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Abstract

The benefits of the Java language have made it an attractive choice as a server-side
application platform. Server applications are characterised by their intensive utilisation
of threads, and synchronisation is required to ensure that threads do not interfere with
each other. In particular, synchronisation is necessary when performing a garbage
collection, as all application threads must typically be suspended, at least briefly. This
synchronisation has been shown to be a significant bottleneck on performance.

Current methods described in the literature have failed to address this issue suitably.
These methods employ a heap partitioning that segregates objects by thread. One
such technique performs this partitioning statically, with no runtime overhead, but
synchronisation is still required when a collection is triggered. In addition to this, the
dynamic loading of classes, a prominent feature of the Java language, is disallowed.
An alternative technique performs the segregation at runtime, and allows the dynamic
loading of classes, but the mechanism that makes this possible requires unbounded work.

By using a novel heap partitioning that accounts for incomplete knowledge of a
system, the dynamic loading of classes can be allowed. Synchronisation is not required
when a collection is triggered, and the runtime mechanism employed need not perform
unbounded work.

This partitioning is supported by a new static analysis and a novel garbage collector
framework that exploit this heap partitioning. These have been integrated into a high-

performance, production-quality virtual machine.
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Chapter 1

Introduction

The benefits of the Javall language [GJS97] have made it an attractive choice as a
server-side application platform. Its portability, coupled with the bindings available for
most major database technologies, have encouraged vendors to adopt it as the basis for
large-scale e-commerce and management-systems servers.

Such server applications differ significantly from their client-side counterparts.
Whereas client-side applications are relatively short-lived, and have few threads and
modest heaps, applications on the server side are characterised by their longevity,
large heaps, intensive utilisation of threads to perform concurrent transactions, and
high throughput. Furthermore, the demands of these applications place different
requirements on the language and the Java Virtual Machine thereunder. Primary of
these are fast, effective management of multi-gigabyte heaps, and the ability to scale

gracefully on Symmetric multi-processing (SMP) machines [DAKO00].

1.1 Fundamentals

Memory management in Java is automatic: unused data structures are reclaimed
without developer intervention through Garbage collection (GC) [Jon96]. An application
maintains a graph of data structures rooted in stacks, registers and static data. It
modifies or mutates this graph during execution, and so in the context of memory
management it is labelled the mutator [Dij75]. The garbage collector has the task of
identifying unused, or garbage structures in this graph and freeing the memory cells

that they occupy.
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This process of reclamation must be both safe and timely, correctly preserving
the live, or active, data structures while ensuring sufficient heap space for further
allocation. For server applications, the garbage collector has the added responsibilities
of predictable speed, sustained throughput and scalability [PK98]. It must deal
competently with the allocation and collection of vast numbers of data structures,
or objects, while causing as little disruption as possible to the numerous transactions
underway.

Transactions in Java may be concurrent, running alongside the main logic of the
server application on the same processor, or in parallel, with several running at
the same time on separate processors. Concurrent and parallel operation demand
efficient implementation of execution contexts, or threads [Dij65b]. These are essentially
lightweight processes that have their own execution stack but share a common
heap, and can run interleaved on the same processor and simultaneously on multi-
processor machines [LB95]. Java provides a Thread class that abstracts over different
thread implementations, hiding details such as whether threads map directly onto the
native threads of the underlying operating system or some user-space thread library.
Developers can either subclass it or implement the Runnable interface in a new class to
extend the behaviour of the thread.

Data structures shared between such threads are commonly protected by mutually
exclusive locks, or mutezes, which grant access to a thread at a time [Dij65a, Lam87].
The aim is to prevent race conditions, which occur when two or more threads race to
read from or write to the same location and the result depends on the winner; without
protection, more than one thread might succeed, and the result would be invalid [Tan87].
Mutexes, and the operations thereon, are usually packaged into monitors for ease of
use [Hoa74, Han76], and Java logically associates a monitor with every object, making
synchronisation ubiquitous.

Finally, Java objects have three important properties that are exposed at the
language level. Firstly, they have a runtime type. This is the type or Class of an
object as returned by the getClass() method, and can differ from the static type of
the object as declared in the program source. When a method is invoked on an object
(the receiver of the method), the runtime type determines the actual method that will

get called. Secondly, they can be synchronized upon, that is, an object may be used as
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a lock to guard against race conditions when multiple application threads are employed.
Finally, objects have an unique identifier in the form of their hash code. This code is
exposed by the hashCode() method of the Object base class, and is guaranteed to be

consistent over the lifetime of the object.

1.2 Synchronisation

The ubiquity of synchronisation in java poses significant performance concerns for server
applications. In simple single-threaded applications, synchronisation can account for
nearly a fifth of total execution time [GBCWO0O0], despite this synchronisation being
unnecessary (with only a single thread there is no possibility of races). Where hundreds
or even thousands of threads are concerned, each of which must block or sleep until a
monitor is acquired, synchronisation can quickly become a bottleneck. Synchronisation
is present also within the virtual machine itself. Book-keeping internal to the virtual
machine must be protected from concurrent access during allocation, collection, dynamic
class loading, string lookup, and Just-in-time (JIT) compilation of methods.

There are four key areas where the interactions between threads and synchronisation
mechanisms are critical to performance: application-application, between application
threads; allocator-allocator, when a thread performs an allocation; application-collector,
where application and garbage collector threads must synchronise; and collector-

collector, between garbage collector threads.

Application-application

Application-application synchronisation occurs when Java application threads require
exclusive access to shared, user-allocated storage. The monitor associated with each
object is made visible to the language through the synchronized keyword. Using
this keyword, blocks of code can be specified within which access to a given object is
guaranteed to be protected. The Java compiler inserts monitorenter and monitorexit
instructions, or bytecodes, around such blocks that indicate where the virtual machine
should lock and unlock the object’s monitor.

Although effective monitor implementations exist [BKMS98, ADG'99], this type of

synchronisation nevertheless remains a problem. Many synchronisation operations are
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simply unnecessary. Despite the potential for an object to be shared amongst a number
of threads, many are in practice only ever accessed by their creating thread [BH99],
making synchronisation operations on those objects redundant. A number of core Java
libraries also suffer from excessive synchronisation. In the string, network and stream
classes, for instance, objects already protected are synchronised recursively [HNOO].

A technique termed escape analysis has been successfully applied to this problem.
A form of static analysis, escape analysis automatically (and conservatively) determines
those data structures in an application that are reachable only from within their creating
thread. Access to these thread-local structures is guaranteed to be from only a single
thread at a time, making the synchronisation operations protecting them unnecessary.
These operations can, consequently, be removed, either by stripping them from existing
code or by generating entirely new classes with synchronisation-free methods.

The results of this technique are extremely promising. Between ten and ninety
percent of the synchronisation operations in a typical Java application can be
eliminated, with a corresponding increase in performance of between two and thirty-six
percent [BH99, CGS*99, Ruf00, WR99].

There is, nonetheless, much scope for improving upon these gains. Escape analysis
does not attempt to optimise structures that do escape their creating thread. The
premise is that although a structure may escape its thread and become shared amongst
a number of threads, it might never be written to by those threads. The synchronisation
primitives protecting access to the structure are redundant, just as if the object were

thread-local, and can also be eliminated [BS00].

Allocator-allocator

Internal to the virtual machine is allocator-allocator synchronisation. The virtual
machine utilises a single, shared heap to serve all application threads, two or more
of which might attempt concurrently to perform an allocation. A lock is thus held by
the allocating thread to protect any heap-related book-keeping.

Threads must compete for access to the shared heap through this single lock.
Were allocation infrequent, the overhead of such contention would be minimal. In
practice, however, allocation accounts for almost a fifth of total execution time in some

benchmarks [GBCWO00], and the overhead of contention on the single lock degrades
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overall application performance as the number of threads is increased [PK98, BMBWO00].

In order to minimise contention of the global heap lock, per-thread allocation caches
are used. These caches, commonly known as Local allocation buffers (LABs) [WG98]
or Thread-local heaps (TLHs) [DAK00, OBYG102], are contiguous sections of heap
memory no bigger than some small multiple of the system page size. Allocation is by
means of a pointer increment, shifting a free marker for each allocation until the LAB
is exhausted. Because the allocation is from within the thread owning the LAB, the
book-keeping involved is invisible to other threads, and so locks are unnecessary. Only
when the LAB is consumed must the global heap lock be taken and a new LAB be
allocated to the thread. Lock-contention is thus reduced from per-object allocation to

per LAB acquisition.

Application-collector

Should an allocation fail the garbage collector will be invoked. Collection typically
entails finding and then following object references in locations such as thread stacks,
static data and heap cells. Such locations may contain a mix of primitive values
and references, and the collector must be able to distinguish between the two so
that it follows only the latter. A state in which references can be accurately
distinguished is called consistent, and unless the virtual machine does its own thread
scheduling [AACT99, AAB*00], threads must be rolled forward to GC points [DMH92,
Age98| in the code where they are known to be in this state. This process of advancing
threads to GC points and then stopping them in a consistent state is known as thread
SUSPension.

Figure 1 illustrates the cost of thread suspension for the Sun Labs Virtual Machine
for Research [WG98] running the VolanoMark benchmark [vol04a]. VolanoMark is a
client-server chat application that scales to thousands of concurrent network connections
or sockets. The Java 2 SDK implements sockets using a thread for each direction of
communication (send and receive), and so thread utilisation scales linearly with the
number of connections. As connections increase, so too do the thread suspension times:
for as few as 1024 connections, or 2048 threads, thread suspension accounts for nearly

a fifth of garbage collection time.
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Figure 1: Synchronisation time as a percentage of GC time for an increasing number of
threads in the VolanoMark benchmark.

Collector-collector

Garbage collection work may also be divided amongst a number of threads to speed
collection on multi-processor machines. This is known as parallel collection [PD00].
Division of the work is often dynamic, over-partitioning objects into packets on a work
queve [FDSZ01, OBYG102]. Packets are added to a queue and then claimed by the
same collector thread. However, should the queue be exhausted, it is possible to steal a
packet from another thread’s queue. The queue must therefore be protected from races
with a lock, and this is collector-collector synchronisation.

Copying and compacting collectors introduce a similar problem when work is divided
amongst parallel threads. These collectors relocate objects to a fresh portion of the
heap. The original objects are updated with forwarding pointers that indicate their new
location. Because there may be multiple references to the same object, it is possible for
two or more parallel collector threads to try to relocate the same object at the same
time. To ensure that only one thread succeeds in relocating the object, the update of
the forwarding pointer must be made atomic. This too is a form of collector-collector

synchronisation.
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1.3 Motivation

The benefits of finding a solution to the problems of application-collector and collector-
collector synchronisation are readily apparent. If such synchronisation could be
removed, so that only a single thread or group of threads were to be synchronised and
garbage collected at a time, the overhead of thread suspension would be eliminated or
at least significantly reduced. The result would be a shorter minimum collection pause
time. Moreover, multiple garbage collections could be performed in parallel with each
other, or even concurrently alongside the application. Mutator threads would be unable
to interfere with object fields during reference updating, while garbage collector threads
could relocate objects without having to atomically write the forwarding pointer.

The natural solution is to extend the technique of thread-local allocation to
collection. Assume, for example, that heap objects could be segregated by thread,
that is, divided into those that are local and those that are escaping, as with an escape
analysis. Those that are not local would be allocated into a shared heap region; those
that are would be allocated into a per-thread region, thereby eliminating allocator-
allocator synchronisation, much like a local cache. More importantly, however, is that
local objects could also be collected without synchronisation, since they are invisible
to other threads: no other mutator thread could interfere with the collector, and,
assuming a one-to-one mapping between allocator and collector threads, no parallel
collector thread would try to collect the same object. Only the thread owning the
region would need to participate in a collection, and there would be no need for the
costly thread suspension process, other than to collect those objects that are not local.
Both application-collector and collector-collector synchronisation would be removed.

