
Assessing the Performance of Two Immune Inspired
Algorithms and a Hybrid Genetic Algorithm for

Function Optimisation

Jon Timmis
Computing Laboratory

University of Kent
Canterbury. Kent. CT2 7NF. UK.

J.Timmis@kent.ac.uk

Camilla Edmonds
Computing Laboratory

University of Kent
Canterbury. Kent. CT2 7NF. UK.
camillaedmonds@hotmail.com

Johnny Kelsey
Computing Laboratory

University of Kent
Canterbury.Kent. CT2 7NF. UK.

jk34@kent.ac.uk

Abstract- Do Artificial Immune Systems (AIS) have
something to offer the world of optimisation? Indeed
do they have any new to offer at all? This paper
reports the initial findings of a comparison between
two immune inspired algorithms and a hybrid genetic
algorithm for function optimisation. This work is part
of ongoing research which forms part of a larger
project to assess the performance and viability of
AIS. The investigation employs standard benchmark
functions, and demonstrates that for these functions
the opt-aiNET algorithm, when compared to the B-
cell algorithm and hybrid GA, on average, takes
longer to find the solution, without necessarily a
better quality solution. Reasons for these differences
are proposed and it is acknowledge that this is
preliminary empirical work. It is felt that a more
theoretical approach may well be required to
ascertain real performance and applicability issues.

I. INTRODUCTION

The field of Artificial Immune Systems (AIS) has been
around for approximately 10 years [3]. There are many
algorithms that are being developed within this area and it is
hard to not only see the difference between algorithms, but
also assess where some perform better than others (applied
to the same problem). Indeed, a certain amount of criticism
has been levelled at the field of AIS as not having anything
new to offer in terms of quality of solutions offered or a
niche application: this criticism to some degree is fair.
Therefore, we have begun work to assess the usefulness and
quality of AIS that are in the literature and identify their
viability when compared against standard techniques (and
against other AIS themselves). However, within AIS, there
are a number of alternative algorithms for a given area: there
is no one standard algorithm for AIS, so comparison is a
large and time consuming job. To this end, we have began
by selecting just two immune inspired algorithms for
comparison with a standard hybrid genetic algorithm: aiNET
[2] and the B-cell algorithm (BCA) [14]. These are then
benchmarked against a standard hybrid genetic algorithm.

These two were chosen, for a number of reasons. First, it
would seem that aiNET has received a great deal of
attention in the AIS literature and has been used in a
number of ways [2,10,11] to name a few. Secondly, work
in [14] claimed excellent results on a number of
functions. Therefore, it seemed a sensible approach to
assess these two algorithms first. In addition, we feel that
within a new area such as AIS, reproducing results of
previously published work is good practice, as often small
problems can be highlighted and the research area begins
to mature [4.5]. All three algorithms in this paper were re-
implemented based on the aforementioned papers to
ensure that the results were reproducible.

This paper begins with a brief explanation of all the
techniques compared in the paper; a series of experiments
and their results are then presented. Comments are
offered as to the difference in performance of these
algorithms and direction for future research is given. All
of the code used for these experiments is available from
the authors upon request. Further results and discussions
that are left out of this paper can be found in [9]

II. ARTIFICIAL IMMUNE SYSTEMS IN
OPTIMISATION

There is a natural parallel between the immune system
and optimisation. Whilst the immune system is not
specifically an optimiser, the process of the production of
antibodies in response to an antigen is evolutionary in
nature, and indeed does develop better antibodies to fight
the invading item: hence the comparison with
optimisation and the location of better solutions. The
process of clonal selection describes how the production
of antibodies and their maintenance as a memory of past
encounters occurs. This has proven to be a source of
inspiration for many people in AIS and there have been a
number of algorithms developed for optimisation,
inspired by the process (all to varying degrees) [3,6].

