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Abstract

Suppose 〈Ai,~ci〉 are planar (convex) H-polyhedra, that is, Ai ∈ Rni×2

and ~ci ∈ Rni . Let Pi = {~x ∈ R2 | Ai~x ≤ ~ci} and n = n1 + n2. We present
an O(n logn) algorithm for calculating an H-polyhedron 〈A,~c〉 with the
smallest P = {~x ∈ R2 | A~x ≤ ~c} such that P1 ∪ P2 ⊆ P .

Keywords: convex hull, computational geometry
C. R. Categories: I.3.5 [Computational Geometry and Object Modeling]:
Boundary representations; Geometric algorithms, languages, and systems, I.3.6
[Methodology and Techniques]: Graphics data structures and data types, F.3.1
[Specifying and Verifying and Reasoning about Programs]: Invariants, Mechan-
ical verification.

1 Introduction

The convex hull problem is classically stated as the problem of computing the
minimal convex region that contains n distinct points {〈xi, yi〉}ni=1 in the Eu-
clidean plane R2. The seminal work of Graham [4] showed that the convex
hull problem can be solved in O(n log n) worse-case running time. It inspired
many to elaborate on, for example, the three and more dimensional case, spe-
cialised algorithms for polygons, on-line variants, etc. [8, 10]. The convex hull
of polytopes (bounded polyhedra) can be calculated straightforwardly by taking
the convex hull of their extreme points. However, calculating the convex hull
for polyhedra turns out to be more subtle due to a large number of geometric
configurations. Even for planar polyhedra, the introduction of rays makes it
necessary to handle polyhedra such as a single half-space, a single ray, a single
line, two facing (not coinciding) half-spaces, etc., all of which require special
handling in a point-based algorithm. The problem is exacerbated by the num-
ber of ways these special polyhedra can be combined. In contrast, we present
a direct reduction of the convex hull problem of planar polyhedra to the con-
vex hull problem for a set of points [4]. By confining all input points to a box



and applying the rays to translate these points outside the box, a linear pass
around the convex hull of all these points is sufficient to determine the result-
ing polyhedron. By adopting the classic Graham scan algorithm, our algorithm
inherits its O(n log n) time complexity. The standard tactic for calculating the
convex hull of H-polyhedra is to convert the input into an intermediate ray and
vertex representation. Two common approaches to this conversion problem are
the double description method [7] (also known as the Chernikova algorithm [3])
and the vertex enumeration algorithm of Avis and Fukuda [2]. The Chernikova
method leads to a cubic time solution for calculating the convex hull of planar
H-polyhedra [6] whereas the Avis and Fukuda approach runs in quadratic time.

The remaining sections are organised as follows: A self-contained overview
of the algorithm, together with a worked example, is given in the next Section.
A formal proof of correctness is given in Section 3. Section 4 concludes.

2 Planar Convex Hull Algorithm

The planar convex hull algorithm takes as input two H-polyhedra and outputs
the smallest H-polyhedron which includes the input. The H-representation of
a planar polyhedron corresponds to a set of inequalities each of which takes
the form ax + by ≤ c, where a, b, c ∈ R and either a 6= 0 or b 6= 0. Let Lin
denote the set of all such inequalities. The vector 〈a, b〉 is orthogonal to the
boundary of the halfspace induced by ax + by ≤ c and points away from the
feasible space. This vector induces an ordering on halfspaces via the orientation
mapping θ. This map θ : Lin → [0, 2π) is defined such that θ(ax + by ≤
c) = ψ where cos(ψ) = a/

√
a2 + b2 and sin(ψ) = b/

√
a2 + b2. The mapping θ

corresponds to the counter-clockwise angle which the half-space of x ≤ 0 has
to be turned through to coincide with that of ax + by ≤ c. Sorting half-spaces
by angle is the key to efficiency in our algorithm. However, θ is only used for
comparing the orientation of two half-spaces. To aid the explanation of the
algorithm, the concept of angular difference e1]e2 between two inequalities e1

and e2 is introduced as the counter-clockwise angle between θ(e1) and θ(e2).
More precisely e1]e2 = (θ(e2)− θ(e1)) mod 2π. Note that this comparator can
be realized without recourse to trigonometric functions [9].

The algorithm makes use of a number of simple auxiliary functions. The
function intersect(a1x+ b1y ≤ c1, a2x+ b2y ≤ c2) calculates the set of intersec-
tion points of the two lines a1x + b1y = c1 and a2x + b2y = c2. In practice an
implementation of this function only needs to be partial since it is only applied
in the algorithm when the result set contains a single point. The remaining
auxiliaries are listed in Figure 1. The connect function generates an inequal-
ity from two points subject to the following constraints: the halfspace induced
by connect(p1, p2) has p1 and p2 on its boundary and if p1, p2, p3 are ordered
counter-clockwise then p3 is in the feasible space. The notation p1, p2 is used
to abbreviate connect(p1, p2). Furthermore, the predicate saturates(p, e) holds
whenever the point p is on the boundary of the halfspace defined by the inequal-
ity e. Finally, the predicate inBox (s, p) determines whether the point p occurs



1 function extreme(E) begin
2 sort E to obtain e0 . . . , en−1 such that θ(e0) < θ(e1) < . . . < θ(en−1);
3 V := R := ∅;
4 if E = {ax+ by ≤ c} then R := {〈−a/

√
a2 + b2,−b/

√
a2 + b2〉};

5 for i ∈ [0, n− 1] do let ei ≡ ax+ by ≤ c in begin
6 // are the intersection points of this inequality degenerated?
7 dpre := (θ(ei)− θ(ei−1 mod n)) mod 2π ≥ π ∨ n = 1;
8 dpost := (θ(ei+1 mod n)− θ(ei)) mod 2π ≥ π ∨ n = 1;
9 if dpre then R := R ∪ {〈b/

