asks for only matched values to be returned. The IETF
LDAPEXT working group initially decided to add this boolean to LDAPv3, but upon
rigorous examination found a simple boolean to be deficient when complex filters
were being specified by the user. For example, in a multiple OR filter, where only one
filter item matches an attribute value, should the other filter items that did not match
on any attribute values cause none of those values to be returned (the boolean is
obeyed), or all values to be returned (the boolean is ignored). The matched values ID
[5] specifies an extension to the LDAPv3 protocol that allows the user to say precisely
which value or values should be returned. This ID has now been through Last-Call
and should soon be published as an RFC. Furthermore it has recently been
implemented in OpenLDAP release 2.1. Unfortunately it is not possible to specify this
extension in LDAPv2, as LDAPv2 is a fixed protocol with no mechanism for
extending it.

How do most PKI implementers cope with this problem today? Basically they have to
ensure that each certificate attribute only holds a single certificate attribute value. This
can be done in one of two ways, either create new certificate attributes for each type
of certificate (e.g. smimeEncCert, smimeNRcert), or alter the structure of the
directory information tree (DIT) to fit the PKI applications. The former method is
problematical, as some PKIs are not capable of changing the attribute type used for
publishing certificates - they always assume that the X.509 standard attribute type
(userCertificate) is used. The latter method is sure to work with all PKI
implementations, and is usually executed in one of three ways.

The first and second ways keep the existing DIT structure intact, but add extra entries
for each user, as new certificates are issued. This ensures that only a single certificate
is ever stored in each entry. The new entries are created either subordinate to the
user’s existing entry (Figure 1) or as siblings of the existing entries (Figure 2). The
entries are typically given names that indicate the type of certificate stored within
them. The third way creates a new DIT subtree for each PKI application, and users

 5

have separate entries in each parallel application tree (Figure 3). (Note that whether
the organisation uses DC or X.521 naming is immaterial to the examples.)

O=My Org

OU=Some Unit

CN=I/C Bids

CN=John Smith
 + SN=1235

CN=Fred Jones
+ SN=2345

C=GB

CN=Username1

CN=Jane Smith
+ SN=44567

CN=Username2CN=I/C Sales

Figure 1. Child entries

O=My Org

OU=Some Unit

CN=John Smith (I/C Bids)

CN=John Smith
+ SN=1235

CN=Fred Jones (I/C Sales)

C=GB

CN=Username1

CN=Jane Smith
+ SN=44567

CN=Username2

Figure 2. Sibling Entries

A disadvantage of the first way is that some LDAP browsers expect common name
(CN) entries to be leaf entries, and cannot cope with them being non- leaves. A
disadvantage of the second way is that a user’s name is prefixed with the type of
certificate contained within the entry. A disadvantage of the third way is that new tree
structures have to be built for each application (although this can be an advantage if
the application is to be the sole user of the new subtree).

 6

O=My Org

OU=Sales
OU=Bids

OU=Some
Unit

CN=Fred Jones
CN=John Smith

OU=Unix Accounts

CN=Username1

OU=International
Commerce

OU=S/MIME
Encryption

CN=John Smith
+ SN=1235

CN=Username2

C=GB

CN=Jane Smith
+ SN=44567

Figure 3. Application based subtrees

Distributed LDAP Deficiencies
Once PKIs start to link together, via either CA hierarchies, cross certification or
bridge CAs, then PKI users will need to have access to the certificates and CRLs
contained in each of the PKI directory services. Thus ideally we need a distributed
directory service made up of all the individual PKI LDAP directories. Experience to
date, for example with the US Federal PKI [2], suggests that an X.500 based
distributed directory with chaining, using LDAP for client access, provides the only
workable solution. LDAP-only servers are currently not up to the task of building
distributed directories. Why is this?

LDAP was initially conceived as a lightweight front-end protocol to a distributed
X.500 directory service. Consequently LDAPv2 had no need to support distribution,
as the X.500 servers used the Directory System Protocol (DSP) for chaining. The
types of feature that a distributed directory service needs are:

- the ability of the servers to know about other servers (in X.500 these are
called knowledge references, in the DNS these are the NS and A resource
records) and how to interact with them; otherwise the client has to know
the whereabouts of all the LDAP servers that it wishes to contact, and has
to choose the correct one for each request that it issues,

- the ability of the servers to pass client requests between themselves (in
X.500 these mechanisms are called chaining and referrals, in the DNS
these features are called the recursive and iterative modes respectively),
otherwise the client has to contact each server separately and track its own
progress,

- the ability of the servers to perform distributed authentication, otherwise
the client has to have separate authentication credentials (typically
passwords) for each LDAP server that it wishes to contact. (The DNS does
not suffer from this problem, as its look-ups are un-authenticated.)