Other research into the use of AIS and optimisation
include work in [19]. In that work, the authors address the

issue of designing a Genetic Algorithm (GA) with improved
convergence characteristics, particularly in the field of
design constraints, by creating a GA simulation of the
immune system. The motivation for their work stems from
the fact that genetic algorithms, when applied to design
constraints, have been found to be very sensitive to the
choice of algorithm parameters, which can ultimately affect
the convergence rate of the algorithm. The authors use the
idea of antibody/antigen binding to define a complex
matching utility to define similarity between design
solutions. The model created also simulates the dynamics of
the immune system by creating and removing possible new
solutions. Some solutions will be more specific to the
problem areas, whereas others will be more generalised.
However, the authors point out that both specialist and
general solutions are important in the context of structural
design, so they introduce a control parameter into the
algorithm that enables them to control the production of
specialist and general case solutions. The authors suggest
their algorithm leads to a higher convergence rate when
compared to a traditional GA, but indicate the need for
further research and application.

The above work focused on a specific search problem in a
particular domain, work in [20] adopts a more generic
approach to adaptive problem solving by the use of the
immune network metaphor. The authors claim the use of a
network structure, but do not present the work as such, but
simply immune system metaphors including B-cells, T-cells,
macrophages and the Major Histocompatibility Complex
(MHC). The immune algorithm given in the paper is used
to produce adaptive behaviours of agents, which are used to
solve problems. The algorithm is then applied to the n-TSP
problem, and for small-scale problems achieves good
results. The authors also experiment with removing the
interaction of the T-cell in the searching algorithm and
present convincing results that the effect of the T-cell on
performance is significant, as the solutions found with using
the T-cell result in lower cost solutions overall.

Of minor relevance to this work is utilising AIS as an
approach to dynamic function optimisation (this paper is
concerned with static optimisation). With respect to immune
inspired approaches to the dynamic function optimisation
problem, there have been fewer attempts in the literature.
The first attempt appears to be [21] who proposed a simple
immune inspired algorithm based on the clonal selection
principle and immune network hypothesis. Additionally,
recent work in [22] compared the performance of clonal
selection approaches and evolutionary strategies on dynamic
function optimisation. Work in [15] however, utilises the
BCA algorithm described in this paper, but on more
complex moving targets with more than one optimal
solution.

A. opt-AiNET

The aiNET algorithm is a discrete immune network
algorithm that was developed for data compression and

clustering [1], and was then extended to create the
algorithm opt-aiNET, which was then applied to
optimisation [2]. The aiNET algorithm has subsequently
been developed further and applied to areas such as
bioinformatics [7] and even modeling of simple immune
responses [8].

Opt-aiNET, proposed in [2], evolves a population of
cells, which consists of a network of antibodies
(considered as candidate solutions to the function being
optimised). These undergo a process of evaluation against
the objective function, clonal expansion, mutation,
selection and interaction between other members of the
network. In essence, opt-AiNET creates a memory set of
antibodies that represent (over time) the best candidate
solutions to the objective function. Opt-aiNET is capable
of either unimodal or multimodal optimisation and can be
characterised by five main features:

• The population size is dynamically adjustable;
• It demonstrates exploitation and exploration of the

search space;
• It determines the locations of multiple optima;
• It has the capability of maintaining many optima

solutions;
• It has defined stopping criteria.

Given these definitions, attention can now be turned to
the algorithm itself. Figure 1 below outlines the
pseudocode for opt-aiNET.

1. Init ialisation : create an initial random
population of network antibodies;

2. Antigenic presentation: for each antigenic
pattern, do:

2.1 Clonal selection and expansion: for each
network element, determine its affinity
with the antigen presented. Select a
number of high affinity elements and
reproduce (clone) them proportionally to
their affinity;

2.2 Affinity maturation: mutate each clone
inversely proportional to affinity. Re-
select a number of highest affinity clones
and place them into a clonal memory set;

2.3 Metadynamics: eliminate all memory
clones whose affinity with the antigen is
less than a pre-defined threshold;

2.4 Clonal interactions: determine the
network interactions (affinity) among all
the elements of the clonal memory set;

2.5 Clonal suppression: eliminate those
memory clones whose affinity with each
other is less than a pre-specified
threshold;