Two approaches exist that address this solution. The first, by Steensgaard [Ste00],
is implemented within the Marmot static compiler, which compiles Java classes into a
single executable. Steensgaard uses an escape analysis, based on that of Ruf [Ruf00], to
identify and segregate local and escaping objects. The former are allocated within per-
thread regions, while the latter are allocated into a shared heap region that is accessible
by all threads.

The second, by Domani et al. [DKL102], uses a runtime determination of escaping

objects, and is implemented within a traditional virtual machine. All objects are
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assumed initially to be local and are allocated in per-thread heap regions that can
be collected independently. Sharing of objects is then captured dynamically by tracking
reference stores into static fields and the fields of already shared objects. If an object
becomes shared it is marked as such, and can no longer be reclaimed during a thread-
local collection.

These approaches, however, are not without their shortcomings. Because Steens-
gaard’s implementation is static, the set of Java classes available to the application is
limited to those available at the time of compilation; the functionality of the application
cannot be extended at runtime by the dynamic loading of new classes. This dynamic
class loading is a prominent feature of the Java language, and disallowing it is a
significant disadvantage of the approach. In addition to this, Steensgaard’s approach
requires synchronisation at the start of every collection. All threads must be suspended
so that static roots can be processed; only after this can threads collect their own
heap regions independently. In contrast to this, Domani et al. allow new classes to be
loaded. However, the sharing of objects must be tracked using a runtime mechanism.
All region-based collectors require some form of runtime synchronisation (§2.3), but in
this particular case the work performed by this mechanism is unbounded because, in
addition to marking an object when it becomes shared, its transitive closure must also
be marked.

An ideal solution would combine the benefits of both approaches, offering the low
runtime overhead of Steensgaard’s approach while allowing the dynamic loading of
classes, as is possible with Domani et al.. Such a solution would employ an escape
analysis at runtime, processing classes as they are loaded by the virtual machine and
identifying those objects that are thread-local. These objects would be allocated in
per-thread heap regions that can be collected independently of each other, requiring
only that the owning thread participates in the collection. The analysis would further
determine if an object could escape when a new class is loaded, and take appropriate
action to ensure that the object is shared, without resorting to a costly runtime
mechanism that performs unbounded work. The aim of this research, then, is to

investigate just such a solution.
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1.4 Thesis Statement

This research introduces an elegant solution to the problem of application-collector and
collector-collector synchronisation. The solution uses a novel partitioning of the heap
into per-thread regions, or heaplets: thread-local objects are placed in local heaplets;
thread-escaping objects in a common, shared area of the heap; and those that are neither
strictly-local nor strictly-escaping are placed in optimistically-local heaplets.

The latter is an entirely new type of per-thread region that holds those objects
that are thought to be local given incomplete knowledge of the application. Should
these objects escape their creating thread when further knowledge is available, the
optimistically-local heaplet in which they were allocated will become shared, thereby
maintaining the soundness of the system but without the cost of the approach by Domani
et al..

To support this, a new static analysis has been designed that associates allocation
sites with this partitioning. The analysis is able to operate at runtime with incomplete
knowledge of the application classes, refining its solution as new classes become available.
It is thus specifically targeted at the dynamic loading of classes. In addition to this, a
garbage collector framework has been designed that exploits the results of the analysis
as well as the novel partitioning. Both the analysis and the collector have been

implemented in a high-performance, production-quality virtual machine.

1.5 OQOutline

Chapters 2, 3 and 4 cover background material and related work. The first expands
on the brief account of garbage collection so far presented. The basic algorithms are
introduced, including reference counting, mark-sweep and copying, and their relative
merits and trade-offs are examined. More advanced techniques, including region-based
collectors, are also detailed, as these form the basis of the novel heap partitioning. An
in-depth account of escape analysis is given in Chapter 3. The necessary terminology
and a formal definition are given. Five approaches that specifically target the Java
language are then examined. The solutions of Domani et al. and Steensgaard are
discussed in further detail in Chapter 4. This chapter describes the operation of these

two approaches and also gives a more detailed account of their respective shortcomings,
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which helps to make clear the value of the solution being investigated.

Chapters 5 and 6 focus on the novel heap partitioning. Chapter 5 first describes
a partitioning for a closed system where complete knowledge of application classes is
available. The invariants of this partitioning are stated and extensive examples given.
A number of approaches are then presented that extend the partitioning to an open
system where incomplete knowledge is accounted for, and a hybrid of these approaches
is proposed that combines their best features. This hybrid utilises optimistically-local
heaplets and promises a low runtime cost. The invariants of this approach are stated
and further examples given to illustrate its operation. Chapter 6 then introduces the
design of a new escape analysis that supports this partitioning. The types, domains and
rules of the analysis are formally defined and explained.

Chapters 7, 8 and 9 detail the implementation of the system. The high-performance
machine that underlies the implementation is introduced in Chapter 7. The fundamental
data structures are exposed and the interface between the virtual machine and the
garbage collector and compiler is examined. Chapter 8 then presents an in-depth look
at the implementation of the escape analysis. The intermediate representation, analysis
state and various stages of analysis are detailed. Chapter 9 does the same for the
garbage collector. The requirements are stated and a thorough account given of the
collector’s data structures and their operation.

Chapter 10 presents an evaluation of the system. The analysis and garbage collector
are benchmarked using a number of applications to assess the impact of the trade-offs
made in the implementation. The space and time costs of the analysis are then measured
and examined, and the results of the escape analysis presented.

Finally, Chapter 11 summarises the investigation and draws a number of conclusions

from the evaluation. Ideas for future work are also presented.



Chapter 2

Garbage Collection

The previous chapter gave only a brief account of dynamic memory management. This
chapter aims to expand on this by setting forth the reasoning behind garbage collection
as well as introducing a number of common garbage collection algorithms and their
benefits and tradeoffs. Techniques for reducing the costs of garbage collection are also

discussed, as are methods for generalising over garbage collection approaches.

2.1 Introduction

Memory management is the book-keeping involved in allocating and deallocating cells
of an application’s heap memory. Many, if not all modern programming languages
provide a mechanism for performing this book-keeping dynamically at run-time, thereby
allowing data structures to be allocated on-the-fly. An application developer using
such a mechanism has considerable freedom: cells of any size can be allocated at any
point during execution, and they can be deallocated as and when the developer deems
necessary.

This freedom, however, demands discipline: memory is a finite resource, and so
must be managed in a safe and timely manner. Neglecting to deallocate cells that
are no longer in use, for example, prevents memory from being reused for other data
structures. Such memory leaks, should they proliferate, can exhaust an application’s
heap and force it to request more memory from the underlying operating system; should
the operating system be unable to fulfill such a request, its only recourse might be to

terminate the application. Similarly, deallocating cells prematurely can lead to dangling

11
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pointers, or references to cells that have already been reallocated elsewhere and their
contents overwritten. These dangling pointers can lead to unexpected behaviour or
even application failure. Finally, cells can be deallocated once too often. Cells that
have already been freed are deallocated again, possibly destroying some new data
structure occupying the old cell’s place, or causing the memory manager to access a
now uninitialised area of the heap. This double deallocation can, like dangling pointers,
cause unexpected program behaviour or termination.

Automatic memory management, or Garbage collection (GC) [Jon96], aims to redress
these issues by relieving the developer of the burden to explicitly deallocate memory.
Cells are allocated manually as before, but are deallocated automatically, either by
compiler-generated code, the runtime system underlying the language, or some hybrid
thereof.

Exempting the developer from this task allows a shift of focus from low-level issues —
deciding when to free memory, and the implementation details necessary to do this safely
and correctly — to the high-level structure and algorithms of the application. Interfaces
are simplified because there is no need to share information about the lifetime of cells,

and this improved abstraction strengthens modularity and cohesion [Mey88, Jon96].

2.2 Basic garbage collection algorithms

Automatically discovering unused cells in the mutator’s heap is a matter either of
tracking the mutations directly, and recognising when a cell is no longer referenced,
that is, dead or inactive, or tracing the graph after the fact to discover the set of cells
that are reachable, that is, live or active, and then reclaiming the inverse of that set.
There are thus two distinct approaches to garbage collection: reference counting (RC),

which directly tracks mutations, and tracing collection, which traverses the graph.

2.2.1 Reference counting

Reference counting is a direct, intrusive method whereby a count of references to a
particular cell is kept in a field within the cell itself [Col60]. Cells are allocated from
a free-pool in the heap with the reference count of each being zero. The count is

incremented by one for each reference made to a cell; similarly, for each reference broken,
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the count is decremented by one. Cells that have a zero count after a decrement have
no references to them, and so their children can be recursively decremented and the cell
safely deallocated and returned to the free-pool.

Unlike tracing collectors, reference counting is naturally incremental. Because
deallocation is performed immediately when all references to a cell are broken, the
cost of reclamation is distributed. Immediate reclamation also allows immediate reuse
of cells, possibly giving better cache behaviour. In addition, reference counting provides
prompt finalisation. Cleanup code for a cell can be executed before it is returned to
the free-pool, for example to release system resources such as files or graphics contexts
attached to the cell.

Reference counting is not without its disadvantages. Each store of a reference now
entails an increment of the reference count, and each removal of such a reference a
decrement, and these extra operations, although cheap by themselves, can degrade
performance when they are numerous. In multi-threaded applications, the increment
and decrement operations must be performed atomically to ensure safety and coherence
when multiple threads share a cell and attempt concurrently to make or break
references. The overhead of these operations is not insignificant: Boehm measures
an atomic increment as 100 cycles on an Intel Pentium 4 [Boe02], a considerable cost in
performance over the store instruction required to write the reference itself. Techniques
such as deferred reference counting aim to reduce this overhead by delaying or even
ignoring reference counts for certain stores [DB76, BAL*01, BMO03].

Simple reference counting schemes also suffer from an inability to reclaim cyclic
structures, where two or more cells reference each other and so prevent their reference
count from reaching zero [McB63]. Combining reference counting with other collection
algorithms can mitigate this. Running a tracing collector when the heap is exhausted,
for instance, can reclaim memory wasted in cyclic structures [Wis79]. Purely functional
languages also exhibit properties that ensure cycles have a single root, and so can be
collected when the root is reclaimed [FW76].

Finally, reference counting is prone to fragmentation [Ran69]. Deallocation of a
cell is in-place, and free areas of the heap become interspersed with live cells, hindering
allocation of large, contiguous chunks. Combining reference counting with a compacting,

tracing collector can help eliminate this by performing a full compaction of the heap



CHAPTER 2. GARBAGE COLLECTION 14

when necessary.

2.2.2 Tracing

Tracing collection, unlike reference counting, is indirect, and does not distribute the
cost of reclamation. Instead, the mutator is suspended while the collector traverses
the graph and recycles garbage cells. All mutator threads must be stopped, lest they
interfere with collection by mutating the graph behind the collector’s back.

Tracing begins from the roots of the graph. The roots are the set of local
variables and temporaries that are assumed to hold references to live cells. These
typically include thread stacks, registers and static data, that is, everything directly
reachable from the program. Everything then reachable from these roots, that is, the
transitive closure of each root, is also assumed to be live. This is known as liveness
by reachability. Because of the initial assumption that the roots are live, the notion of
liveness reachability is somewhat conservative and may include references to cells that
are actually dead [HHDHO2].

In order to trace the mutator’s graph of cells the collector must be able to distinguish
references from primitive values. This is straightforward if accurate type information is
available, and many functional and object-oriented languages provide such information
by associating a type map with each thread’s stack and each heap cell that enables
the collector to distinguish between primitive values and references. Collection in such
languages is said to be ezxact.

For languages without such support a conservative strategy must be adopted. Any
bit pattern on the stack or within a cell’s field that points into the heap must be treated
as a reference to a live cell, barring some simple heuristics that attempt to minimise
false positives. Such collectors, the most notable of which is the Boehm-Demers-Weiser
collector for C/C++ [BW8S], are termed conservative.