√
a2 + b2,−a/

√
a2 + b2〉};

10 if dpost then R := R ∪ {〈−b/
√
a2 + b2, a/

√
a2 + b2〉};

11 else V := V ∪ intersect(ei, e(i+1) mod n);
12 if dpre ∧ dpost then V := V ∪ {v} where v ∈ {〈x, y〉 | ax+ by = c}
13 end
14 return 〈V,R〉
15 end
16
17 function connect(〈x1, y1〉, 〈x2, y2〉)
18 return (y2 − y1)x+ (x1 − x2)y ≤ (y2 − y1)x1 + (x1 − x2)y1

19
20 function saturates(〈x1, y1〉, ax+ by ≤ c)
21 return (ax1 + by1 = c)
22
23 function inBox (s, 〈x, y〉)
24 return |x|<s ∧ |y|<s

Figure 1: Convex hull algorithm for planar polyhedra

within a square of width 2s that is centred on the origin.
The algorithm divides into a decomposition and a reconstruction phase.

The hull function decomposes the input polyhedra into their corresponding
ray and vertex representations by calling the function extreme in lines 3 and
4. The remainder of the hull function reconstructs a set of inequalities whose
halfspaces enclose both sets of rays and points. The functions extreme and
hull are presented in Figures 1 and 2, respectively. The algorithm requires the
input polyhedra to be non-redundant. This means that no proper subset of
the inequalities induces the same space as the original set of inequalities. The
algorithm itself produces a non-redundant system.

To illustrate the algorithm consider Figure 3. The polyhedronE = {e0, e1, e2}
and the polytope E′ = {e′0, . . . , e′5} constitute the input to the hull function.
They are passed to the function extreme at line 28 and 29. Within extreme the
inequalities of each polyhedron are sorted at line 2. Note that for ease of pre-
sentation the indices coincide with the angular ordering. The loop at lines 5–13
examines the relationship of each inequality with its two angular neighbours. If
dpost is false, the intersection point intersect(ei, e(i+1) mod n) is a vertex which is



25 function hull(E1, E2) begin
26 // assertion: each Ei is satisfiable and non-redundant
27 if E1 = ∅ ∨ E2 = ∅ then return ∅;
28 〈P1, R1〉 := extreme(E1);
29 〈P2, R2〉 := extreme(E2);
30 P := P1 ∪ P2;
31 R := R1 ∪R2; // Note: |R| ≤ 8
32 s := max{|x|, |y| | 〈x, y〉 ∈ P} + 1;
33 // add a point along the ray, that goes through x, y
34 // and is outside the box
35 Q := P ;
36 for 〈x, y, a, b〉 ∈ P ×R do Q := Q ∪ {〈x+ 2

√
2sa, y + 2

√
2sb〉};

37 // construct four inequalities in the zero dimensional case
38 if Q = {〈x1, y1〉} then return {x ≤ x1, y ≤ y1,−x ≤ −x1,−y ≤ −y1};
39 // the centre of gravity qp is feasible but not a vertex (since |Q| > 1)
40 qp := 〈

∑
〈x,y〉∈Q x/|Q|,

∑
〈x,y〉∈Q y/|Q|〉;

41 // qp is pivot point for sorting: ∀i ∈ [0, n−2] . θ(qp, qi) ≤ θ(qp, qi+1)
42 〈q0, . . . , qn−1〉 := sort(qp, Q)
43 // identify the m vertices qki where 0 ≤ k0 < . . . < km−1 < n
44 〈qk0 , . . . , qkm−1〉 := scan(〈q0, . . . , qn−1〉)
45 Eres := ∅;
46 for i ∈ [0,m− 1] do begin
47 let 〈x1, y1〉 = qki , 〈x2, y2〉 = qk(i+1) mod m

48 let e = connect(〈x1, y1〉, 〈x2, y2〉)
49 // add e to Eres if qki or qk(i+1) mod m is in the box...
50 add := inBox (s, 〈x1, y1〉) ∨ inBox (s, 〈x2, y2〉) ∨m = 2;
51 j := (ki + 1) mod n;
52 while ¬add ∧ j 6= ki+1 do begin
53 // ...or any boundary point is in the box
54 add := saturates(qj , e) ∧ inBox (s, qj);
55 j := (j + 1) mod n;
56 end;
57 if m = 2 ∧ inBox (s, 〈x1, y1〉) then
58 if y1 = y2 then Eres :=Eres ∪ {sgn(x1 −x2)x ≤ sgn(x1−x2)x1}
59 else Eres :=Eres ∪ {sgn(y1 − y2)y ≤ sgn(y1 − y2)y1}
60 if add then Eres := Eres ∪ {e};
61 end
62 end
63 return Eres

64 end

Figure 2: Convex hull algorithm for planar polyhedra
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Figure 3: The different stages of the polyhedra convex hull algorithm.



added at line 11. Conversely, if dpost is true, the intersection point is degenerate,
that is, either E contains a single inequality or the angular difference between
the current inequality and its successor is greater or equal to π. In the example
two vertices are created for E, namely v1 and v2 where {v1} = intersect(e0, e1)
and {v2} = intersect(e1, e2). The intersection point intersect(e2, e0) is degener-
ate, thus it is not added to V ; in fact the point lies outside the feasible space. Six
vertices are created for E′. Rays are created at line 9 and 10 if the intersection
point is degenerate. The two rays along the boundaries of ei and e(i+1) mod n

are generated in loop iteration i when dpost is true and iteration (i+ 1) mod n
when dpre is true. In our example dpost is true for e2, generating a ray along
the boundary of e2 which recedes in the direction of the first quadrant, whereas
dpre is only true for e0 yielding a ray along e0 which recedes towards the second
quadrant. No rays are created for the polytope E′.

