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Sensor Networks [6, 5] consist of a large number of low-cost low-power devices, each with sufficient hardware to monitor 
one or more variables and send and receive the readings for these variables to other devices.  Wireless sensor networks are 
becoming a powerful tool for monitoring a range of diverse situations [3, 8].  While the devices themselves are mostly still in 
the prototype stage [7] the theory surrounding these devices is a fast moving area of research.  Ad-Hoc networks are a 
collection of mobile devices with wireless networking capability that may form a temporary peer to peer, multi-hop network 
without the aid of any established infrastructure or centralised administration. Sensor networks typically make use of ad-hoc 
networking, but normally lack the processing power to utilize the full richness of many proposed ad-hoc network protocols.  
 
In the DTI funded project SECOAS [14] we are investigating how sensor networks can be used to collect rich datasets in an 
offshore environment, thereby enabling more accurate models of poorly underst ood interactions between coastal 
sedimentation processes. This will involve a new way of thinking for coastal oceanographers, marine scientists, managers 
and engineers.  It is vital therefore not to further overload these users with the need to learn how t o configure complex 
networks.  We are therefore aiming to build a self-organising, collegiate system. We believe it is desirable that sensor 
network devices have as much autonomy as possible.  Given the mobility of devices and increased likelihood of failure, 
devices that can learn, adapt and make sensible decisions for themselves will be far more robust and their resulting 
measurements should be more reliable.  As the number of devices increase, as envisaged in “Smart dust” [6] type research, 
the idea that each devices behaviour can be remotely managed on an individual device level become untenable.  In addition 
each sensing scenario will have it’s own very specific characteristics depending on mobility of devices, time span of the 
sensing task, inhospitability of the environment, etc.  For example fish move very quickly, glaciers very slowly so the 
optimal algorithms and application of sensor networks for each task will be different.  Every sensing task must therefore be 
approached in a requirements centered way.  Our hope is that our autonomy based approach will enable this specialization to 
be evolved in-situ with minimal manual intervention. 
 
We have previously proposed and simulated evolutionary algorithms for use in an active network [10, 9]. We are now 
applying these algorithms to sensor networks.  In our current model there are up to 100 sensing devices. Each sensing device 
can make 3 different measurements (pressure, temperature and turbidity), forward measurements to neighbours, delete 
measurements from its stack, combine (average) measurements, or idle.  Each device is expected to minimize its battery 
usage (extend life) whilst collecting as many measurements as possible and ensuring they get relayed to one of 3 base 
stations (sink). To enable efficient routing to the sinks, nodes carry out an assessment (using a gossip based mechanism) of 
their nearest neighbours and discover a hierarchical level for themselves based on the number of hops to the sink.  To 
minimize collisions neighbours at a similar level form groups (a quorum algorithm), which only send data once.  Individual 
nodes also evolve internal rules for probability of executing each behaviour, and successful nodes share these with their 
neighbours using “plasmids” i.e. headers attached to data packets.  Users control activity using high level policies – for 
example in the case we present here the user has declared that turbidity measurements have high priority and pressure 
measurements have low priority.  This allows the network to optimize its use of limited resources as shown in Fig 1 
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Figure 1.  Number of packets sent and percentage dropped as ‘bandwidth’ increases 



 
Hopefully it is clear from the figure that when bandwidth is constrained the network automatically drops a higher percentage 
of the low priority traffic, and delivers most of the high priority traffic.  Taking this research further will involve: 
Fine tuning the learning algorithm for different scenarios.   
Carrying out further investigations of how the different learning approaches (ie. local rule based, genetic) interact when they 
are carried out in parallel. 
Making routing decisions adaptive and subject to the same evolutionary pressures as other decisions. 
Adding ‘listening’ to the list of possible states a node can be in.  This means nodes can only accept data when they are in the 
listening state. 
Automating the reward and penalty functions, so they too and configured in a hands off way. 
Implementing the decision making solutions onto real sensor network devices 
 
This will all be carried out as part of the SECOAS project [14] 
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