Reclamation of garbage cells in tracing collectors can take one of two forms!. In
mark-sweep collectors [McC60], the graph is traversed and all cells visited are marked.
The heap is then swept by scanning for unmarked garbage cells, which can be returned

to the free-pool. In copying collectors [FY69], the graph is traced as before, but instead

! Actually three, but the third, mark-compact, is a variation of mark-sweep.
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of explicitly marking live cells they are copied into a new, unused section of the heap.
The mark is thus implicit by the location of the cells in this new section; all cells not

so marked, that is, still in the old section, are now garbage and can be reclaimed.

Mark-sweep

This is a two-phase approach. The mark phase traverses the graph from the roots,
marking each cell either by setting a flag in the cell’s header or using a separate map
of flags (commonly implemented as a bitmap where each bit represents a word in the
heap). Such flags are known as mark-bits. Cells for which the mark-bit is already
set are assumed to have been visited and so are not traversed, thereby guaranteeing
termination of the mark phase. The sweep phase then scans the heap in address-order.
Cells that are marked are active and have their mark-bits cleared in preparation for
the next collection cycle. Unmarked cells are garbage, and so can be coalesced with
adjacent garbage cells and returned to the free-pool.

Complexity of the mark phase is proportional to the number of live cells that must
be traversed. For the sweep, however, the collector must scan the entire heap, giving
time proportional to the the size of the heap. Collection using mark-sweep is thus
dominated by the sweep phase, and overall complexity is tied to heap size.

To alleviate this, a bitwise sweep can be employed [BW88]. The mark-bits of all
cells are kept in a bitmap indexed by heap address. At sweep time, instead of scanning
through the heap looking for cell headers, the bitmap is scanned. A set bit indicates a
marked cell, while successive zero bits may represent part of a large cell or a number of
dead cells. An optimisation by Dimpsey et al. [DAKO0O] skips runs of zero bits that are
shorter than some threshold value. Otherwise, the size of the cell must be checked to
determine where the cell ends and the free region actually begins. The threshold forces
small regions to be ignored, while reducing the number of cell headers that must be
examined. Scanning of the bitmap can be made extremely fast by inspecting bytes or
words at a time instead of individual bits, allowing runs of consecutive ones and zeros
to be quickly skipped. Furthermore, coalescing of dead cells and empty regions of the
heap is effectively free, since they are simply runs of zeros.

Despite coalescing garbage cells during the sweep, mark-sweep collected heaps

nevertheless suffer from fragmentation. A variant of mark-sweep that performs
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compaction, mark-compact, addresses this issue. Instead of walking the heap and
reclaiming dead cells in-place during the sweep, the collector compacts the live cells
together. This is typically accomplished by sliding them down so that they lie adjacent
to each other, leaving only a single free regions at the end of the heap. The collector
must then fix up the cells’ referents so that they now point to the new location. This
sliding and fixing of referents require a pass each over the live cells, but these passes
can be performed in any order. Besides the overhead of an extra pass, the cost of the
copying the live cells adds complexity proportional to the live data. To its advantage,
however, compaction often results in a smaller heap, because it has neither the gaps of
mark-sweep collection nor needs the reserve of copying collection. It furthermore has the
benefit of improving locality, at least when sliding is employed, because cells are packed

together in allocation order, which is often the order in which they are used [WLM92].

Copying

Copying collection divides the heap into two areas of equal size called semi-spaces.
Allocation occurs in the first, Tospace, which like LABs is linear, meaning a free marker
is shifted along a contiguous space for each allocation. The second, Fromspace, is left
as a copy reserve until a collection occurs. The spaces are logically swapped or flipped
and the graph of cells is then traversed from the roots, with each visited cell being
copied from Fromspace (previously Tospace) into the copy reserve (the new Tospace).
As each survivor is copied a forwarding address is left in its old location to indicate
that it has already been copied; if it is visited again the collector checks for such a
forwarding address, and if one exists the cell is not copied but the forwarding address
is used to update the referent. This avoids duplicate copies, ensures that the algorithm
terminates, and preserves the topology of the graph. Once all live cells are copied, only
already copied cells, garbage cells and some free space remain in Fromspace, and so
it can be discarded. Execution then proceeds as before with allocation continuing in
Tospace.

Cells are copied into Tospace starting from the bottom. This implicit compaction
of the live data guarantees that allocation in the space will always be linear, and so
copying collection prevents fragmentation. This has the added benefit of better locality

of reference, and cache performance may be improved as a result [WLM92].
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Copying collection’s greatest shortcoming is the division of the heap into two equal
semi-spaces, only one of which can be used at a time. It therefore requires twice the
space overhead of a non-copying collector. Compaction at least ensures that the spaces
do not fill prematurely because of fragmentation, and so the effect of this shortcoming

is somewhat lessened.

2.3 Region-based collection

For even moderately-sized heaps, the pauses associated with tracing collectors can be
significant [Ste75]. In the worst case, the collector must scan the entire heap, suspending
the mutator for hundreds or even thousands of milliseconds at a time. In interactive
or real-time applications, such pauses are highly undesirable, and reference counting
is often favoured over tracing collection for exactly this reason [Deu83|. Reducing the
increment of collection is the key to shortening these pauses, and this is the basis for
region-based collection.

The heap is divided into regions, each of which can be collected (almost) indepen-
dently or as part of a collection set containing several such regions [Bae70]. Regions
may differ in size, and can themselves be further divided into semi-spaces to support
copying collection. When a region becomes full, the collector has simply to collect the
region itself. The result is that instead of being bounded by the size of the heap, the
amount of collection work is now bounded by the size of the region, and so pause times

are reduced.

2.3.1 Barriers

A complication introduced by regions is that of inter-region references. Cells may be
referenced by other cells outwith their region, and for the purposes of collection these
external references must be treated as roots. Since cells do not hold back-references to
each referring cell — which would be extremely wasteful of space — some mechanism
must be employed to track these inter-region references.

A common approach is to use a barrier to trap access to cell fields. Read-barriers
trap loads of references, while write-barriers trap stores. Knowledge of each load or

store is preserved that enables the collector to trace from the referring cell, and so treat
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it as a root into the collection set.

Because field accesses can be frequent, barrier overhead must be kept to a minimum
[Zor90]. A system may elect to trade collector for barrier speed by preserving only
coarse-grained knowledge of each load or store at the expense of performing more
collector work. Moreover, since only inter-region references are of interest, the barrier
may omit knowledge of loads or stores that are intra-region.

Remembered set barriers [Ung84], for example, track stores and loads by recording
the target cell in a per-region set, but only if the reference is inter-region. Duplicate
entries in the set are avoided either by setting a bit in the cell’s header once it has
been added or by hashing the cell into the set using its address. At collection time,
the cells in the set of each region being collected are scanned for pointers into the
region. Scanning time is thus dependent on both the number and size of entries in
the set. Alternatively, the set can record the field or slot into which the reference is
being written to or read from. The slots are then examined at collection time and the
references followed. Scanning time is dependent only on the number of entries in the
set, but sets may be larger because there is no way of avoiding multiple slots that refer
to the same cell.

Inserting an entry into target- and slot-recording remembered sets can be costly,
because entries are filtered and cells may have to be marked to avoid duplicates.
Sequential store buffers record stores and loads unconditionally [HPJW92]. A large,
contiguous buffer is used and information is appended to the next free entry in the
buffer. To prevent overflow, the page immediately following the end of the buffer can be
protected so that a page-fault is generated if an entry is inserted past the end. When
the fault is caught, the buffer can be filtered into per-region remembered sets which
are then processed as before for collections. Sequential store buffers therefore provide
quick insertion while still ensuring that duplicates entries are removed and scanning
costs reduced.

An alternative is to use an unconditional, coarse-grained write-barrier technique
known as card marking [Sob88]. The heap is divided logically into equally-sized cards,
each of which is represented by a byte in a global map. For each store of a reference,
the byte corresponding to the card on which the referring cell lies is set. When a region

is collected, the marked cards of all other regions are scanned for roots. Cards that
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are found to be empty of roots have their byte cleared, thereby exempting them from
further scanning unless they are again marked.

Marking a card requires simply that a byte be set, and so can be implemented using
only a few instructions. On the SPARC architecture, for example, this is possible using
only two [H6193]. Furthermore, the cost of scanning for roots is tied not to the number
of stores, but instead to the number and size of marked cards. Careful selection of
card size is therefore necessary to minimise this cost [HMS92]. Scanning can also be
made faster by using card summaries [DCJKO02], where if a card is found to have few
references then their location on the card is summarised in a compact structure. On the
next scan of the card the collector is able to examine the summary instead of searching
for references.

Note that barriers require support from the underlying system. Compilers must
generate extra code to wrap load and store instructions, while interpreters must call
support functions to ensure that barriers are enforced. Techniques also exist that make
use of virtual memory protection mechanisms, for example by protecting the pages
comprising a region and then catching the fault generated when a store is made to a

cell on those pages [AELSS, Boe91].

2.3.2 (Generational collection

Certainly the most notable of the region-based approaches is generational collection.
This is based on the weak generational hypothesis which asserts that most cells become
garbage shortly after allocation [DB76, FF81, Ung84]. The premise is that collecting
younger cells frequently, while postponing collection of older ones as long as possible,
will result in the most garbage collected for the least amount of work.

This is accomplished by placing cells of similar age together in regions of the heap
called generations. Generations are organised and collected in reverse chronology,
youngest first and eldest last, with all generations younger than the one to be collected
included in the same collection set. Generations are also sized accordingly, with the
youngest being the smallest. The younger generations can thus be collected more
quickly, while the larger, older generations take longer to process. The aim is that
collections of the younger generations will be much more frequent than those of the old,

thereby reducing the average collection time.
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The age of a cell is determined by the number of collections it has survived. Cells
are allocated initially in the youngest generation, and after a number of collections
are promoted to the next oldest generation by copying. Cells that survive long enough
eventually arrive in the oldest generation, where they remain until they become garbage.
Such cells are termed long-lived.

Generational collectors can exploit the properties of each generation by using an
algorithm suited to the generation. Common practice is to use copying collection, which
has only to scan live cells, for the youngest generation. Survival rates are expected to
be low, and so collection work is minimal. Similarly, mark-sweep is most effectively
utilised in the eldest generation. Long-lived data is unlikely to become garbage, and
here mark-sweep has the advantage over copying collection of not having to copy large
numbers of live cells and not requiring twice the heap space.

Independent collection of generations is not always possible. Inter-generational
references can be created, and so there may be roots external to the generation being
collected. This is of no concern to generations younger than the one being collected
if they are part of the same collection set. For generations older than the one being
collected, however, a barrier is necessary, unless these generations are also included in
the collection set.

Card marking is typically employed to handle references from older generations to
younger ones when a collection is performed. Stores of such old-to-young references
are caught by the card marking barrier. The cards of the older generations are then
scanned when a collection occurs. Should a card contain references into a generation in
the collection set then these are treated as roots and are followed; otherwise, the card
is cleaned so that it need not be scanned in later collections, unless it is again marked
by the barrier.

Generational collection’s main benefit is that of shorter average-case interruptions
to the mutator. Collector activity is focused on the youngest generation, collections of
which are likely to be tens of milliseconds rather than the hundreds necessary to trace
the entire heap. This is sufficiently short that the responsiveness of most applications is
not affected. Similarly, collections of the eldest generation are infrequent enough that
a one or two second pause can be tolerated.

Besides this, generational collectors offer much scope for tuning. The number and
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size of generations, the algorithm used in each generation, the age threshold at which
cells are promoted [UJ88] and the size of cards used in the barrier [HMS92] are all open
to adjustment. Generational collectors can, as a result, be tailored to suit the specifics

of an application.

2.3.3 Beltway

Despite being highly effective, the incremental nature of generational collectors is
very much dependent on being able to collect large numbers of garbage cells in the
young generation. Age and incrementality are thus inextricably linked. In an ideal
region-based collector these properties should be orthogonal, and this is the aim of
Beltway [BJMMO02].