2.6 Network construction: incorporate the
remaining clones of the clonal memory
with all network antibodies;

3. Network interactions: determine the similarity
between each pair of network antibodies;

4. Network suppression: eliminate all network
antibodies whose affinity is less than a pre-
specified threshold;

5. Diversity: introduce a number of new randomly
generated antibodies into the network;

Figure 1 – opt-AiNET algorithm [3]

In step 1, the initial population consists of N network cells
(randomly created). The representation employed is that of
real valued shape space and each cell within the network
represents a candidate solution in a real valued vector.
During steps 1-4 each network cell undergoes a process of
clonal expansion (reproduction) and affinity maturation
(mutation and selection). Clones of each cell are mutated
according to the affinity of the parent cell. The fitness
represents the value of the function for the specific
candidate solution. The affinity proportional mutation is
performed according to the following equation:

c’ = c + αN (0.1)

α= (1/β) exp (-f*)

(1)

where α is the amount of mutation, c is the parent cell, c’
is the mutated clone of c, N (0,1) is a Gaussian random
variable of zero mean and standard deviation of 1, β is a
parameter that controls the decay of the inverse
exponential function and f* is the fitness of c normalised
in the interval [0..1]. As c’ represents a candidate solution,
it must be within the range of the function’s specified
domain. If c’ exceeds that, then it is rejected and removed
from the population.

The fitness of each clone (and parent cell) is evaluated,
then the fittest individual is selected to become a memory
cell: the algorithm adopts an elitist approach to achieve
this by always selecting the memory cell with the highest
affinity. This is an iterative process that continues until the
average error value (distance from objective function)
stabilises (this must be less than 0.0001). Once
stabilisation occurs, the algorithm then proceeds to steps 3
and 4. Network suppression removes any similar or non-
stimulated antibodies and antibodies that fall below the
pre-determined suppression threshold σ. By removing
similar cells, opt-aiNET prevents antibodies clustering on
a single peak. This reduces the amount of cells maintained
in the population.

It should be noted that the network interactions within
opt-aiNET are only suppressive in nature: they do not
contribute to the stimulation of the cells in any way. This
is counter to the traditional immune network theory by
Jerne [9], on which this algorithm is based. However, in
the sprit of biologically inspired computing, this is not a

major problem, as it is the inspiration people tend to
seek rather than faithful models.

B. B-Cell Algorithm

Work in [14] proposed a novel algorithm, called the
B-cell algorithm (BCA) which is inspired by the clonal
selection process in the immune system. An important
feature of the BCA is its use of a uniquue mutation
operator, known a contiguous somatic hypermutation.
The representation employed in the BCA is binary
shape space, with each cell employing this encoding
representing a candidate solution. Each B-cell within
the population are evaluated by the objective function,
g(x). After evaluation by the objective function, the
vector within a B-cell v is cloned to produce a clonal
pool, C . It should be noted that there exists a clonal
pool C for each B-cell within the population and also
that all the adaptation takes place within C. The size of
C is typically the same size as the population P
(population size) (but this does not have to be the case).
Therefore, if P was of size 4 then each B-cell would
produce 4 clones. In order to maintain diversity within
the search, a single clone is selected at random and each
element in the vector undergoes a random change:
subject to a certain probability. This is likened by the
authors to the metadynamics of the immune system (a
technique also employed in aiNET), but within the
BCA a separate random clone is produced, rather than
utilising an existing one. Each B-cell v' ∈ C is then
subjected to a novel contiguous somatic hypermutation
mechanism. The BCA uses a distance function as its
stopping criterion for the empirical results presented
below: when it is within a certain prescribed distance
from the optimum, the algorithm is considered to have
converged. If the optimum is unknown, then a measure
of how far the optimum located so far is employed, and
if no progress is made over a certain number of
iterations, the search is terminated. The BCA is outlined
in Figure 2.