In general both flags might be true. In this circumstance the current inequal-
ity ei cannot define a vertex. In this case an arbitrary point on the boundary
of the halfspace of ei is created at line 12 to fix its representing rays in space.
Another case not encountered in this example arises when the polyhedron con-
sists of a single halfspace (|E| = 1). In this case a third ray is created (line 4) to
indicate on which side the feasible space lies. Note that the maximum number
of elements in R never exceeds four, which occurs when the input defines two
facing halfspaces.

The remainder of the hull function is dedicated to the reconstruction phase.
The point and ray sets, returned by extreme, are merged at line 30 and 31. At
line 32 the size of a square is calculated which includes all points in P . The
square has 〈s, s〉, 〈−s, s〉, 〈s,−s〉, 〈−s,−s〉 as its corners. The square in the
running example is depicted in all three frames of Figure 3 and the origin is
marked with a cross. Each point p ∈ P is then translated by each ray r ∈ R
yielding the point set Q. Translated points appear outside the square since all
normalised rays are translated by the length of the diagonal 2

√
2s of the square.

The translation process for the worked example is depicted in the second frame.
Line 38 is not relevant to this example as it traps the case when the output
polyhedron consists of a single point. Line 40 calculates a feasible point qp of
the convex hull of Q which is not a vertex. This point serves as the pivot point
in the classic Graham scan. First, the point set Q is sorted counter-clockwise
with respect to qp. Second, interior points are removed, yielding the indices of
all vertices, in the case of the example k0, . . . , k7. What follows is a round-trip
around the hull which translates pairs of adjacent vertices into inequalities by
calling connect at line 48. Whether this inequality actually appears in the result
depends on the state of the add flag. In our particular example the add flag is
only set at line 50. Whenever it is set, it is because one of the two vertices lies
within the square. The resulting polyhedron consists of the inequalities qk2 , qk3 ,
qk3 , qk4 and qk4 , qk5 which is a correct solution for this example.

In general, the reconstruction phase has to consider certain anomalies that
mainly arise in outputs of lower dimensionality. One subtlety in the two dimen-
sional case is the handling of polyhedra which contain lines. This is illustrated
in Figure 4 where the two inequalities e0, e1 are equivalent to one equation which
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Figure 4: The resulting convex hull contains a line.

defines a space that is a line. Observe from the second frame that no point in the
square is a vertex in the hull of Q. Therefore the predicate inBox does not hold
for the two vertices qk2 and qk3 and the desired inequality qk2 , qk3 is not emitted.
Similarly for the vertices qk4 and qk0 . However, in such cases there always ex-
ists a point in p ∈ Q with qp, qki]qp, p < qp, qki]qp, qk(i+1) mod m

which lies in the
square. Thus it is sufficient to search for an index j ∈ [ki + 1, k(i+1) mod m − 1]
such that qj is both in the square and on the line connecting the vertices qki
and qk(i+1) mod m

. The inner loop at lines 52–56 tests if Q contains such a point
and sets add appropriately.

The one dimensional case is handled by the m = 2 tests at line 50 and 57.
Figure 5 illustrates why the test in line 50 is necessary. Suppose E1 and E2 are
given such that extreme(E1) = 〈{q4, q5}, ∅〉 and extreme(E2) = 〈{q3}, {r,−r}〉
where r is any ray parallel to the line. Observe that all points are collinear, thus
the pivot point is on the line and a stable sort could return the ordering depicted
in the figure. The correct inequalities for this example are Eres = {q0, q8, q8, q0}.
The Graham scan will identify qk0 = q0 and qk1 = q8 as vertices. Since there
exists j ∈ [k0 + 1, k1−1] such that inBox (s, qj) holds, q0, q8 ∈ Eres. In contrast,
although there are boundary points between q8 and q0 the loop cannot locate
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Figure 5: Handling the one-dimensional case.

them due to the ordering. In this case the m = 2 test ensures that add is set,
guaranteeing that q8, q0 ∈ Eres.

The output polyhedron must include qki as a vertex whenever inBox (s, qki)
holds. If inBox (s, qki) holds, the algorithm generates ei−1 = qk(i−1) mod m

, qki and
ei = qki , qk(i+1) mod m

. If ei−1]ei < π, then {qki} = intersect(ei−1, ei) and the
vertex qki is realized. Observe that if m = 2, ei−1]ei = π which necessitates an
additional inequality to define the vertex qki . This is the rôle of the inequality
generated on lines 58 or 59. Observe that this inequality e guarantees ei−1]e <
π and e]ei < π which is sufficient to define qki .

The zero dimensional case corresponds to the case of when both input poly-
hedra consist of the single point v. Line 38 traps this case and returns a set
of inequalities describing {v}. Observe that the zero and one dimensional case
only require minute changes to the general two dimensional case.

As a note on implementation, observe that the search for a pivot point at
line 40 can be refined. One method for finding a definite vertex is to search for
a point with extremal coordinates [1]. However, this process requires all points
to be examined. The presented algorithm follows Graham [4] in creating an
interior point as the pivot point. This does not necessarily require the whole
point set to be examined. By choosing two arbitrary points q1, q2, it is sufficient
to search the point set for a point qi which does not saturate the line q1, q2. The
centre of the triangle q1, q2, qi is guaranteed to be an interior point of Q.