Beltway divides the heap into regions called increments, which are the unit of
collection, and belts, which group together one or more increments. The increments
on a belt are collected in first-in-first-out (FIFO) order, much like items on a conveyor
belt. Belts may be collected in any order, and are collected independently of other belts.

By changing the arrangement of increments and belts, Beltway can exploit one or
more of five key insights into copying collection: most cells quickly become garbage;
collection of old cells should be avoided; cells require at least some short time to
become garbage [SMM99]; smaller increments of collection reduce pause times; copying
and compaction improve cache performance. In this manner, Beltway generalises over
existing copying collectors, and so consitutes a framework with which other collectors
can be completely and efficiently modelled.

For instance, by using a single belt with one increment, Beltway acts as a simple
semi-space copying collector. Allocation proceeds in the increment until it is full, at
which point a collection is triggered and survivors are copied into a new increment on
the same belt. Similarly, by logically organising two belts by age, Beltway is able to
simulate an Appel-style generational collector [App89]. The first belt, again with a
single increment, performs as the young generation, while the second belt functions as
the old generation. The belts are allowed to expand until they utilise all but the copy
reserve, at which point a collection occurs and survivor cells are copied from the young
to the old belt. Should the increment on the old belt become full, a new increment is

added from the copy reserve and the old belt is collected.
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Beltway also permits entirely new collector configurations. Beltway X.X.100 adds
more increments to each belt of the Appel-style collector, where an increment can be X
percent of the available heap (minus the copy reserve). A third, older belt is also added
with a single, expandable increment which ensures that cycles are collected. Without
this increment, inter-increment references can keep dead objects alive, because there is
no way to determine within a region if an external root is within a cycle. The extra
belt and single increment thus add completeness to the collector. Allocation is in the
youngest increment of the youngest belt, with survivors being copied from the oldest
increment of the belt. Cells can be thought of as progressing along the belt until they
fall off the end and are promoted to the next (older) belt. In this way, young cells
are collected preferentially over older ones but are still given some time to die. The
collector is also incremental, since it must only collect an increment at a time on each
of the younger belts, although in the worst case it must still collect all of the oldest belt
(since its increment may expand to fill the heap). Finally, survivor cells are likely to be
copied with their neighbours and compacted together in increments. Beltway X.X.100

thus exploits all five key insights in a single collector configuration.

Summary

This chapter introduced the basic garbage collection algorithms. Reference counting and
tracing were both discussed, with two variants of the latter (copying and mark-sweep)
described in some detail. The advantages and drawbacks of the various algorithms
were also presented. Finally, an account of region-based collection was given, including
descriptions of barriers, generational collectors, and a framework for generalising over
collection algorithms. The next chapter expands on this background knowledge by
giving an in-depth look at escape analysis, which along with garbage collection forms

the basis of this research.



Chapter 3

Escape Analysis

An account of garbage collection techniques was presented in the previous chapter. The
aim of this research is to combine these techniques with an escape analysis, and as
such this chapter presents a general background to escape analysis and introduces the
necessary terminology. A detailed insight into each of five escape analysis approaches
is given, all of which aim to remove application-application synchronisation. The
implementation of each approach is detailed and its precision examined. Finally, a
brief comparison of all five approaches is presented that illustrates their effectiveness

over a common set of benchmark applications.

3.1 Background

The process of distilling semantic information from a program, whether it be from the
source or some intermediate representation, is called static analysis [HP00]. Among
the many forms of static analysis is points-to or alias analysis. An alias is the name
of a storage location in a program that holds a pointer, or reference to another storage
location in the program. The first location is typically a local variable, global variable,
or a method parameter, while the second is typically an object on the heap. The
purpose of the analysis, then, is to find an approximation of the aliases for a particular
storage location, that is, for a given location, the set of all other locations that may
hold references to it. Such analyses typically produce points-to graphs or alias sets
that represent the relationships between storage locations. Points-to graphs model a

program using nodes for storage locations and edges for the pointers connecting them,
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class Alias {
public static void main(String[] args) { N —
Object o, p; ;:()
o = new Object(); // new object is at [p J-"
// location "n" on
// the heap

) ' ®-®-® | oon

Figure 2: Pointers, objects and aliases. Variables o and p are aliases of and hold pointers to
object n.

while alias sets collect a location’s aliases into a set.

Figure 2 shows a short example program that demonstrates a simple points-to
analysis. main() allocates a new object on the heap at location n and stores a reference
to it into location o, which is a local variable. It then assigns this reference to location
p, another local variable, thereby making them both aliases to n. The top half of the
right-hand side shows the layout in memory. Storage locations o and p point to storage
location n. The bottom half illustrates the resulting points-to graph and alias set on
the left and right-hand sides, respectively. The former has nodes for locations p, o and
n, and edges to represent the pointers between them, while the latter has grouped the
locations into a single set.

The application of this technique to the problem of finding escaping objects is escape
analysis. By finding the possible aliases that could reference an object at some point
in its lifetime, and then computing the set of methods and threads to which those
aliases are visible, escape analysis can determine those objects that do not escape their
creating method or thread. Note that the determination is conservative: objects that
might escape at some point treated as such, even if in practice they do not. Objects that
do not escape are candidates for optimisation. Those that do not escape their method
can be allocated in the frame of the allocating method, while those that do not escape
their thread can be allocated locally to their thread and the synchronisation primitives

guarding them removed.

3.1.1 Formal Definition

This can be neatly formalised using a notation suggested by [CGST99]. Let O be an

object instance, M a method invocation, and T and 7"’ distinct thread instances in
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program P. Then the following apply:

Definition 3.1.1. An object O outlives its allocating method M if any of its aliases are:
returned from M; stored to the instance field of an object returned by M; stored to the
instance field of a parameter to M; stored to any static field (global variable); or stored

to the transitive closure of any of these.

Definition 3.1.2. If O outlives M, then it is said to escape M, denoted as Escapes(O,

M), and is termed method-escaping.

Corollary 3.1.3. Unless Escapes(O, M), then O is local to M. It can be allocated on

M’s stack and is termed method-local or stack-allocatable.

Definition 3.1.4. If T’ may access O, where T allocated O and T' # T, then O is said

to escape T, denoted as Escapes(O, T). O is termed thread-escaping.

Corollary 3.1.5. Unless Escapes(O,T), then O is local to T. It does not need

synchronisation, and is termed thread-local.

Lemma 3.1.6. Escapes(O,T) implies Escapes(O, M), where method is invoked by
thread T, or, equivalently, —Escapes(O, M) implies = Escapes(O,T). The only way for
O to escape T is through one of the cases in Definition 3.1.1, but this means that it also

escapes M.

3.1.2 Examples

A number of examples are given below that make the formal definitions somewhat more
concrete. These examples illustrate method-local and method-escaping objects as well
as those that are thread-local and thread-escaping. Two classes that are common to
these examples are Holder and MyThread, and their sources are presented on the left
and right-hand sides of Figure 3, respectively. The first has a single instance field f and
acts as a container for objects. The second is a subclass of Thread, which means its
run() method will be executed within a separate thread. It has a single instance field
f that is allocated within run(). This field is accessible only via the field() method,

which is declared as synchronized to prevent races when called by another thread.
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class Holder { class MyThread extends Thread {
private Object f£f; private Object f£f;
public synchronized public void run() {
void setField(Object inF) { this.f = new Object ();
this.f = inF; }
}
public synchronized
public synchronized Object field() {
Object field() { return this.f;
return this.f; }

} }
} .

Figure 3: Common classes Holder and MyThread

Example 1

Example 1 (Figure 4) illustrates an object that is local to both its method and thread.
Ex1 has the standard entry-point method main(), which is implicitly executed by the
main program thread MT. A single instance of the base class Object is allocated and
a reference to it assigned to local variable o, which is now an alias for it. This object is
never aliased to anything else, and so escapes neither its allocating method nor thread
(Corollaries 3.1.3 and 3.1.5). It is thus method- and thread-local, and can be allocated

on the stack of the current method. There is no synchronisation to be removed.

Example 2

This example (Figure 5) demonstrates an object that escapes only its creating method.
Ex2 again has the entry-point main (). Unlike Example 1, where a new object is allocated
locally to main(), method create() is called. This method allocates a new instance
of the Object class, a reference to which it assigns to local variable p and returns
to its caller. The returned value is then aliased to o. p outlives its allocating method
(Definition 3.1.1), and is thus method-escaping (Definition 3.1.2). It cannot be allocated

on the stack, but it is not thread-escaping.

Figure 4: Example 1

class Ex1 {
public static void main(Stringl[] args) {
Object o = new Object();
}
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class Ex2 {
public static void main(Stringl[] args) {
Object o = create();

}

static Object create() {
Object p = new Object();
return p;

Figure 5: Example 2

Example 3

Example 3 (Figure 6) again illustrates a method-escaping object, but this time the object
escapes through an instance field of a parameter. There is also synchronisation that can
be eliminated in this example. Ex3 has entry-point main() and creates a new container
instance h of class Holder. It passes this container to method createInHolder(),
which allocates a new instance o and assigns a reference to it to the container’s instance
field £ via method setField(). This causes the object to escape its creating method
(Definition 3.1.2), and so it cannot be allocated on the stack. The main method then
attempts to access the field of the container via the field() method and assign it
to 02. Notice that both this method and setField() are declared as synchronized,
meaning they are guarded by a monitor from potential races; there are no other threads
from which h is reachable, and hence no other threads from which o is reachable. This
object does not escape its thread and so this synchronisation can safely be removed

(Corollary 3.1.5).

Figure 6: Example 3

class Ex3 {
public static void main(Stringl[] args) {
Holder h = new Holder ();
createInHolder (h);
Object 02 = h.getField();
}

static void createInHolder (Holder h) {
Object o = new Object();
h.setField(o);
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class Ex4 {

static Object so;

public static void main(String[] args) {
Object o = new Object();
so = 03

Figure 7: Example 4

Example 4

Example 4 (Figure 7) illustrates an object that escapes its allocating method via a static
field (global variable). Method main() in Ex4 allocates an instance of the Object class
and assigns a reference to it to local variable o, making it an alias. It then further
assigns o to static field so, adding this as an alias, and also causing the object to outlive
(Definition 3.1.1) and thus escape (Definition 3.1.2) its allocating method. It cannot be

allocated on the stack. There is, further, no synchronisation to be removed.

Example 5

Example 5 (Figure 8) illustrates an object that escapes both its allocating method and
thread. Ex5 allocates an instance of MyThread and assigns it to local variable T. This
causes a new thread T to be created, and when start() is called this thread is set
running. T’s run() method is executed within the new thread and allocates an object
that is stored in instance field £. The main method then accesses this field via method
field (), which is declared synchronized to avoid races between the main thread MT
and new thread T. The returned reference is assigned to local variable o. Because the
instance field was accessed by the main thread it is reachable outside its creating thread,

and thus escapes both its thread and method (Definitions 3.1.2 and 3.1.4).

Figure 8: Example 5

class Ex5 {
public static void main(String[] args) {
MyThread T = new MyThread();
T.start(); // calls T.run()
Object o = T.field();
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3.1.3 Taxonomy

The degree to which an analysis respects control-flow statements — conditionals, loops,
exceptions and branches — is termed flow-sensitivity. In flow-sensitive analyses, these
statements are processed and separate paths of flow are followed. Where a method
is represented as a control-flow graph, the analysis computes a separate solution for
each node in the graph. Flow-insensitive analyses, on the other hand, ignore control
flow statements and merge the analysis at each node to produce a single solution for a
method.

Such flow-insensitive analyses are further classified as Steensgaard-style [Ste00] or
Anderson-style [And94). Steensgaard-style analyses are equality or unification-based
approaches, because both sides of an assignment are merged, or unified, so that the
solution for both sides is equal. In contrast, Anderson-style analyses do not merge both
sides of an assignment, but only pass values in a single direction, from the right-hand to
left-hand side of the assignment. These are also known as subset-based or inclusion-based
analyses.