1. Initialisation: create an initial random population of
individuals P.
2. Antigenic Presentation: for v ∈ P:

2.1 Clonal Selection and Expansion:
evaluate g(v); then clone each B-cell: clone v
and place in clonal pool C;
2.2 Metadynamics: randomly select a clone c
in C; randomise the vector;
2.3 Affinity Maturation: forall c in C, apply
the contiguous somatic hypermutation

operator;
then evaluate each clone by applying g(v); if a
clone has higher affinity than its parent B-cell

v,
then v =c;

3.0 Cycle: repeat until a certain stopping criterion is met.

Figure 2 - Outline of the B-Cell Algorithm [based on 14]

The unusual feature of the BCA is the form of the
mutation operator. This operates by subjecting contiguous
regions of the vector to mutation. The biological
motivation for this is as follows: when mutation occurs on
B-cell receptors, it focuses on complementarity
determining regions, which are small regions on the
receptor. These are sites that are primarily responsible for
detecting and binding to their targets. In essence a more
focused search is undertake as in the contiguous mutation
operator, rather than selecting multiple random sites for
mutation, a random site (or hotspot) is selected within the
vector, along with a random length; the vector is then
subjected to mutation from the hotspot until the length of
the contiguous region has been reached. This is in contrast
to the method employed by aiNET and the local search
functions in hybrid GA’s whereby although multiple
mutations take place, they are uniformly distributed across
the vector, rather than being targeted at a contiguous
region

III. HYBRID GENETIC ALGORITHMS

Hybrid genetic algorithms (HGAs) have, over the last
decade, become almost standard tools for function
optimisation and combinatorial analysis. According to
[16], real-world business and engineering applications are
typically undertaken with some form of hybridisation
between the GA and a specialised search. The reason for
this is that HGAs generally have an improved performance
over traditional GAs, as has been demonstrated in such
diverse areas as vehicle routing [17] and multiple protein
sequence alignment [18].

As an example, within a HGA a population P is given
as candidates to optimise an objective function g(x). Each
member of the population can be thought of as a vector v
of bit strings of length l = 64 (to represent double-
precision floating point numbers, although this does not
have to be the case) where v ∈ P and P is the population.
Hybrid genetic algorithms employ an extra operator
working in conjunction with crossover and mutation,
which improves the fitness of the population. This can
come in many different guises: sometimes it is specific to
the particular problem domain; when dealing with
numerical function optimisation, the HGA is likely to
employ a variant of local search. The basic procedure of a
HGA is given in Figure 3. The local search mechanism
functions by examining the neighbourhood of the fitness
individuals within a given landscape of the population.
This allows for a more specific search around possible
solutions that results in a faster convergence rate to a
possible solution. The local search typically operates as
outlined in

Figure 4 Notice that there are two distinct mutation
rates utilised: the standard genetic algorithm typically
uses a very low level of mutation, and the local search
function h (x) uses a much higher one. This method of
hybridising a GA is adopted as the model for the HGA
used in this paper.

1 Initialisation: create an initial random population (P)
of individual’s v;
2. Fitness evaluation: For all v ∈ P evaluate fitness of
P(v) with objective function g(x);

2.1 Selection and crossover: Select n number
of fittest individuals and with probability p
perform crossover between selected
individuals;
2.2 Mutation: subject t number of individuals
of the population to a low level of mutation
with an equally low probability;
2.3 Utilise hybrid function: subject s members
of the population to a hybrid search technique
h(x); if a higher-fitness member results, return
this to the population;

3. Cycle: repeat from step (a) until a certain stopping
criterion is met.

Figure 3 - Generic Hybrid GA algorithm (based on
[14])

Select: copy v to v';
Explore neighbourhood: apply mutation to v'
with certain probability;
Generate number of mutations: Subject v' to
mutation:
Generate mutation sites: Randomly select
sites on v' and perturb bit string;

Fitness Evaluation: if g(v') > g(v), replace
v so that v' in P;

Figure 4 - Example of local search mechanism for a
HGA (taken form [14])

Table IV highlights the main differences between the
three approaches. One main difference is that aiNET
adopts an adaptive population size, whereas the BCA
and HGA do not. This has the advantage of not having
to specify in advance what population size you require
(although an initial population size is required) and the
algorithm produces enough members of the search
space as it requires locating the solution. In addition,
selection mechanisms vary in that aiNET selects n best
plus employs an elitist mechanism, whereas both the
HGA and BCA do not select n best.