Note also that the sorting in extreme is unnecessary if the input inequalities
are consecutive in terms of angle. In particular, the output of one run of the
algorithm can serve as an input to another without applying the sort at line 2.

Finally observe that the inner loop at lines 52–56 can often be skipped: if the
line between qki and qk(i+1) mod m

does not intersect with the square, inBox (s, q)
cannot hold for any q ∈ Q. Hence add will not be set at line 54 and the inner
loop has no effect.



3 Proof of Correctness

Section 3.1 introduces the mathematical language necessary for expressing the
two parts of the proof. The proof itself reflects the structure of the algorithm:
Section 3.2 concerns the conversion of planar H-polyhedra into their ray and
point representations; Section 3.3 argues that the reconstructed polyhedron en-
closes the points and rays generated from the two input polyhedra, and yet is
also minimal.

3.1 Preliminaries

A polyhedron is a set P ⊆ R
d such that P = {~x ∈ Rd | A~x ≤ ~c} for some

matrix A ∈ Rn×d and vector ~c ∈ Rn. An H-polyhedron is a pair 〈A,~c〉 where
A ∈ Rn×d and ~c ∈ Rn that is interpreted by [[.]] as the polyhedron [[〈A,~c〉]] =
{~x ∈ Rd | A~x ≤ ~c}. For brevity we manipulate H-polyhedra as a finite set of
inequalities E = {~a1 · ~x ≤ c1, . . . ,~an · ~x ≤ cn} which is equivalent to the matrix
representation 〈A,~c〉 with A = 〈~a1, . . . ,~an〉T and ~c = 〈c1, . . . , cn〉T . E is said to
be satisfiable if [[E]] 6= ∅ and non-redundant if ∀e ∈ E . [[E \ {e}]] 6= [[E]]. Two
inequalities e, e′ coincide, written c(e, e′), iff there exists ~a ∈ Rd, c ∈ R with
[[{e, e′}]] = {~x ∈ Rd | ~a · ~x = c}.

The convex hull of a finite set of points P = {~p1, . . . , ~pn} ⊆ Rd is defined as
conv(P ) = {

∑n
i=1 λi~pi | 0 ≤ λi∧

∑n
i=1 λi = 1}. Moreover, the cone of a finite set

of vectors R = {~r1, . . . , ~rm} ⊆ Rd is defined as cone(R) = {
∑m
i=1 λi~ri | 0 ≤ λi}.

The Minkowski sum of two sets X,Y ⊆ Rd is defined as X + Y = {~x + ~y |
~x ∈ X ∧ ~y ∈ Y }. Let vert(S) = {p ∈ S | p /∈ conv(S \ {p})}, ray(S) = {r ∈
R
d \{~0} | S+ cone({r}) ⊆ S} and line(S) = {r ∈ ray(S) | −r ∈ ray(S)} denote

the vertices, rays and lines of a convex set S. The following result, accredited
to Motzkin [11], relates the two classic representation of polyhedra.

Theorem 3.1 The following statements are equivalent for any S ⊆ Rd:

1. S = conv(P ) + cone(R) for some finite P,R ⊆ Rd;

2. S = {~x ∈ Rd | A~x ≤ ~c} for some matrix A ∈ Rn×d and vector ~c ∈ Rn.

Our algorithm converts the two (planar) input H-polyhedra Ei into their
rays Ri and points Pi and calculates an H-polyhedron E with the smallest [[E]]
such that [[E]] ⊇ [[E1]] ∪ [[E2]]. In fact [[E]] = conv(P1 ∪ P2) + cone(R1 ∪R2).

3.2 Decomposition

The discussion of the function extreme is organised by the dimension of the
polyhedron. Reoccurring or self-contained arguments are factored out in the
following lemmata. The first lemma states how redundancy can follow from
the angular relationship between three inequalities. Since extreme requires its
input to be non-redundant, useful angular properties of the input inequalities
flow from the lemma.



Lemma 3.1 Suppose ei = aix + biy ≤ ci, i = 1, 2, 3. Let c1 = c3 = 0, c2 ≥ 0.
Then [[{e1, e3}]] ⊆ [[{e2}]] if 0 = θ(e1) < θ(e2) < θ(e3) < π.

Proof. To show [[{e1, e3}]] ⊆ [[{e2}]] it is sufficient to show [[{e1, e3}]] ⊆ [[{a2x+
b2y ≤ 0}]], thus let c2 = 0. Furthermore, w.l.o.g. let e1 ≡ x ≤ 0 (since θ(e1) = 0),
e2 ≡ a2x + y ≤ 0 (since θ(e2) < π) and e3 ≡ a3x + y ≤ 0 (since θ(e3) < π).
Note that a2 = λ1a1 + λ3a3 and b2 = λ1b1 + λ3b3 has the solution λ1 = a2 − a3

and λ3 = 1. Due to b2 = 1, a2 = cot−1(θ(e2)) and similarly a3 = cot−1(θ(e3)).
Because θ(e2) < θ(e3) and cot is an anti-monotone on (0, π), it follows that
a2 > a3, hence λ1 > 0. Let 〈x, y〉 satisfy e1 ≡ x ≤ 0 and e3 ≡ a3x+ y ≤ 0. Due
to λ1x ≤ 0, λ1(x) +λ3(a3x+ y) = (λ1 + a3)x+ y ≤ 0 ≡ e2, thus e2 holds, hence
[[{e1, e3}]] ⊆ [[{e2}]] as required. �

The following lemma states that there is an injection between vertices and in-
equalities. This result is used to show that the loop in extreme does indeed
generate all vertices of the input polyhedron.