Analyses may compute a solution for a method at a time and then merge the result by
joining the aliases of the method and every call-site from which it is invoked. This results
in a single solution for a method for each of its calling contexts, making the estimation
of the aliases conservative. A better approach is to map the aliases of the method onto
those of the call-site instead of joining them, thereby leaving them disconnected. This
is somewhat like an Anderson-style analysis, but here it is not the solution at each node
that is being computed but the final solution of the method for a given call-site. The
analysis can then specialise the method accordingly by creating a copy for each of the
different solutions. Analyses that employ this optimisation are called context-sensitive,
and they allow a method to have a different solution depending on the calling context.

In addition to flow- and context-sensitivity, an analysis can be defined by how much
of a program is necessary to compute a solution. Whereas whole-program analyses
require that the entire program be available, partial-program analyses are able to
operate on a subset of a given program, for example a module or even a single method.
These typically operate by generating solution summaries for those methods that are

available, and then conservatively generating worst-case solutions for those that are not.
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Combining the two gives a sound solution despite having no knowledge of the missing
methods.

Partial-program analysis is particularly important for dynamically-typed languages.
In such languages, type checks on object instances are performed (mostly) at runtime
instead of at compile time, so that the runtime type of an object is not necessarily the
same as its explicit, static type in the program source. This allows new types to be
added to the program while it is running, and instances of these new types can be used
in existing methods provided that the types share some common interface.

Java, for example, is capable of dynamic class loading, whereby new classes can be
loaded at any time. Instances thereof can then be instantiated and passed to existing
methods that operate on known super-types of these new classes. Unless the compiler or
virtual machine implementation disallows dynamic class loading, the analysis must be
able to compute a solution for a program that is still safe if new classes are loaded, and
so partial-program analysis is imperative. A partial analysis employed in this fashion
typically operates alongside the application, taking into account the runtime behaviour,

and so is usually termed online.

3.1.4 Precision

A pointer analysis can never be entirely accurate: exact determination of points-to
information for a program is an undecidable problem [Lan92]. As such, escape analysis
implementations only give a conservative estimation of the non-escaping objects in a
program. How conservative is a matter of analysis cost versus precision.

Precision of a static analysis is related to flow- and context-sensitivity. With flow-
sensitivity, a solution is computed for each node of the control-flow graph. This would
appear to be more precise than an equivalent flow-insensitive variant, but at some cost
in performance. There is evidence, however, that suggests this extra cost does not offer
much improvement in precision when the analysis is also context-sensitive.

Hind and Pioli [HP00], for example, found that a flow-sensitive analysis by [CBC93]
shows a negligible improvement in precision over flow-insensitive analyses by [And94]
and [BCCHO5], but at a two-fold increase in time costs. The reason that flow-insensitive
analyses perform so well is that, despite computing a single solution for all nodes in a

method — lessening the precision for local variables — the final solution for the method
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is still dependent on the calling context, and thus retains precision for parameters passed
between methods. The final solution for the program is, therefore, sufficiently precise.

The same study also uncovered differences between subset and equality-based flow-
insensitive analyses. While the former offers, on average, twice the precision of the latter,
it is also significantly more costly: nearly thirty-times slower for some applications, and
with an eight-fold increase in space overheads. However, there has been research into
new approaches that combine equality- and subset-based analyses. Das, for example,
has developed an analysis that scales effectively, processing two million lines of code in
only a few minutes, while still offering the precision of a subset-based analysis [Das00].

Context-sensitivity too has been shown to offer little improvement in precision for
certain applications. For instance, where a subset-based flow-insensitive analysis is
used, context-sensitivity makes little change to the overall precision [FFA00]. When
used together with an equality-base technique, however, context-sensitivity can lead to
a significant improvement [Ruf00]. Furthermore, despite exponential complexity in the
worst-case, it has been shown to be effective in practice, with complexity greater than
linear in proportion to program size but still manageable (§3.2.5).

The tradeoff, therefore, very much depends on what the client application can afford
to lose in terms of precision. Landi notes in [HP01] that, when using a static analysis
for bug detection in application code, some safety can be sacrificed for an increase in
performance of several orders of magnitude. The reduced safety introduces some false-
positives into the results, but these are perfectly acceptable to users of the tool.

With escape analysis, however, safety is more critical, and so more conservatism is
introduced. An offline analysis that does not need runtime information (for example,
to account for dynamic class loading) can be performed during compilation. Accurate
type information can be gathered for the entire program, and a relatively expensive
flow-sensitive or subset-based analysis can be employed. In this manner, performance
is sacrificed for improved precision, gaining safety without unnecessary conservatism.
Online analyses, in contrast, need to be considerably cheaper, especially for client
applications where pauses cannot be tolerated (more expensive analyses may be
acceptable in a server environment, where startup-costs are likely to be less important
than overall throughput). Less accurate type information can be generated and an

equality-based analysis employed, thereby quickly computing a more conservative result.
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3.1.5 Applications

The two primary applications of escape analysis are stack allocation and synchronisation
removal. The former relies on identification of method-local objects, that is, objects that
do not escape their creating method, while the latter relies on identification of thread-
local objects, or those that do not escape their creating thread.

Method-local objects can be allocated in the frame of their creating method instead
of in the application’s heap, thereby avoiding the need to garbage collect them.
Allocation and deallocation are fast, because space is already reserved in the stack frame
of the allocating method and the object is destroyed automatically with the frame as
soon as the method is exited. Performance is further improved because the stack is
likely to fit into the cache, and if objects are related then placing them together on the
stack also improves locality of reference. Finally, smart compilers can generate code to
directly access object fields at an offset from the stack frame, instead of having to first
generate a load of the object.

Stack allocation is not, however, without its disadvantages. Temporaries allocated
in loops each need their own space, so the compiler must be able to compute a bounds
for the loop in order to reserve enough space. In addition to this, such temporaries will
outlive the scope of the loop and survive until method exit. This is undesirable for large
methods where objects have classes with non-trivial finalisers, since those objects may
hold onto system resources for longer than necessary.

Synchronisation removal is possible with thread-local objects. These objects do
not escape their creating thread, and are invisible to other threads: another thread
can never read-from or write-to such an object. There is, as a result, no potential
for races on the object, and so any synchronisation protecting it is redundant. The
synchronisation primitives guarding the object can, therefore, be removed, and the
costly atomic instructions on which they are built avoided. The benefit is that of
improved application performance, while retaining complete safety for those objects

that still require synchronisation.
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3.2 Approaches

Certainly a useful tool for any language where threads are concerned, escape analysis
is especially advantageous in Java, where synchronisation is ubiquitous and garbage
collection can be costly. Consequently, five approaches to this technique have been
developed that specifically target the Java language: Bogda and Hoélzle [BH99,
who generate synchronisation-free clones of classes; Aldrich et al. [ACSE99]|, who
rewrite method bytecodes to remove synchronisation; Choi et al. [CGST99], where
synchronisation-free clones are generated and objects are allocated on the stack in
a modified virtual machine; Whaley and Rinard [WR99], who perform both these
optimisations; and, finally, Ruf [Ruf00], who removes synchronisation.

The aim of this research is to support the novel heap partitioning proposed in
Section 1.4 with an escape analysis, and as such these approaches are presented
here and their implementation discussed. The analysis used by each is detailed, as
is the transformation process and any modifications made to the virtual machine.
The approaches are then examined together and their effectiveness and precision on

a common set of benchmarks is compared.

3.2.1 Bogda and Holzle

Perhaps the simplest analysis is performed by Bogda and Holzle [BH99]. It is flow-
and context-insensitive and operates statically on expression trees in OSUIF [DCI']
representation. Java class files are first converted to this representation using j2s [Kie98],
after which a two-phase analysis is applied. Initially, all variables, fields and parameters
are assigned the identity alias set, that is, their sets contain only themselves as an alias.
The analysis then traverses the statements in the application program in lexical order,
starting from the main() method and ignoring flow control. Call sites are followed as
they are encountered, and for each the analysis computes the set of all possible method
targets.

The first phase identifies objects that are referenced only from the stack and never
through a level of indirection by some other object on the heap. These s-local objects
are candidates for optimisation because they can never be shared by threads, and so

the synchronisation surrounding such objects can be safely removed. Objects that do



CHAPTER 3. ESCAPE ANALYSIS 34

escape the stack in this phase are termed s-escaping. For simple variable assignments
of the form x = y, the analysis merges the alias sets on both sides of the assignment so
that each side inherits the properties of the other. When an assignment is made to the
field of some object, as in x.f = y, the analysis does not merge the alias sets of x.f and
y, but instead marks y as s-escaping, as it is now reachable from the heap through the
field. For method calls, the analysis maps the properties of the formal parameters of
the call to the actual parameters. If the method is native, all parameters are assumed
to be s-escaping, except in core native libraries where Bogda and Hoélzle construct the
alias sets manually.

The second phase looks for objects that either escape their field or are reachable
from some global, static object. Method statements are again traversed, starting from
main() as before and ignoring flow control statements. This time, however, the rules
are extended to the alias sets of fields. For the field assignment x.f = y, the alias sets
of x.f and y are now joined, but only if the owner object x is not already s-escaping;
otherwise, y is marked as f-escaping, since it is reachable by more than one level of
indirection. This constraint restricts accesses to one level of indirection, and applies
also to the other rules. For example, fields of formal method parameters are mapped
onto fields of actual parameters, but only if the owning parameters are not already s-
escaping. Finally, objects assigned to static fields are assumed to be f-escaping regardless
of their current state, as they are reachable from a global object and can be accessed
by multiple threads.

Once the analysis is complete the original application is transformed. For each object
that is optimisable (not f-escaping) a new subclass of the object’s class is generated that
is synchronisation-free. Methods that instantiate optimisable objects are then cloned
and modified so that they instantiate the subclass instead of the original. Callees that
lie between the points of instantiation and synchronisation must also be cloned so that
the call-chain leads to the correct, optimised method.

Bogda and Holzle evaluate their analysis using ten single-threaded! benchmarks.
The majority of these benchmarks are taken from the SPECjvm98 [spe98| suite and

are relatively small, except for _213_javac, which comprises roughly three-and-a-half

'mtrt uses two threads that run sequentially, giving behaviour essentially like that of a single-threaded
application.
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thousand methods, nearly two hundred of which are synchronized. On average,
ten classes and eighteen methods were generated by specialisation for each of the
applications, and nearly ninety percent of all synchronisation primitives were removed
from the code. At runtime, however, only three out of the ten benchmarks showed
a significant reduction in the number of synchronisation operations executed, which
suggests that the ten percent of primitives not removed are also those that are most
frequently executed. Bogda and Holzle suggest that most of the removed primitives
reside in dead code or in exception handlers. The time taken to perform the actual
analysis is not cited, but it need only be performed once, statically, and there is no

runtime cost nor JVM modification required for the optimisation.

3.2.2 Aldrich et al.

As opposed to the simple stack and field escaping analysis used by Bogda and Holzle,
Aldrich et al. [ACSE99] take a more complex approach. They first perform an unshared-
field analysis using a simple expression based language that generates the set of locks and
aliases for the objects in an application. They then target three specific areas of potential
optimisation: reentrant monitors, enclosed monitors and thread-local monitors.

The first type, reentrant monitors, occur when the same receiver object is synchro-
nised upon by caller and callee methods in the same call-chain. The synchronisation
of the callee can be removed if there is no path to it from any unsynchronised caller.
Alternatively, if there is some path to the callee where synchronisation is not present,
the methods in the call-chain can be cloned so that there is both a synchronised
and unsynchronised path. The invocation statements of methods in the call-chain
are patched so that they invoke the synchronised or synchronisation-free version as
appropriate. This process of cloning and patching is termed specialisation.

Figure 9 shows an example of a reentrant monitor in class Reentrant. Method
foo() is marked as synchronized, meaning a lock will be taken on the receiver object’s
monitor. It then calls method bar (), which will (recursively) lock the same object’s
monitor. This second synchronisation is redundant and can be removed.