IV. RESULTS

A. Experimental Protocol

In order to ascertain differences in performance, two
metrics were tested. These were the number of evaluations
taken to obtain a solution and the quality of the solution
obtained. This is not only to be consistent with work in
[14] (to allow for direct comparison) but is also standard
benchmark criteria. A suitable number of functions
(ranging in dimensions) were then selected from the
established literature on which to perform these tests.
These were taken from [12] and [13]. New
implementations of the three algorithms were created and
tested to ensure that results were consistent with
previously published work. The aiNET, the BCA and
HGA algorithms were then applied to these functions once
this was established. In addition, the parameters for all
algorithms were taken from previously published work:
aiNet [2], BCA [14] and HGA [12] and are shown in
Table I. It should be noted that where vectors consisted of
bit strings of length 64 (i.e. double-precision floating point
numbers) no Gray encoding was used. Each experiment
was run for 50 iterations and the results averaged over the
runs. Small populations for the BCA and HGA were found
to be most effective (based on empirical evidence) and the
reader is referred to [23] for further results on this.
Additionally, the values presented for aiNET were
empirically the best performing parameters for these
functions. The reader is referred to [2] for further analysis
of the sensitivity of aiNET to parameters.

TABLE I. ALGORITHM PARAMETERS

AINET
Parameter Value
Initial population size 20
Suppression threshold 0.2
Number of clones generated 10
Percentage of random new
cells each iteration

40%

Scale of affinity proportion
selection

100

BCA
Initial Population size 4
Clonal pool 4
New random elements
each iteration

1

HGA
Initial Population size 4
Crossover rate 0.6
Mutation 0.001
(h) δ in {2,3,4,5}

B. Comparative Results

Table III provides a set of results averaged over 50
runs for the functions being optimised. Each algorithm
was executed until either the minium or maximum
value was found, or 500 iterations had passed. All
results reported presented with standard deviations
where greater than zero. The columns in each table
represent (in order from left to right): the function
number, the minimum or maximum possible value for
that function, the next three colums show the value
located by each algorithm for that function, and the
final three columns show the number of evlautions
taken to achive that minium result. The number of
evalutions is the cummulative value for the number of
times an individual in the population called the evalute
function method.

As can be seen from Table III, all three algorithms
perform well at finding optimal solutions for the
majority of functions. Therefore, in terms of the metric
for quality of solutions there seems little to distinguish
the three algorithms.

However, when the number of evaluations are taken
into account, there are significant differences in the
number taken to obtain the solution. The difference in
values observed between algorithms were much greater
than was first expected. For example, for F1 opt-aiNET
and the HGA have similar numbers of evaluations
(taking into account standard deviations), but for all
other functions in this test scenario opt-aiNET
compared against the HGA consistently employs fewer
evaluations, but the quality of the locating the optimum
value are the same. When compared to the BCA, in all
but one case, F5, the BCA consistently performs fewer
evaluations than both the opt-aiNET and HGA. What is
of noticeable interest is the large standard deviation in
the number of evaluations for each technique. It would
seem that both AIS approached suffer from a large
standard deviation, when compared to the HGA.
Although the HGA still has a significant deviation.
When the results were investigated in some depth, it
would seem that all algorithms often locate the
optimum solutions quite rapidly, just not reliably. Some
thought has been given as to why these are so large.
When the individual results are inspected, then
occasionally, opt-aiNET reaches the optimum value
very quickly (still not as fast as the BCA), thus causing
such a large deviation across the vast majority of
functions. Quite why the algorithm should do this is not
clear, but what is clear is that all the algorithms can
perform well, just not consistently well. This is
somewhat true for all stochastic algorithms, but such a
large standard deviation is unusual. Another thought
may be that the high levels of mutation that occur in all
three systems, may contribute to this feature.

C. Discussion

The authors of [14] pointed out the main reasons why
they felt that the BCA performed significantly fewer
evaluations that the HGA. In essence, their argument was
one based on the nature of the mutation function. They
argued that the contiguous nature of the mutation operator,
combined with the random selection of where the mutation
operation begins and ends, lends itself well to escaping
local minima. Whilst this work did not investigate that
claim, experimental work investigating this is ongoing.