Lemma 3.2 Let E = {e0, . . . , en−1} be non-redundant and ordered by θ and
v ∈ vert([[E]]). Then there exists ei ∈ E such that {v} = intersect(ei, ei′) and
ei]ei′ < π where i′ = (i+ 1) mod n.

Proof. Let E′ ⊆ E contain those inequalities that v saturates. Note that
|E′| ≥ 2, in particular there exist e, e′ ∈ E′ with e]e′ /∈ {0, π}, otherwise
[[E′]] \ {v} is not convex. Choose ei, ek ∈ E′ such that ei]ek < π. Suppose for
the sake of a contradiction that k 6= (i + 1) mod n. Then ej ∈ E \ E′ exists
with ei]ej < ei]ek. W.l.o.g. assume that θ(ei) = 0 and v = 〈0, 0〉. Then
ei]ej < ei]ek reduces to 0 = θ(ei) < θ(ej) < θ(ek) < π. Lemma 3.1 implies
[[E \ {ej}]] ⊆ [[E]] which contradicts the assumption that E has no redundant
inequalities. Thus k = (i+ 1) mod n = i′ �

The following result also builds on Lemma 3.1 and complements the previous
lemma in that it states when adjacent inequalities have feasible intersections
points. The lemma is used to show that extreme only generates points in [[E]].

Lemma 3.3 Let E = {e0, . . . , en−1} be satisfiable, non-redundant and ordered
by θ. For any ei ∈ E if ei]e(i+1) mod n < π then intersect(ei, e(i+1) mod n) ⊆
[[E]].

Proof. Let ei ∈ E. Since ei is not redundant in E the boundary of ei intersects
with the non-empty convex body [[E \ {ei}]]. Let em ∈ E \ {ei} such that
∅ 6= S = intersect(ei, em) ⊆ [[E \ {ei}]]. Note that if |S| > 1 then E = {ei, em}
with ei]em = π, hence ei]e(i+1) mod n < π never holds. Let {v} = S. It remains
to show that ei and em are adjacent. Suppose that ei]em < π (em]ei < π is
analogous). Assume for the sake of a contradiction there exists el ∈ E \ {ei}
such that ei]el < ei]em. W.l.o.g. v = 〈0, 0〉 and θ(ei) = 0, hence 0 = θ(ei) <
θ(el) < θ(em) < π. Since v ∈ [[E \ {ei}]], v ∈ [[el]] and thus cl ≥ 0 where



el ≡ alx+bly ≤ cl. By Lemma 3.1 el is redundant in E which is a contradiction.
It follows that m = (i+ 1) mod n. �

While the previous lemmata concern points, the following lemma is a statement
about rays. In particular, it states when inequalities give rise to rays.

Lemma 3.4 Let E = {e0 ≡ a0x + b0y ≤ c0, . . . , en−1} be satisfiable, non-
redundant and ordered by θ. Let i′ = (i + 1) mod n, S1 = cone({〈−bi, ai〉,
〈bi′ ,−ai′〉}) and S2 = ray([[E]]). If ei]ei′ > π or |E| ≥ 3 ∧ ei]ei′ = π then
S1 = S2.

Proof. To show S1 ⊆ S2. Choose p ∈ [[E]] such that p saturates ei. For the
sake of a contradiction assume ri = 〈−bi, ai〉 /∈ ray([[E]]). Thus there exists
λ > 0 with p + λri /∈ [[E]]. Set λmax = max{λ > 0 | p + λri ∈ [[E]]}. Note
that v = p + λmaxri is a vertex and by Lemma 3.2 there exists ek ∈ E with
{v} = intersect(ek, e(k+1) mod n) and ek]e(k+1) mod n < π. The latter implies
that k 6= i, therefore i = (k + 1) mod n. Hence e(i−1) mod n = ek does not
contain the ray. W.l.o.g. let θ(ei) = 0 and v = 〈0, 0〉. Then ri = 〈0, 1〉 and
π < θ(e(i−1) mod n) < 2π, hence e(i−1) mod n ≡ a′x + b′y ≤ 0 with b′ < 0. Thus
a′x + b′(λ + y) ≤ 0, hence p + λri ∈ [[{e(i−1) mod n}]] which is a contradiction.
Analogously for ri′ = 〈bi′ ,−ai′〉. Now to show S2 ⊆ S1. Assume there exists
r ∈ ray([[E]]) \ cone({〈−bi, ai〉, 〈bi′ ,−ai′〉}). Consider ei]ei′ > π. Since θ(ei) 6=
θ(ei′) there exists λ1, λ2 ∈ R with r = λ1〈−bi, ai〉+λ2〈bi′ ,−ai′〉. Assume λ2 < 0.
W.l.o.g. let {p} = intersect(ei, ei′) = {〈0, 0〉} and θ(ei) = 0 thus let ei ≡ x ≤ 0.
It follows that π < θ(ei′) < 2π, bi′ ≤ 0 and we set ei′ ≡ a′i′x − y ≤ 0. Thus
r = λ1〈0, 1〉 + λ2〈−1,−a′i′〉 = 〈−λ2, λ1 − λ2a