Enclosed monitors are those guarding objects that are already protected by

some other enclosing monitor. An explicit lock object is often employed instead of
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synchronising on some object directly, but it is then possible that further down the call-
chain the object itself is synchronised upon. The analysis must first prove, however,
that there is no path another thread could take to the point of synchronisation that
would give it unguarded access. In general, to remove the synchronisation for some
statement S, the path of references to the object in S from all enclosing synchronisation
statements S’ must satisfy the following conditions: the first reference in the path must
be the the same object synchronised upon in both S and S’; all references that follow
must either be to a field containing the single enclosing lock object, or to any immutable
global variable holding an enclosing lock; the last reference along the path must be (or
alias) the object synchronised on both S and all paths to S’. Once these conditions
are met, specialisation is again employed to remove the enclosed monitor. The methods
in the call-chain from S to S’ are cloned, and the invocation statements patched as
necessary.

An enclosed monitor is shown on the right-hand side of Figure 9. Class Enclosing
has a field £ of type Enclosed. An object is created in the constructor Enclosing() and
assigned to this field. Method foo(), which is synchronized and will take a lock on
the receiver object’s monitor, invokes method bar on this field. It too is synchronized,
but will take a lock on f’s monitor. Although these monitors are different, they both
protect the same object, and so the second one is redundant. The synchronisation on
method bar () can be removed.

The final type, thread-local monitors, are those of the form typically targeted by

escape analysis. These are monitors that protect only method- or thread-local objects,

Figure 9: Reentrant, enclosed and thread-local monitors

class Reentrant { class Enclosing {

public synchronized void foo() { Enclosed f;

bar () ; public Enclosing() {

} f = new Enclosed();

public synchronized void bar () { }

} public synchronized void foo () {
} f.bar ();

}

class ThreadLocal { ¥

public synchronized void foo() {
class Enclosed {

} public synchronized void bar() {
public static void bar() {
new ThreadLocal(); }

} }



CHAPTER 3. ESCAPE ANALYSIS 37

and so can be safely removed. Specialisation can similarly be applied to this form, by
cloning methods in the call-chain to the point of synchronisation and then patching
invocations as before.

Figure 9 illustrates such a monitor in class ThreadLocal. It has a synchronized
method foo() and a static method bar(). The latter creates a new instance of the
class, but this instance is never assigned to anything and thus escapes neither its method
nor thread. The synchronisation on method foo() can safely be removed.

Transformation is performed statically on bytecode. A binary rewriter is used to
replace all optimisable statements of the form synchronized(el){e2} with el;e2,
thereby removing the synchronisation. The statements can be replaced only if the
analysis has determined them to be enclosed or reentrant monitors, or to refer only to
thread-local monitors.

Aldrich et al. have implemented only prototype versions of their reentrant lock
and thread-local monitor optimisations, and as such their evaluation is preliminary.
The precision of the analysis is determined somewhat by the construction of the call-
graph, which itself is dependent on the size of the program being optimised. The
1-1-CFA [GDDC97] call-graph construction algorithm is used when the application is
relatively small (fewer than sixty classes). This algorithm constructs a call-graph using
one level of calling context and is able to analyse objects from different creation points
separately. It results in a reduction in synchronisation overhead of between twenty-
seven and sixty-seven percent. For larger applications, however, the more conservative
0-CFA [GDDC(C97] algorithm is used. This algorithm lacks context sensitivity and so
the alias information generated is more conservative. It still performs relatively well
on one benchmark, the javaCUP grammar processor [HFAW99], where synchronisation
overhead is reduced by forty-seven percent. For the 213_javac benchmark, however,
it removes no synchronisation at all. Aldrich et al. expect this to improve once all of

their optimisations have been implemented. No analysis times are cited.

3.2.3 Choi et al.

The notion of a connection graph is introduced by Choi et al. [CGS199] in their
compositional analysis. The graph is directed and contains a node for each object,

reference variable, non-static field and global variable in a given program. Nodes are
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assigned one of three states: NoFEscape, in which the object is both method- and thread-
local; ArgFEscape, which indicates that the object escapes through the arguments of a
method; and GlobalEscape, which signifies an object that escapes its creating thread and
is hence shared. Method arguments are initialised as ArgHEscape, while global variables,
threads and instances of classes with non-trivial finalisers (those other than the default
Object.finalize()) are initialised as GlobalEscape.

Edges in the graph represent the relationships amongst objects. The fields of an
object are modelled using points-to edges, which point from the owner object’s node to
that of the field object. Deferred edges model object aliases, and are so called because
computation of such an edge’s state is deferred, thereby reducing the number of graph
updates necessary during analysis [BCCH95]. Deferred edges must always lead either
to another deferred edge or to a single points-to edge.

Sensitivity of the analysis to flow control is through a ByPass(p) function. For a
flow-sensitive analysis, the function redirects the incoming deferred edges of a node p to
the successors of p. It further eliminates p’s outgoing edges. In this manner, when an
assignment is made to the alias of an object down one flow path, the alias is made to
point not at the original object itself but instead to its subgraph of fields. The original
is thus preserved, so that when the flow paths merge the alias and the original are now
distinct. For a flow-insensitive analysis, the function is omitted, and so the operations
of all flow paths are applied to both the alias and the original object.

The analysis first performs an intraprocedural pass in which the graph for each
method in the program is constructed from single static assignment statements, which
have only one target object [CFR*91]. A node is created for the object and the fields of
the object are then attached using points-to edges. For method arguments, the formal
parameters are given object nodes, while phantom nodes are used to model the actual
parameters and then attached to the formal parameters using deferred edges. The
analysis is thus able to construct the connection graph for a method where the calling
context is unknown, and this is what makes the approach partial-program.

Four statement types are processed for the intraprocedural pass, and for each the
ByPass(p) function is applied only if the analysis is to be flow-sensitive. For allocations
where p = new 7(), a node is created for the new object o and a points-to edge is added

from p. In an assignment p = q, a deferred edge is added from p to q, since the former
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is simply an alias to the latter. For field assignments of the form p.f = q, it is possible
that p was created outside of the current method and passed in as an argument, and
so a phantom node must be inserted. The same applies when an assignment p = q.f
is made, except for q instead of p. Similarly, the field £ in both statement forms might
not exist, and so a field node must be created and attached to either p or q.

During this pass, instances of the Thread class are treated conservatively. A thread
instance T” not only outlives its creating method, but is also accessible both from itself
and the creating thread CT. As a result, any object of type 7, where 7 implements
the Runnable interface (including the Thread class itself and any subclass thereof), is
marked as GlobalEscape.

Once the intraprocedural pass is complete, the analysis need simply map the
connection graph for an invoked method to the invocation site in the callee. The state of
all nodes in the connection graph of the callee method is propagated using a reachability
analysis to produce a summary of the method. The formal parameters of the callee,
represented as phantom nodes and pointing through deferred edges to actual nodes
within the callee, are then mapped to the actual parameters in the caller. For virtual
invocations, the analysis must map the formal parameters of each callee to which the
invocation might resolve, producing a merge of the node states. For callees of classes
that are not loaded, and so do not exist, the actual parameters can conservatively be
assumed to escape, and so are marked GlobalEscape.

Transformation is by means of runtime support in IBM’s High Performance Compiler
for Java (HPCJ). The allocation sites of objects found to be NoEscape are flagged so
that the virtual machine uses the alloca() function of the underlying system to place
them on the stack instead of on the heap. For objects that are either NoEscape or
ArgEscape, the synchronisation protecting them can be removed. The allocation sites
of such objects are modified so that they mark the object’s header to indicate thread-
locality. The synchronisation operations in HPCJ detect this mark and bypass the
atomic operation of the object’s monitor.

Choi et al. use a number of benchmarks for evaluation, the most interesting of which
is the Portable Business Object Benchmark (pBOB) [BDF00]. This multi-threaded
transaction processing system was inspired by TPC-C [tpc04] and is the forerunner of

the SPECjbb2000 benchmark [spe00]. It creates nineteen million objects in total, just
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under twenty percent of which can be allocated on the stack. It further finds nearly
fifty percent of all objects to be thread-local, which is especially encouraging for this
research. Despite this high ratio of thread-local objects, however, only seventeen percent
of the synchronisation overhead could be eliminated. From this, Choi et al. draw the
conclusion that most thread-local objects are not synchronised upon. They also note
that adding flow-sensitivity has a negligible effect on the precision of the analysis. No

space or time costs are cited for the analysis.

3.2.4 'Whaley and Rinard

The analysis employed by Whaley and Rinard [WR99] is based on points-to escape
graphs, much like the connection graph abstraction used by [CGS199]. Construction of
the graph is from statements in the intermediate representation of the Jalapefio dynamic
compiler [AFGT00]. Nodes in the graph represent objects, while edges in the graph
represent the relationships between them. Compositional and partial-world analysis is
obtained by using two types each of edges and nodes to model information within and
without analysed regions, where a region is typically a method.

Inside nodes are created for objects that are allocated and also reachable only from
within the analysed region. For a method, these include local variables and temporaries
allocated within the method. These objects are named by allocation site. Qutside nodes
are similarly added to the graph for objects created outwith the region of analysis, or
at least reachable through some outside reference. Formal parameters, including the
receiver, return and exception values, are examples of such outside objects. Aliases
outside the region to the same outside object may be represented by separate outside
nodes, since the analysis has no knowledge of these and cannot distinguish between
them. Special outside nodes termed class nodes are used to represent static variables,
where a class node is a placeholder for all static variables of that class.

To model relationships created within the analysed region, inside edges are used,
while for those created outwith the region, outside edges are added to the graph. Note
that in the case of formal parameters, it is possible to have an outside node connected to
an inside edge. The node represents the formal parameter, of which the analysis has no
knowledge within the region. The node is only referenced, however, within the region,

unlike the actual parameter, and so is connected via an inside edge.
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Object escapement from an analysis region is defined in a number of ways. If
the object is a parameter to this method or some invoked method, or is connected
through the transitive closure of some other object to such a parameter, then it escapes.
Furthermore, objects that are returned from the region escape, as do those returned
from methods outside the region. The analysis also treats instances of the Runnable
class as if they always escape, much like the analysis employed by Choi et al.. Finally,
any object that is referenced from a static field is automatically escaping.

A set of escaping and returned nodes is maintained for each object node. For objects
that return from the current region of analysis, a return set is used, while the escape set
contains all nodes through which the object escapes, including parameters, fields and
class nodes. It also tracks escapement of objects into methods for which the analysis
has no knowledge, for example those belonging to classes that are not yet loaded. The
objects as well as the methods into which they escape are added to the escape set.

An intraprocedural analysis is applied to the methods of each loaded class. The
analysis first creates nodes for the formal parameter objects, including the receiver
object, and a points-to escape graph is initialised at the entry point of the method.
The statements of the method are then processed according to a control-flow graph,
where each node of the graph represents a block of statements. Six statement forms
are analysed: copies (aliasing), field loads, field stores, returns, object allocation, and
method invocation. For each, the analysis takes the points-to graph for the statement
block and applies a transfer function to add nodes and edges that represent the objects
and references in the statement. The points-to graph at block-exit represents the entire
block, and it is only merged with that of another block when the two are directly
connected in the control-flow graph. The analysis is thus flow-sensitive.

Once all blocks in the control-flow graph have been analysed, the points-to escape
graph at the method’s exit point is a summary of the entire method. An interprocedural
analysis is then applied to map the summary onto the call-sites of previously analysed
methods.

For a call-site, the analysis must process all possible method targets. The edges of
the points-to graph at the call site are matched with those of the method target’s points-
to graph, and the outside nodes of the formal parameters in the target are mapped onto

the inside nodes representing the actual parameters in the caller, and vice-versa. In
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this manner, the points-to graph of the site and callee are logically connected. If the
method target does not exist, because its containing class has not been loaded, then
the analysis cannot map the nodes, and so it conservatively assumes that the actual
parameter object nodes (and their transitive closure) escape.