 7

Chaining and Referrals
LDAPv3 made a start on providing a distributed directory service by adding referrals
to the LDAPv3 protocol [10]. (Some LDAP server suppliers, mainly those that have
built their LDAP service around their X.500 servers, also provide LDAP chaining.)
However, referrals on their own are insufficient, since servers need a standard way of
using them.

Knowledge references
X.500 defines five types of knowledge reference (superior, immediate superior,
subordinate, cross and non-specific subordinate) plus two for use in replication
(consumer and supplier). There have been several attempts over the last five years to
standardise equivalent LDAP knowledge references. Quite why these failed to
progress past Internet Draft stage is difficult to assess. However, during 2000 there
was a resurgence of interest in this topic, and finally a RFC [12] has been published.
Although this only standardises one type of LDAP knowledge reference – subordinate
– this is undoubtedly one of the most important types for distributed directories, and
perhaps once this is fully implemented then standardisation of other types may follow.

PKIX certificate extensions
Because LDAP directories were typically stand-alone directory islands that did not
have knowledge of each other, the IETF PKIX group specified several certificate
extensions designed to allow PKI clients to find the correct LDAP directory for their
needs. This was effectively building LDAP knowledge references into certificates.
Firstly they specified the precise contents of the X.509 CRL Distribution Points
extension. This extension informs the client where CRLs may be found, and when
CRLs are located in an LDAP directory, PKIX mandates that the distribution point
name must be an LDAP Uniform Resource Identifier (URI) e.g.
ldap://directory.ja.net/cn=distribution point, c=gb.

Secondly, for hierarchical PKIs, subordinate CAs may include in their issued
certificates a list of their superior CAs up to the trusted root of the hierarchy, along
with the LDAP URIs of their directory services e.g.
ldap://superior.directory.com/o=superiorCA, dc=myorg, dc=com. This information is
held in a newly defined Authority Information Access extension.

Finally, for cross certified CAs, the cross certificate may hold the location of the
certified CA’s LDAP directory in a newly defined Subject Information Access
extension e.g. ldap://ldap.otherCA.com/o=crossCA, dc=orgname, dc=com.

Unfortunately, at this point in time, the PKI defined extensions are not widely
implemented. Certainly if the CRL Distribution Points extension had been widely
supported, there would not have been the huge problem experienced by Microsoft
when in March 2001 it was publicised that Verisign had been duped into issuing two
code signing certificates in the name of Microsoft, to a non-Microsoft employee
(CERT Advisory Note CA-2001-04). Once Verisign had discovered their error and
revoked the certificates, PKI clients could have automatically retrieved the CRLs.

Distributed authentication
X.500 defines three mechanisms for distributed authentication. Two rely on the
directory servers having a trust relationship between themselves, and all rely on them

 8

knowing each others’ credentials. In the first mechanism, the user binds to his local
server and is authenticated by it. The level of authentication could be none, password
or digital signature based. The user then sends its request to the local server. If the
local server is unable to fulfil the request, it binds to the remote server and chains the
user’s request to the latter. It tells the remote server the name of the user and the level
of authentication that it has performed. The remote server then allows the user to have
access to the appropriate amount of directory data, as directed by its access control
policy. In the second mechanism, which is only designed for password based
authentication, the user binds to a remote server using the same credentials that it
would normally use for its local directory server. The remote server binds to the local
server, and after establishing a trusted link, issues a Compare operation to the local
server, passing the user’s credentials. The local server is then in a position to check
these credentials and pass a True/False reply back to the remote server. (Note that this
latter method can only work securely if the link is secure, or the credentials are
encrypted prior to transfer.) The third mechanism relies on the user sending digitally
signed requests to its local server, which in the case of non-fulfilment, are chained to
the remote server. The remote server must then validate the digital signature on the
request, and fetch any CRLs from the local server as appropriate.