Another important question can be asked: why does
aiNET have such a large number of evaluations? The
answer to this may lie in the fact that the population size is
not fixed and grows to cope with the nature of the
problem. This leads in turn to more members of the
population being evaluated against the objective function:
hence the increase in number of evaluations. Certainly
from the experiments undertaken so far, this would seem
to be the case. For example, for F5 the network size grows
to an average of 172 cells (compared to the BCA and
HGAs 4), and for F7 the network size can reach in excess
of 650 individuals. Further experiments were also
undertaken to see if opt-aiNET could locate as good
solutions as the HGA and BCA using smaller initial size
networks (with the hope to finish with a smaller network
at the end). However, this was not the case as opt-aiNET
seems relatively insensitive to the initial size and still
evolves networks to fit the problem [9]. These results
would tend to indicate that the opt-aiNET algorithm, while
biologically appealing in some ways, does not perform as
well as one might hope on these functions. On the
contrary, opt-aiNET has shown itself to be very effective
at data clustering and reduction [3], and therefore may
well be better suited for that purpose, rather than for
optimisation. These results, to some degree will also be
relevant to CLONALG [2]. The opt-aiNET algorithm is
based heavily on the CLONALG system and it would not
be unreasonable to assume that CLONALG, to some
degree, will suffer the same problems. However, this was
not confirmed experimentally.

However, we recognise that these arguments are
empirical, and maybe a more theoretical answer is
required and in part we feel that there will never be a
definitive answer to what is a good AIS for problem x or
problem y, until a sound theoretical basis is developed.
AIS is ripe for such a development, and indeed is where
these authors intend to focus, rather than on continuous
empirical evidence.

V. SUMMARY AND CONCLUSIONS

This paper has presented a small empirical study on two
immune inspired algorithms and a GA for function
optimisation. The motivation for the research was to
establish (empirically) the usefulness (or not) of AIS
approaches when compared to more traditional

evolutionary approaches. Whilst this is not a complete
survey of such immune algorithms (such a survey is
way outside the scope of such a paper) the research has
highlighted certain weakness of the aiNET algorithm, in
terms of computational expense, when compared to
another immune inspired algorithm and traditional
evolutionary approach. The BCA papers (at least for
these functions) to perform well in terms of quality of
solution and number of evaluations when compared to
both the HGA and aiNET. The possible reason for this
is the nature of the mutation function, which endows
the BCA with the ability to escape local optima
solutions more rapidly. However, this needs to be
traded of against the large standard deviation which is
apparent in all three approaches: this clearly needs
further investigation.

Further work is clearly required: this study is far
from complete. One is tempted to undertake further
empirical work, and indeed this is required to some
degree. Other experiments that will be undertaken are
running each algorithm for the same number of
iterations and assessing number of evaluations so far
and quality of solution obtained so far. In addition,
experiments would include testing on more ‘real world’
data sets to see how well each algorithm coped with the
messy real-world, rather than the more ‘pure’ toy
problems presented here.

However, there is a further point to make and this is
concerning the usefulness, or indeed, point of adopting
the immune inspired approach. Clearly, there is some
empirical evidence to suggest that the AIS approach is
not a GA approach and that differences do exist, and in
some cases results are favourable for, the AIS approach.
However, this is a small study and therefore it is
impossible for any more general conclusions to be
drawn. What is really required is a two pronged
approach. The first is to tackle more real world
problems where the more traditional approaches much
as GAs have failed to deliver satisfactory results. If this
were to be tackled by an AIS approach and a good
result be obtained, then the usefulness or not of the AIS
approach would be established (at least for that
problem). To date, we are not aware of such a system.
The second, is the fact that a more theoretical
understanding of how AIS algorithm performs is
required. Adopting certain methodologies from
mathematics, such as non-liner dynamics analysis (used
for identifying attractors in systems) may be of benefit.
This way, one will be able to identify certain properties
and performance restrictions on algorithms that at
present is not possible. Therefore, our approach from
now, will be this two pronged tactic and we hope that
results will be possible that will allow us to conclude if
there is something different and useful about the AIS
approach.