A transformation step is applied by the compiler once the program’s methods
are processed. Synchronisation of objects that do not escape is removed through
specialisation. A new method is generated for each link in the call chain leading to the
point of synchronisation, and the new methods are patched into call-sites as necessary.
For the final method in the call chain, the synchronisation operations are omitted from
the specialisation, thus eliminating synchronisation of the non-escaping object.

The transformation is also able to allocate non-escaping objects on the stack. For
objects that do not escape the method in which they are created, the compiler reserves
space in the stack of the method for the object and modifies the allocation statement
so that the object is placed in the reserved space. Methods further up in the call-chain
may have to be specialised as with synchronisation removal. For objects that escape
their allocating method but not the methods in the call-chain in which they are used,
for example, an object returned from a factory class method, the compiler can reserve
space in the stack of the top-most calling method in the chain.

Whaley and Rinard, like Choi et al., use the pBOB transaction processing benchmark
as part of their evaluation. Their analysis is able to stack-allocate nearly thirty percent
of all objects in this particular application, which is an improvement over the twenty
percent achieved by Choi et al.. They also fair better on removing synchronisation, and
are able to eliminate twenty-five percent of the overhead. Again, no space or time costs

for the analysis are given.

3.2.5 Ruf

A flow-insensitive, context-sensitive approach is adopted by Ruf [Ruf00]. The approach
concentrates on removing synchronisation from objects reachable from more than one
thread, including those guarded by some explicit lock object. This is potentially useful
in library code that shares data structures through a single locking point, but are then
used only by a thread at a time. The analysis both models value flow, thereby making

it also an alias analysis, and tracks thread instances so that they can be distinguished
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at synchronisation points.

The analysis proceeds in two phases, with an additional transformation phase, each
of which operates on an intermediate representation generated within the Marmot static
compiler for Java. The representation is of the single static assignment form [CFRT91].
Marmot does not allow dynamic loading of classes, and so the analysis is whole-
world, which enables accurate type identification and propagation and also call-graph
construction using Rapid Type Analysis [BS96]. Furthermore, because the analysis is
flow-insensitive, all control flow statements other than return and throw are ignored.

The first phase is a thread analysis. The methods in the program are examined
and thread allocation sites are identified. For each thread instance, the statements in
the run () method of the thread’s class are traversed, and the call-graph from each site
is followed. The allocation site of the thread instance is associated with every callee
encountered, thereby computing for every method in the program the set of threads
from which it can be invoked. Thread allocation sites within a loop are marked as
multiply executed. Allocation sites in library code that are multiply executed can be
manually annotated if the thread instances at the site are never run concurrently.

The second phase discovers optimisation points where synchronisation can be
removed through an inter and intraprocedural analysis. Objects are modelled using alias
sets, where each contains a number of attributes, comprising a fieldMap of reference
fields, a synchronised flag, a set of thread allocation sites syncThreads, and a global
flag. The field map provides a mapping from instance field names to the alias sets that
represent the fields of the owner object. Array elements are represented by a single
entry in the map named $ELT. If the object is synchronised upon by a thread, its flag
is set and the allocation site of the thread is added to the set. The global flag marks
objects that are static fields or reachable in the transitive closure of such fields.

Besides creating new sets from scratch, alias sets can also be cloned. Cloning of
a given set returns a new set that shares the global aliases of the original, thereby
separating the aliases and the attributes of a set. Alias sets can also be merged, and this
is performed using a unification function. Sets are unioned to form a single, composite
set that contains the aliases of both. The attributes of the sets are similarly merged,
and the alias sets in the field maps of both are passed recursively through the unification

function.
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Method summaries are represented by alias contexts. A context contains an alias set
for each parameter of a method, including extra sets that model the receiver, return and
exception values. Contexts on the caller side hold the actual parameters of a call and
are termed site contexts, while method contexts hold the formal parameters of the callee.
There is only one site context per call site, but if the invocation is virtual then there
will be a method context for each possible target method. Alias contexts are merged
with a unification function similar to that of alias sets, where the formal parameters are
mapped back onto the actual parameters of the call site. Method contexts can also be
cloned according to the rule for alias sets, so that the new context contains alias sets
where only the global sets are shared and the rest are themselves clones.

Initial alias sets are constructed by the interprocedural analysis for global variables
and any implicit structures generated by the Marmot compiler. Static class fields, string
literals, and other constants are all given an alias set with global set to true. The
strongly connected components (SCCs) of the program’s call graph are then walked in
bottom-up topological order and the intraprocedural analysis is applied.

For each method, the intraprocedural analysis first creates a method context that
contains the formal parameters of the method, including the receiver, return and
exception values. The statements of the method are then processed according to rules
that apply the unification function. For variable assignments, the alias sets on both sides
of the expression are unified. If either side is a field, the alias set associated with the
field must be found in the field map of the owner object and used in the unification. For
return statements, the alias set of the object being returned is unified with the return
value in the method’s context. Similarly, for throw statements, the alias set of the object
being thrown is unified with the context’s exception value. Synchronisation statements
of the form monitorenter v set the synchronised attribute of v’s alias set to true. For
monitorexit v, if v’s alias set is global, then the set of synchronised threads is unioned
with the set of threads that can invoked the current method. Finally, for invocation
statements, the analysis must first create a site context for the call-site. The context
is constructed from the alias sets of the receiver, outgoing parameters, return value,
and also the calling method’s exception value. The method context of each possible
method target must then be mapped onto the site context. If the call is recursive, then

the contexts are unified, thereby avoiding the need to iterate over the SCC. Otherwise,
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the method context is cloned and the clone then unified with the site context. This
prevents method-local alias sets from being shared across methods, which would make
the analysis context-insensitive.

Once all SCCs have been processed the analysis can transform the program’s
methods. The call-graph’s SCCs are again traversed, but this time in top-down
topological order. The analysis first examines the synchronisation present in each
method. If the alias set of the object being synchronised upon has either an empty
synchronised threads set or one that contains only a single thread, then the alias set
and its associated object are said to be contention-free. The analysis can remove the
synchronisation operations guarding the object.

The analysis next examines the invocation statements of the method. For each call-
site, the alias sets of the site context are compared against those of the method context
for each potential method target. If the contention-free status of the alias sets do
not match, then the analysis specialises the target method accordingly, creating a new
method with a context that matches the site context. The new method is then processed
in the same fashion, by removing unnecessary synchronisation and constructing further
specialisations. In this manner a call-chain is created to cover the contention status of
all parameter alias sets. Optimisation of an object is thus dependent on calling context,
ensuring that the analysis is context-sensitive.

For phases two and three, the analysis has complexity exponential in program size in
the worst case. Because the union of two sets produces a new set that contains the values
of both sides, including the union of the alias sets in the field maps of both, alias sets
that are passed back across methods will grow progressively larger with each return.
Where both sides contain two fields each, the number of alias sets would double on
each return, yielding exponential growth of alias sets. For transformation, the analysis
may have to construct a new method specialisation for every alias set in a given context.
Similarly, it might have to specialise all transitive callees of the new method to complete
the call-chain, yielding exponential growth of specialisations.

Ruf achieves excellent results in the single-threaded benchmarks he uses for
evaluation. All synchronisation operations are removed in _213_javac, javaCUP, the
JLex lexical analyser generator [BAO3], and the Marmot compiler itself. Ruf does

not use the pBOB application as part of his benchmark suite, but does have two
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other multi-threaded benchmarks in the form of multiMarmot, which is a threaded
version of the Marmot static Java compiler in which the analysis is implemented, and
VolanoMark [vol04a], which was introduced in Section 1.2. His analysis fairs more poorly
with these. multiMarmot, for example, shares data between worker threads through
a global symbol table, and so the analysis is able to eliminate only thirty percent of
synchronisation overhead. On VolanoMark it performs even worse, with only one percent
of the overhead removed. Ruf suggests that this is due to BufferedInputStreamobjects
that are synchronised upon by multiple threads, and so cannot be optimised.

Timings are given for the analysis. Of the single-threaded applications, Marmot takes
the longest — twenty seconds, including construction of the call-graph. The optimisations
are also responsible for a twenty percent growth in code in this particular benchmark.
This is because, as synchronisations are removed and methods are made smaller, the
compiler is able to inline more of them. Inlining causes code to be duplicated, and
this results in an expansion of the final program size. In the case of multiMarmot the
analysis takes nearly thirty seconds. It creates just over one thousand specialisations,
which together result in a four percent expansion in code. This expansion is lower than
that of Marmot because almost no synchronisation operations are removed, thereby

preserving method size and making them ineligible for inlining.

3.3 Comparison

A brief comparison of the different approaches is presented here. The numbers used
are taken from the evaluations undertaken by the authors of each approach. Not every
approach used the same benchmark suite for evaluation, and so a common set has been
selected: _213_javac, JLex and pBOB. Of these benchmarks only the latter is multi-
threaded; the others utilise only a single thread?. However, as this research concentrates
on multi-threaded server applications, this common benchmark suite is extended to
include multiMarmot. Although this benchmark features only in the evaluation of Ruf, it
further indicates the effectiveness of escape analysis in the presence of multiple threads.
Note further that as only two of the five approaches performed stack allocation, only

the removal of synchronisation overhead is compared.

2Other than any threads that the virtual machine might create for collection or finalisation.
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Benchmark | KLOC | Methods | Classes (bytes) | Synchronisations |

javac - 1,877 87,801 1.693E+7
javacup 10,574 859 157,057 5.926E+5
jlex 8,158 1,339 95,229 1.665E+8
pbob 18,370 253,752 -
multimarmot - 8,225 - 1.183E+8

Table 1: Overview of benchmark applications

Table 1 gives an overview of the benchmarks chosen. The left-most column lists the
name of each application, while the next three list, respectively, the size, in thousands
of lines of code, number of methods, and size (in bytes) of the classes that comprise the
application. The final column is taken from the evaluation by Ruf, and lists a runtime
count of the number of synchronisation operations performed.

The graph in Figure 10 illustrates the effectiveness of each approach on the
benchmarks. The y-axis represents the percentage of overhead removed, while the x-
axis determines the benchmark. The bars are coloured according to the approach being
used. Clearly, Ruf offers the most precise analysis for this set of benchmarks. This is
due primarily to his tracking of thread instances, which allows him to give a stronger
definition of escapement: objects are only shared if they are reachable from a static
variable and by more than one thread. This also explains why his analysis performs
more poorly on the multi-threaded multiMarmot, which truly shares a number of objects
and thus offers less potential for optimisation. To be fair, Whaley and Rinard achieve

a similar result on pBOB. It is unfortunate that these two approaches do not use the

Figure 10: Percentage of synchronisation operations removed (dynamic)
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same benchmarks, as this would have provided a more accurate picture of their relative

precision in the presence of multiple threads.

Summary

A general background to escape analysis was presented in this chapter. A formal
definition was given, followed by a number of examples that serve to make concrete
the concepts involved. An overview of different analyses types was presented and
their various tradeoffs and precision examined. Finally, an in-depth account of five
escape analysis approaches was given, all of which are specifically targeted to removing
application-application synchronisation in Java. The next chapter builds on this
knowledge by introducing two techniques that remove allocator-allocator and collector-

collector synchronisation.



Chapter 4

Thread-local Heaps

The previous chapter gave a formal definition of escape analysis and showed how this
technique can be effectively employed to remove application-application synchronisation
in many Java applications. As noted in Section 1.2, however, this is not the only type of
synchronisation bottleneck. Of particular concern in server applications is application-
collector and collector-collector synchronisation, both of which can degrade throughput
and increase pause times. This chapter introduces two approaches that aim to remove
these bottlenecks. Steensgaard [Ste00] uses the results of an escape analysis in a static
compiler to place local objects in per-thread heap regions, while Domani et al. [DKL"02]
use a dynamic determination of escaping objects that accurately tracks sharing at

runtime. A detailed account of both these approaches is given here.

4.1 Steensgaard

Steensgaard’s analysis [Ste00] is based on that of Ruf [Ruf00], with modifications
that focus on object allocation rather than synchronisation operations. Both are
implemented in the Marmot static compiler for Java. Escapement occurs only when
objects are reachable from some global variable and more than one thread, thereby
enabling thread-local allocation and collection of static fields as well as the typical
instance fields and variables targeted by other analyses.