LDAP does not have a standardised way of performing distributed authentication. It
does not support chaining, which rules out the first mechanism, nor signed operations,
which rules out the third mechanism. LDAP servers could be built to support the
second mechanism, but it has to be said that this is the weakest of the three X.500
schemes. However, proxy authorisation is a possibility. Proxy authorisation is a
feature of the Simple Authentication and Security Layer (SASL) [8] that is used in
LDAPv3 Bind operations. In a SASL Bind, a client may specify an authorisation
identity that is different from its authentication identity. This allows a server, acting as
an LDAP client, to authenticate to an LDAP server as itself but then to perform an
action on behalf of its user. If the local LDAP server acts as the client, then it can
perform an operation on a remote LDAP server on behalf of its user (see Figure 4).
This mechanism relies on there being a trust relationship between the two LDAP
servers.

LDAP
client

Local
LDAP
Server

Remote
LDAP
Server

User Binds
to local server

Local server Binds
to remote server as
a proxy for the user

Figure 4. LDAP server proxying

Release 2.1 of OpenLDAP supports this proxying feature to the extent that it can act
in the remote server role, but not in the local server role. In order for this to work in a
controlled manner, the OpenLDAP implementation holds the following information:

 9

- authentication information for the local server,
- policy information which controls the user authorisation identities that the

local server is allowed to assert (this minimises the trust relationship that
the remote server must have).

Note that there are a couple of drawbacks to this approach. The first is that
compromise of the local server can result in unauthorised access to the remote server.
The second is that the local server must have separate sessions to the remote server for
each user that it is concurrently acting as a proxy for. This disadvantage is not
suffered by the X.500 distributed authentication schemes one and three, as the local
server does not act as a proxy for the user, but rather chains the user’s request via the
DSP. The DSP carries either the user’s DN in its chaining arguments (mechanism
one) or the user’s signed request (mechanism three). To solve this problem, LDAP
needs to mirror the DN carrying feature of the DSP, by adding a control to each
LDAPv3 chained operation to present the client’s authorisation identity. Such a
control is specified in [11]. This will allow LDAP operations from multiple clients to
share a common connection between the local and remote servers. Whilst OpenLDAP
plans to implement this feature in a subsequent release, again it will only be in the
remote server mode, and not the local server mode. Thus we are still someway from
LDAP servers being capable of building a distributed directory service.

Conclusions
This paper has highlighted the many deficiencies in the LDAP protocols that arise
when they are used to access PKI related information. These are mainly because
LDAP was initially conceived as a protocol to access a distributed X.500 directory.
However, the IETF has been steadily addressing these deficiencies over the past few
years, with the consequence that by the end of 2003 it is anticipated that standard
solutions should be available to address most of them. Unfortunately, specifying
standards on its own is not sufficient to build a distributed LDAP directory service.
Products will still be needed that implement them.

References
[1] Boeyen, S., Howes, T., Richard, P. “Internet X.509 Public Key Infrastructure
Operational Protocols - LDAPv2.” RFC 2559, April 1999
[2] Electronic Messaging Association Challenge 2000 “Report of Federal Bridge
Certification Authority Initiative and Demonstration” DRAFT 101500, August 2000
(Available from http://csrc.nist.gov/pki/documents/emareport_20001015.pdf)
[3] Chadwick, D.W. “Internet X.509 Public Key Infrastructure Operational Protocols
- LDAPv3”. <draft- ietf-pkix- ldap-v3-05.txt>, January 2002.
[4] Chadwick, D.W., Legg, S. “Internet X.509 Public Key Infrastructure, LDAP
Schema and Syntaxes for PKIs <draft-pkix- ldap-pki-schema-00.txt> June 2002.
[5] Chadwick, D.W., Mullan, S. “Returning Matched Values with LDAPv3”, Internet
Draft <draft- ldapext-matchedval-07.txt>, September 2002
[6] Howes, T., Kille, S., Yeong, W., Robbins, C. “The String Representation of
Standard Attribute Syntaxes”. RFC 1778, March 1995
[7] Klasen, N., Gietz, P. “An LDAPv3 Schema for X.509 Certificates” <draft-klasen-
ldap-x509certificate-schema-00.txt> Feb 2002
[8] Myers, J. “Simple Authentication and Security Layer (SASL)”. RFC 2222,
October 1997
[9] Sermersheim, J. “LDAP: The Protocol”, <draft- ietf- ldapbis-protocol-08.txt> June
2002

 10

[10] Wahl, M., Howes, T., Kille, S. “Lightweight Directory Access Protocol (v3)”,
Dec. 1997, RFC 2251
[11] Weltman, R. “LDAP Proxied Authorization Control” <draft-weltman- ldapv3-
proxy-11.txt>, May 2002
[12] Zeilenga, K.“Named Subordinate References in Lightweight Directory Access
Protocol (LDAP) Directories”, RFC 3296, July 2002.