REFERENCES

[1] De Castro, L.N and Von Zuben, F. (2001). “aiNET: An
Artificial Immune Network for Data Analysis”, in Data Mining:
A Heuristic Approach. Abbas, H, Sarker, R and Newton, C (Eds).
Idea Group Publishing.

[2] De Castro, L.N and Timmis, J. (2002) An Artificial Immune
Network for Multimodal Function Optimisation. Proc. Of IEEE
World Congress on Evolutionary Computation. Pp. 669-674

[3] De Castro, L.N and Timmis, J. (2002) Artificial Immune
Systems: A New Computational Intelligence Approach. Springer-
Verlag.

[4] Timmis, J and Neal, M. (2001). A Resource Limited Artificial
Immune System for Data Analysis. Knowledge Based Systems,
14(3-4):121-130.

[5] Knight, T and Timmis, J (2001). AINE: An Immunological
Approach to Data Mining. In Cercone, N, Lin, T and Wu X. (Eds)
IEEE International Conference on Data Mining. Pp. 297-304, San
Jose. CA.

[6] De Castro, L. N. & Von Zuben, F. J. (2002), Learning and
Optimisation Using the Clonal Selection Principle. IEEE
Transactions on Evolutionary Computation, Special Issue on
Artificial Immune Systems, 6(3), pp. 239-251.

[8] Jerne, N (1975). Towards a Network theory for the Immune
System. Annals of Immunology., Inst. Pasture.

[9] Edmonds, C. (2003) Artificial Immune Networks and
Multimodal Optimisation. MSc Thesis. University of Kent.
Canterbury.UK.

[10] Bezerra, B and De Castro, L.N. (2003) Bioinformatics data
analysis using an artificial immune network. Proceedings of
ICARIS 2003, eds. Timmis, J., Bentley, P. and Hart, E. Lecture
Notes in Computer Science 2787, pp. Springer-Verlag, 2003.

[11] De Castro, L.N. (2003). The Immune response of an
Artificial Immune Network (aiNET). In the proceedings of the
Congress on Evolutionary Computation. Pp 1273-1280. Canberra.
Australia.

[12] Andre, J., Siarry, P. and Dognon, T. (2001). An improvement
of the standard genetic algorithm fighting premature convergence
in continuous optimisation. Advances in Engineering Software.
32. p. 49-60, 2001.

[13] Eiben, A and van Kemenade, C. (1995). Performance of
multi-parent crossover operators on numerical function
optimization problems Technical Report TR-9533, Leiden
University.

[14] Kelsey, J and Timmis, J (2003). Immune Inspired Somatic
Contiguous Hypermutation. In E. Cantú-Paz et al, editor, Genetic
and Evolutionary Computation Conference - GECCO 2003,
volume 2723 ofLecture Notes in Computer Science, Chicago.
USA., July 2003. Springer-Verlag.

[15] Kelsey, J, Timmis, J and Hone, A (2003). Chasing Chaos. In
R. Sarker, R. Reynolds, H. Abbass, T. Kay-Chen, R. McKay, D

Essam, and T. Gedeon, editors, Proceedings of the Congress
on Evolutionary Computation, pages 413-419, Canberra.
Australia, December. IEEE.

[16] Goldberg, D. and Voessner, S. (1999) optimizing global-
local search hybrids. Proceedings of the Genetic and
Evolutionary Computation Conference. Pp 220-228. Orlando,
Florida, USA,

[17] Berger, J., Sassi, J and Salois, M. (1999). A Hybrid
Genetic Algorithm for the Vehicle Routing Problem with Time
Windows and Itinerary Constraints. In Proceedings of the
Genetic and Evolutionary Computation Conference,
pp. 44--51, Orlando, Florida, USA.