′
i′〉. Since λ2 < 0, p + r /∈ [[{ei}]]

which contradicts r ∈ ray([[E]]). Analogously for λ1 < 0 with θ(ei′) = 0. Since
λ1 ≥ 0 and λ2 ≥ 0, r ∈ cone({〈−bi, ai〉, 〈bi′ ,−ai′〉}) which is a contradiction.
Now suppose ei]ei′ = π and |E| ≥ 3. W.l.o.g. let θ(ei) = 0, ei ≡ x ≤ |u| and
ei′ ≡ −x ≤ 0. Thus S1 = cone({〈0, 1〉}). Let 〈xr, yr〉 = r and p ∈ [[{ei, ei′}]].
Observe that xr = 0 otherwise there exists λ > 0 with p+ λr /∈ [[{ei, ei′}]]. Now
assume yr < 0. Since |E| ≥ 3, there exists ej ∈ E such that π < θ(ej) < 2π and
thus ej ≡ ajx + bjy ≤ cj with bj < 0. Let p ∈ [[{ej}]], then there exists λ > 0
such that p+ λr /∈ [[{ej}]] which is a contradiction. �

The correctness of the first stage of our algorithm is summarised by the
following proposition. Note that the Minkowski sum conv(V )+∅ always defines
the empty space rather than the polyhedron conv(V ). Thus a null ray 〈0, 0〉
is required to represent a bounded polyhedron. The function extreme avoids
adding this null ray for the sake of improved efficiency. In hull the translation
of points at line 36 by the null ray is replaced by a simple copying step at line
35. However, the null ray still manifests itself in the correctness results.

Proposition 3.1 Let E ⊂ Lin be non-empty, finite, satisfiable and non-redun-
dant. Then extreme(E) = 〈P,R〉 and [[E]] = conv(P ) + cone(R ∪ {〈0, 0〉}).



Note that the following proof handles polyhedra that contain lines as a spe-
cial case. This distinction is not artificial, in fact Klee [5] observed that a closed
convex set that does not contain lines is generated by its vertices and its extreme
rays. (Extreme rays are rays that cannot be expressed by a linear combination
of others.) In order to describe polyhedra which contain lines it is necessary to
create points that are not vertices and rays which are not extreme.
Proof. Let {e0, . . . , en−1} = E such that θ(e0) < θ(e1) < . . . < θ(en−1). Such
an ordering exists since if θ(ei) = θ(ej) for some i 6= j then either [[ei]] ⊆ [[ej ]],
thus [[E \ {ej}]] = [[E]] or vice-versa which contradicts that E is non-redundant.
Let 〈P,R〉 = extreme(E).

• Suppose line([[E]]) 6= ∅. Note that if there exist ei, ej ∈ E with ei]ej < π
then line([[E]]) = ∅, hence E = {e} or E = {e0, e1} ∧ e0]e1 = π.

– Consider E = {e}. The loop is executed only once with dpre =
dpost = true, thus the boundary point p and two rays r1, r2 are
added in line 12, 9 and 10, respectively. The boundary of [[E]] is
{p+λ1r1 +λ2r2 | λi ≥ 0}. The ray r3 added in line 4 points into the
halfspace, thus [[E]] = {p}+ cone({r1, r2, r3}).

– Consider E = {e0, e1} ∧ e0]e1 = π. For each ei, dpre = dpost = true,
hence for each ei the loop generates two rays ri, r′i along the boundary
of ei (lines 9, 10) and one boundary point pi (line 11). The set
conv({p1, p2}) is included in [[E]]. Note that the rays generated in
the second iteration are collinear to those in the first. Thus [[E]] =
conv({p1, p2}) + cone({r1, r

′
1}).

• Suppose E is zero dimensional, hence [[E]] = {v}. Let αi = ei]e(i+1) mod n.
Since

∑n−1
i=0 αi = 2π, it follows that n ≥ 3 since otherwise there exists

i such that αi ≥ π and by Lemma 3.4 it follows that ray([[E]]) 6= ∅.
By Lemma 3.1, it follows that αi + α(i+1) mod n ≥ π, which for all ei is∑n−1
i=0 (αi+α(i+1) mod n) ≥ nπ. However, nπ ≤

∑n−1
i=0 (αi+α(i+1) mod n) =

2
∑n−1
i=0 αi = 4π, hence n ≤ 4.

– Consider E = {e0, e1, e2, e3}. Observe that for all 0 ≤ i ≤ 3,
αi + α(i+1) mod n = π and intersect(ei, e(i+1) mod n) = {v}, hence
c(e0, e2) ∧ c(e1, e3). In all loop iterations dpre = dpost = false thus
only vertex {v} = P is generated (line 11).

– Consider E = {e0, e1, e2}. Observe that for all i, ei]e(i+1) mod n < π,
otherwise by Lemma 3.4, ray([[E]]) 6= ∅. Thus in each iteration i,
dpost = dpre = false and P = {v} = intersect(ei, e(i+1) mod n) is
generated. Hence [[E]] = {v}+ cone({〈0, 0〉}).

• Suppose E is one dimensional and line([[E]]) = ∅. Since the boundary of
[[E]] contains infinitely many points and |E| = n (which is finite), there
exists e ∈ E such that p1, p2 ∈ [[E]] where p1 6= p2 and p1 and p2 saturate
e. In fact there are infinitely many boundary points on the line between



p1 and p2 which saturate e. Observe [[E]] contains no interior points, hence
[[E]] consists only of boundary points. Therefore there exists e′ ∈ E that
saturates infinitely many of these points and for which c(e, e′) holds. As
we assume that line([[E]]) = ∅, |E| < 2. Due to non-redundancy, there
exists at most one ei ∈ E with 0 < e]ei < π. Similarly for e′. Hence
3 ≤ |E| ≤ 4 follows.

– Consider E = {e0, e1, e2}. Let i ∈ [0, 2] such that c(ei, e(i+1) mod n)
holds. On iteration i the loop generates a ray r along the boundary of
[[ei]] in line 10. A collinear ray is generated in iteration (i+ 1) mod n
for e(i+1) mod n on line 9. It is in this and iteration (i+2) mod n where
{v} = intersect(e(i+1) mod n, e(i+2) mod n) = intersect(e(i+2) mod n, ei)
is added to P . Thus [[E]] = {v}+ cone({r}).

– Consider E = {e0, e1, e2, e3}. Let i ∈ [0, 3] such that c(ei, e(i+2) mod n)
holds. In all four iterations dpre = dpost = false holds, resulting in
two vertices resulting from the intersection of adjacent inequalities:
{v1}= intersect(ei, e(i+1) mod n) = intersect(e(i+1) mod n, e(i+2) mod n),
{v2}= intersect(e(i+2) mod n, e(i+3) mod n) = intersect(e(i+3) mod n, ei).
Hence [[E]] = conv({v1, v2}) + cone({〈0, 0〉}).

• Suppose that E is two dimensional and that none of the preceeding cases
apply.

– Since c never holds for |E| > 4 the previous cases deal with all e, e′ ∈
E where c(e, e′) holds. Because [[E]] does not consist of a single point
described by three inequalities, it must be two dimensional.

– Let v ∈ V = vert([[E]]). By Lemma 3.2 there exists ei ∈ E such
that ei]e(i+1) mod n < π and {v} = intersect(ei, e(i+1) mod n). Then
dpost is false in iteration i, hence v ∈ P , thus V ⊆ P . By Lemma 3.3
P ⊆ [[E]]. If for all i, ei]e(i+1) mod n < π holds then [[E]] = conv(P )+
cone(〈0, 0〉). Otherwise let i ∈ [0,m− 1] such that ei]e(i+1) mod n ≥
π. Then dpost will be true in iteration i and dpre will hold in iteration
(i + 1) mod n yielding rays that are collinear to r1 = 〈−bi, ai〉 and
r2 = 〈b(i+1) mod n,−a(i+1) mod n〉. Since the previous cases do not
apply, whenever ei]e(i+1) mod n = π, |E| ≥ 3 hence Lemma 3.4 can
be applied. It follows that ray([[E]]) = cone({r1, r2}), hence [[E]] =
conv(P ) + cone({r1, r2}).

�

3.3 Reconstruction

One advantage of the point and ray representation (over one that makes lines
explicit) is that extreme naturally generates lines as two opposing rays in inde-
pendent iterations, thus an explicit line case is not required. The remainder of



the hull function combines the points and rays of the two input polyhedra to
construct a corresponding set of inequalities. The advantage of the simplified
representation carries over to the reconstruction phase in that opposing rays
from different polyhedra need not be recognised and reconstituted as a line.

Theorem 3.2 Given E1, E2 ⊂ Lin be non-empty, finite, satisfiable and non-
redundant, Eres = hull(E1, E2) is non-redundant and the smallest Eres ⊂ Lin
with [[Eres]] ⊇ [[E1]] ∪ [[E2]] such that for all E ∈ Lin , [[E]] ⊇ [[E1]] ∪ [[E2]] ⇒
[[Eres]] ⊆ [[E]].

Proof. The case for E1 = ∅ or E2 = ∅ on line 27 is trivial, thus assume
E1 ∪E2 6= ∅ and that lines 28–35 are executed. Note that for all r ∈ R, |r| = 1
due to the normalisation in extreme. Thus (P+{2

√
2sr | r ∈ R})∩(−s, s)2 = ∅.

Hence after line 12 the predicate inBox (s, p) holds whenever p ∈ P = Q \ (P +
{2
√

2sr | r ∈ R}). Line 38 handles the zero dimensional case, hence from line
39 onwards |Q| > 1. The arithmetic mean qp of all points is calculated in
line 40. This point serves as reference when comparing two points for counter-
clockwise ordering. Observe that qp ∈ conv(Q), in particular qp is not on its
boundary if conv(Q) is two dimensional. The latter ensures for all boundary
points q1, q2 ∈ conv(Q), θ(qp, q1) 6= θ(qp, q2), thus line 18 yields a total ordering
on the boundary points in the two dimensional case. Line 44 performs the classic
Graham scan which identifies the vertices of conv(Q).

• To show [[Eres]] ⊇ [[E1]] ∪ [[E2]]. In particular, show [[Eres]] ⊇ [[E1]], i.e. for
all e ∈ Eres , [[{e}]] ⊇ [[E1]].

– To show conv(Q) ⊆ [[{e}]]. Suppose e is added in line 60. Then
the flag add was true and e = connect(qki , qk(i+1) mod m

). For the
sake of a contradiction, suppose there exists qkj /∈ [[{e}]] such that
j /∈ {i, (i+ 1) mod m}. W.l.o.g. let θ(qp, qkj ) < θ(qp, qki). There
exists a line through qp and qkj which intersects the boundary of e at a
point z. Then qkj ∈ conv({z, qk(i+1) mod m

}) which contradicts that qki
is a vertex. Since all qk0 , . . . , qkm−1 ∈ [[{e}]] it follows that conv(Q) ⊆
[[{e}]]. Furthermore it is easy to verify that the inequality e added in
line 58 or 59 holds for both {qk0 , qk1} = Q, hence conv(Q) ⊆ [[{e}]].

– To show cone(R) ⊆ ray([[{e}]]).
∗ Suppose m > 2. If either add was set at line 50 or line 54, there

exists qj ∈ Q which saturates e such that inBox (s, qj) holds,
hence qj ∈ P . Let r ∈ R. Then qj + 2

√
2sr ∈ conv(Q) ⊆ [[{e}]].