[18] Nguyen, H. Yoshihara, I., Yamamori, M and Yasunaga,
M. (2002) A parallel hybrid genetic algorithm for multiple
protein sequence alignment. Proceedings of the 2002 Congress
on Evolutionary Computation CEC2002. Pp. 309-314. IEEE
Press.

[19] Hajela, P., & Yoo, J. S. (1999), “Immune Network
Modelling in Design Optimization”, In New Ideas in
Optimization, D. Corne, M. Dorigo & F. Glover (eds.),
McGraw Hill, London, pp. 203-215.

[20] Toma, N., Endo, S. & Yamada, K. (1999), “Immune
Algorithm with Immune Network and MHC for Adaptive
Problem Solving”, Proc. of the IEEE System, Man, and
Cybernetics, IV, pp. 271-276.

[21] Gaspar, A. and Collard, P. (1999) From GAs to Artificial
Immune Systems: Improving Adaptation in Time Dependent
Optimization. Proceedings of the Congress on Evolutionary
Computation. Pp 1859-1866. Peter J. Angeline and Zbyszek
Michalewicz and Marc Schoenauer and Xin Yao and Ali
Zalzala (Eds).

[22] Walker, J and Garrett, S. (2003). Dynamic Function
Optimisation: Comparing the Performance of Clonal Selection
and Evolutionary Strategies. Lecture Notes in Computer
Science 2787. Pages 273-284. Timmis, J., Bentley, P. and
Hart, E. (Eds).

TABLE II. FUNCTIONS EMPLOYED FOR EXPERIMENTATION

Function ID Function Parameters
F1 f(x) = 2(x-0.75)2 + sin(5πx = 0.4π) – 0.125 0<= x ,+ 1
F2 f(x) = -∑ (j= 1..5) [j sin ((j + 1)x + j)] -10 <= x <= 10, h = 10,
F3 f(x,y) = a(y – bx2 + cx – d)2 + h(1-f) cos(x) + h a = 1, b = 5.1/4Π2, c=5/Π, d = 6, f =

1/8Π, -5 <= x <= 10, 0 <= y <=15
F4 f(x,y) = ∑ (j = 1..5) j cos[(j + 1) x + j] -10 <= x <= 10 and –10 <= y <= 10
F5 ∑ (j = 1..5) j cos[(j + 1) y + j] + β[(x + 1.4513)2 + (y +

0.80032)2
as above but β = 1

F6 f(x,y) = x4/4 – x2/2 + x/10 + y2/2 =10 <= x <= 10 and –10 <= y <= 10
F7 f(x,y) = ∑ (j = 1..5) j cos[(j + 1) x + j] ∑ (j = 1..5) j cos[(j +

1) y + j]
-10 <= x <= 10 and –10 <=y <= 10

TABLE III. COMPARING PERFORMANCE ON FUNCTIONS FOR ALL THREE ALGORITHMS

F(x) Optimum Optimum
Found

No. Eval g(x)

BCA AiNET HGA BCA Opt-AiNET HGA
F1 -1.12 -1.08±.04 -1.12 -1.12 3016±2252 6717 ±.538 6081±4471
F2 -12.03 -12.03 -12.03 -12.03 1219±767 41419 ± 25594 3709±2397
F3 0.40 0.40 0.39 -.40 4921±31587 6346 ± 4656 30583±28378
F4 -186.73 -186.73 -180.83 -186.73 46433±31587 363528 ± 248161 78490±6344
F5 -186.73 -186.73 -173.16 -186.73 426360±32809 346330 ± 255980 76358±11187
F6 -0.35 -0.91 -0.26 0.99 2862±351 54703 ± 29701 12894±9235
F7 -186.73 -186.73 -186.73 -186.0 14654±5277 50875 ± 45530 52581±19095

TABLE IV. SUMMARISING THE MAIN SIMILARITIES AND DIFFERENCES BETWEEN BCA, HGA AND OPT-AINET

Algorithm Diversity Selection Population
BCA Somatic Contiguous

mutation
Replacement Fixed Size

HGA Point mutation, cross over
and local search

Replacement Fixed size

Opt-aiNET Affinity proportional
somatic mutation

Replacement by n fittest
clones

Flexible population size