Since qj saturates e, it follows that r ∈ ray([[{e}]]).
∗ Suppose m = 2. Assume that inBox (s, qk0) and inBox (s, qk1)

both do not hold, then there exist p ∈ P and r ∈ R with qk0 =
p + 2

√
2sr. Note that since m = 2, p saturates e. Continue as

above. Assume e was added in lines 58–59. Observe that qj = qki
saturates e. Again, continue as in the first case.



Thus [[E1]] = conv(P1)+cone(R1) ⊆ conv(P )+cone(R) ⊆ [[{e}]]. Similarly
for E2. Thus [[Eres]] ⊇ [[E1]] ∪ [[E2]].

• To show for all E ⊂ Lin , [[E]] ⊇ [[E1]]∪ [[E2]]⇒ [[Eres]] ⊆ [[E]]. For the sake
of a contradiction suppose there exists p ∈ [[Eres]] such that p /∈ conv(P )+
cone(R). Hence for all e ∈ Eres, p ∈ [[{e}]]. Let p′ ∈ conv(P ) + cone(R)
such that |p− p′| is minimal. Observe that p′ is unique due to convexity.

– Suppose p′ ∈ vert(conv(P )+cone(R)). Hence there exists i ∈ [0,m−
1] such that p′ = qki . Assume that inBox (s, qki) does not hold. Then
there exists p′′ ∈ P , r ∈ R and λ > 0 such that qki = p′′ + λr.
Since [[Eres]] ⊇ conv(P ) + cone(R), p′′ + 2λr ∈ [[Eres]], thus qki ∈
conv({p′′, p′′ + 2λr}) which is a contradiction, hence inBox (s, qki)
holds. Thus the flag add is set on line 54 in loop iteration (i −
1) mod m and i, hence the inequalities e(i−1) mod n = qk(i−1) mod m

, qki
and ei = qki , qk(i+1) mod m

are added to Eres.

∗ Suppose ei−1]ei < π. Then {qki} = intersect(ei−1, ei). Due to
convexity |qk(i−1) mod m

− p| > |qki − p| and |qk(i+1) mod m
− p| >

|qki − p|. Hence p′ = qki is the closest point to p in the space
[[{e(i−1) mod n, ei}]]. But this implies that p /∈ [[Eres]] which is a
contradiction.
∗ Suppose ei−1]ei = π. Then qk(i−1) mod m

= qk(i+1) mod m
, thus m =

2. Note that p ∈ [[{ei−1, ei}]] otherwise p /∈ Eres. Since qki ∈ P ,
inBox (s, qki) holds and line 58 or 59 adds an inequality e ∈ Eres

with {qki} = intersect(ei−1, e) = intersect(e, ei). Observe that
p /∈ [[{e}]] otherwise p ∈ conv({qki , qk(i+1) mod m

}), thus p /∈ [[Eres]].

– Suppose p′ /∈ vert(conv(P )+cone(R)), thus p′ is a boundary point of
conv(P ) + cone(R). There exists a line L ⊂ R2 such that p′ ∈ L and
conv(P )+cone(R)\L is convex (but not closed). There exists a loop
iteration i such that the boundary of e = connect(qki , qk(i+1) mod m

) is
exactly L. Since conv(P ) + cone(R) ⊆ [[{e}]], p /∈ [[{e}]].
∗ Suppose inBox (s, qki) or inBox (s, qk(i+1) mod m

) holds. The flag
add is true, thus e ∈ Eres and p /∈ [[Eres]].
∗ Suppose neither inBox (s, qki) nor inBox (s, qk(i+1) mod m

) holds.
There exists qj ∈ P such that qki = qj + λr for some λ > 0 and
r ∈ R. Due to the ordering of the points, ki < j < k(i+1) mod m

whenever conv(P )+cone(R) is two dimensional. Thus add is set
in line 54. If conv(P ) + cone(R) is one dimensional, m = 2 and
add is set in line 49. In both cases e ∈ Eres and thus p /∈ [[{e}]].

It remains to show that Eres is non-redundant. Note that the loop at lines
46–62 iterates once for each vertex qki , creating inequalities ei = qki , qk(i+1) mod m

.
For all i 6= j, θ(ei) 6= θ(ej) due to the fact that qk0 , . . . , qkm−1 are consecutive
vertices of the hull of conv(Q), thus {e0, . . . , em−1} has no redundancies. Now
consider the inequality e′i added at line 58 or 59. Since m = 2, ei]e(i+1) mod m =



π and since θ(ei) < θ(e′i) < θ(e(i+1) mod m), the inequality e′i is not redundant.
Hence Eres ⊆ {e0, e

′
0, . . . , em−1, e

′
m−1} is non-redundant. �

The running time of the algorithm is O(n log n) where n = |E1|+ |E2|. After
the sorting step at line 2 in extreme, each inequality generates at most two rays
and one point. Thus extreme is in O(n log n). The flag dpre is true if the angle
between two consecutive inequalities is at least π. Thus dpre can only be true
in at most two loop iterations. Similarly for dpost . Hence extreme returns at
most four rays for each polyhedron, thus |R| ≤ 8 at line 31 and O(|Q|) = O(n).
The dominating cost in the hull function is the sorting step at line 42 which we
assume is in O(n log n). The scan is linear [4] and partitions the point set Q into
vertices and non-vertices. The loop at lines 46–62 runs once for each vertex,
whereas the inner loop at lines 52–56 runs at most once for each non-vertex. It
follows that the overall running time is in O(n log n).

4 Conclusion

An O(n log n) algorithm for calculating the convex hull of planar H-polyhedra
has been presented, thereby improving on existing approaches. The algorithm
applies a novel box construction which reduces the problem to calculating the
convex hull of a set of points. Implementing the algorithm exposed a number
of subtleties which motivated a complete proof of the algorithm.
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