Values are represented as in Ruf’s analysis using alias sets, but with two important
differences to reflect the change in focus. Firstly, the synchronised flag is replaced by

a created flag. This flag is set for alias sets in method contexts if they are created in

49



CHAPTER 4. THREAD-LOCAL HEAPS 50

the context’s owning method or one of its transitive callees. Secondly, the syncThread
set is replaced by a refThreads set, which, instead of holding threads that synchronise
on the object, records the set of threads that are able to refer to the object. Because
object escapement occurs only when more than one thread has access to an object,
refThreads may either be empty or contain at most two threads, and so can be compactly
represented. Alias contexts remain unchanged from those of Ruf.

Steensgaard also makes minor changes to the rules used to process statements during
the intraprocedural phase of the analysis. For all statements, a rule is added that checks
if the alias set in the statement is global. If so, the set of threads that could possibly
invoke the current method must be added to the alias set’s refThreads attribute. For a
compact representation of the attribute, only two distinct threads need be added, since
any more immediately denote escapement. The rule for the object creation statement
v = new 7() is also amended so that it sets the created flag of v’s alias set to true.
Finally, the synchronisation statements monitorenter and monitorexit are ignored
because they do not affect the visibility of an object to threads.

The transformation phase is similarly altered. For all methods in the program, the
alias sets associated with the allocation sites of each methods are examined. Those that
have their global attribute unset are unreachable from global variables, and hence other
threads, and so can be allocated locally to their creating thread. Alias sets with global
set are reachable from global variables, but are only accessible to as many threads as is
indicated in their refThreads set. If the set is empty, or contains only a single thread,
then the alias set and its associated object are still local, but if refThreads indicates
more than one thread then the object escapes and must be placed in the shared heap.

Allocation statements v = new 7() are rewritten as v = threadNew 7() for objects
that do not escape, placing them in the heap of their creating thread instead of in
the shared heap. Because the analysis is context-sensitive, the optimisation can be
applied depending on the calling context. Methods can be specialised along a call-
chain by cloning them and patching the invocation sites so that either the local- or
shared-allocating version is called as appropriate.

The heap itself is divided into a single, shared region for global objects and a
local region for each thread. Each region is comprised of memory chunks, and to aid

distinction of local and shared objects, thread-specific regions are allocated chunks from
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the bottom of the heap, while the shared region is allocated chunks from the top. The
regions are further divided into two generations. En-masse promotion is performed by
the young generation, which copies all surviving objects directly into the old generation
for each collection, while semi-space copying is employed by the old generation. Inter-
generational references are recorded using a sequential store buffer.

Small objects are allocated from a cache in the young generation of a region. Larger
objects, which are assumed to live longer and are expensive to promote by copying,
are placed directly into the old generation by joining together a number of consecutive
chunks. If the region cannot claim a chunk from the heap to satisfy an allocation, a
collection is triggered.

The global roots of the program must be scanned even when a collection is triggered
for a per-thread heap region. Steensgaard’s analysis allows static fields to reference
objects in the per-thread heaps, provided they are only accessed by a single thread. As
such, the roots of collection for a heap region include those references on the stack of
the thread owning the region as well as the static fields of all classes.

A brief outline of the collection process (for both minor and major collections) is

given below. This is followed by a more detailed explanation.

1. Thread suspension: All threads must be stopped, even if the collection is

triggered by a per-thread heap region.

2. Process roots: A single collector thread is used to process the roots of all regions,

copying objects directly reachable from those roots into the old generation.

3. Shared collection: The shared heap region is then collected, with all survivors

copied into the old generation.
4. Per-thread collection: Each thread performs a collection of its own heap region.

5. Resume threads: A thread can be resumed when it has finished its own

collection.

The young generation of all heap regions, as well as that of the shared heap, is
collected when a minor collection is triggered by a per-thread region. All threads are

suspended and a single collector thread is used to promote any roots found in the young
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generation to the old. The collector then scans only the roots promoted to the shared
region’s old generation, and repeatedly promotes and scans the transitive closure of
those roots until all objects reachable from the shared region’s young generation have
been copied.

Enough space is then reserved in the old generation of each region in preparation for
collection of thread-specific heap regions. Threads are examined and those that are able
to run are allowed to collect their own heap region. Those that are blocked (waiting for
I/O to complete or locks to be released) are left suspended and are instead processed
by a dedicated per-processor garbage collector thread. Roots in the old generation of
each thread-specific region are then scanned and their transitive closure promoted and
scanned repeatedly so that all active local objects are placed in the old generation.

Care must be taken when promoting objects that are shared but only reachable from
thread-specific heap regions. Such objects may be reachable from more than one region
at a time, and synchronisation is necessary to prevent two or more threads from trying
concurrently to promote them. As shared objects are found (by examining the region
in which they are allocated), they are checked for a forwarding pointer. If the pointer
does not exist, the collecting thread takes a global lock, copies the object, writes the
forwarding pointer, adds itself to a special map from shared objects to threads, and then
releases the lock. Otherwise, the object has been already been promoted. If the map
indicates that a different thread performed the promotion, the object is reachable from
two or more threads, and the threads are termed dependent. Dependent threads must
wait for each other after a collection before they resume execution of user code, lest
they try to interfere while the other is still collecting. Threads that are not dependent
are allowed to resume normal execution immediately.

Major collections involve the young and old generation of all thread-specific heap
regions and the shared heap. Enough space must be reserved by the collector to satisfy
the possible promotion of all young objects and the survival of all old objects. All roots
are scanned by a single collector thread and their transitive closure traversed. Objects
from the young generation are promoted into the old generation of their respective
heap region, while live objects in the old generation are copied across into the second
semi-space.

Steensgaard gives no indication of the speedup obtained by the system. However,
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figures are presented for the allocation and collection of local versus global bytes
and objects in a number of benchmarks. Numbers for the VolanoMark server are
encouraging, with half of all bytes allocated locally and at least twice as many objects
than are shared. This suggests that many small objects are allocated locally, while
larger objects are likely to be fewer and also shared.

The system is, nevertheless, experimental, and many problems still remain. When
a thread triggers a collection because it cannot satisfy an allocation all threads must be
stopped so that the shared heap can be collected; only then can threads proceed on their
own and collect their local heaps. For even minor collections, the young generation of all
threads are collected at once, regardless of the thread that triggered the collection. The
behaviour of the collector is, as a result, similar to that of a parallel collector, where the
world is first stopped and the heap partitioned so that separate garbage collector threads
can work simultaneously. In Steensgaard’s favour, however, once a thread is finished
collecting itself it may resume execution of user code, assuming it is not dependent,
whereas parallel collectors must wait for all collector threads to finish before allowing
the application to resume. Furthermore, a global lock must be taken when promoting
shared objects reachable from thread-specific heaps. This point of synchronisation is
again similar to that of parallel collectors, where threads must guard against copying
of the same object. Finally, the analysis is implemented in a static compiler, with
the restriction that all classes be available at compile-time. As a result, dynamic class

loading is disallowed.

4.2 Domani et al.

Domani et al. [DKL102] use a dynamic determination of escaping objects in their
approach to removing application-application and application-collector synchronisation.
Objects are tracked at runtime instead of being identified at compile-time by a static
analysis, and escapement only occurs when two or more threads access the same object.
Identification is thus on a per-object basis at the exact time of escapement, and so is
more precise than an escape analysis.

Objects are given global and mark flags that indicate, respectively, their escapement

and liveness. Those with global set are shared by more than one thread, while objects
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that are clear are local to their creating thread. The mark flag is used exclusively for
collection, where it indicates an object that has been visited during the marking phase.
The flags are logically associated with objects through two bitmaps indexed by heap
address, avoiding the need to reserve space for them in the object’s header.

The majority of objects are initially treated as local and have their global flag cleared.
For instances of the Class and Thread classes, however, the global flag is initially set
and the object treated as if it were global. Such objects are implicitly shared because
they are always visible to all threads in a program. Objects that are identified through
profiling as spending most of their lifetime shared amongst threads can also be initialised
as global. This optimisation is known as direct allocation, and it involves modifying the
allocation sites of such objects so that they place objects directly into the shared heap.
Where necessary, the methods in a call-chain can be cloned and patched so that both
local and globally-allocating versions of the same method can exist.

A write-barrier is used to track object escapement. On a reference field store, the
flags of the owner object and the referent are compared. If the owner is global and
the referent is local, the referent will become similarly shared and visible to more than
one thread, and so the global flags of it and its transitive closure must be set. The
transitive closure is visited using a depth-first search starting from the reference fields
of the object. Both the initial comparison check and the depth-first mark are performed
before the reference is actually written. This ensures that no thread other than the one
performing the write will see the new reference before it is marked.

The heap is divided equally into a global pool of one megabyte regions. The pool
is protected by a global lock, and is the only point of synchronisation for allocation.
Threads claim regions from the pool and then split them into smaller allocation caches
and first-fit free-lists, which are used for small and medium allocations, respectively.
Large allocations are handled by claiming contiguous regions directly from the pool.

If the thread is unable to allocate an object from either its cache or free-list, a local,
mark-sweep collection is triggered. Only objects on the stack of the thread are treated
as the roots, and so the mark phase traverses only local objects. A bitwise sweep of
the thread’s regions then finds runs of consecutive dead objects, which are coalesced to
form areas that can be reused by the thread. The sweeper must take care to reclaim

only dead objects that are local, as those that are marked as global may be reachable
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Figure 11: Domani et al. heap layout. Frame 1 shows the heap before a reference store, frame
2 after the store, and frame 3 after a local collection.

from the shared heap despite appearing dead during the local collection. Regions that
are entirely free of objects can be returned to the global pool.

Should the global pool become empty, a global collection is triggered and all threads
must be stopped. Threads that are not performing local collections are suspended,
while those that are can be interrupted only if they are marking objects. It is not safe
to stop threads that are sweeping because they may be modifying their regions. Instead,
they must be allowed to finish and are notified when done that a global collection is
necessary. A bitwise mark-sweep is then performed over all heap regions. The graph is
traversed from all roots, including the stack of each thread, and objects are marked as
before. The sweep phase then finds free regions and adds them either to their owning
thread or the global pool as appropriate.

Figure 11 illustrates the heap layout over a short period of execution. The shared
heap is shown at the top of each frame and comprises three darkly-shaded pages, while
two local heaps (each belonging to its own thread) are shown at the bottom and comprise
one lightly-shaded page each. The first frame shows the initial state, with four black
objects allocated directly into the shared heap (possibly by direct allocation) and three
light objects in the per-thread heaps. Some thread then writes a reference to a local
object into a shared omne, causing it to get trapped by the write barrier and marked
as shared. This is shown in the second frame, where the first per-thread heap now
contains a black, shared object on its local page. The per-thread heap then performs
a local collection, and its second object is determined to be garbage and is reclaimed.
The third frame illustrates the result. The per-thread is unable to release its page since
it still contains the shared object, which cannot be reclaimed until a collection of the

shared heap is performed.
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Domani et al. achieve promising results with their collector implementation. Overall
collection time is halved, and local collections produce pauses of only one millisecond.
Additionally, the frequency of longer pauses is reduced by a factor of three. Direct
allocation plays an important part in these gains. Without it, local regions become
fragmented with global objects, and sweep times are dominated by skipping over these
global objects. With careful profiling, these global objects can be allocated directly in
the shared heap, thereby reducing fragmentation and, consequently, collection times.

The primary disadvantage of their collector is the unbounded work that must be
performed when a reference to a local object is written into the field of a global object.
The transitive closure of the object must be traversed and marked as global, and the
thread is unable to execute user code until this is complete. Thankfully, the cost of this
expensive traversal need only be incurred once, as objects never revert from local back

to global.

Summary

Two approaches to removing application-collector and collector-collector synchronisa-
tion were examined in this chapter. Steensgaard’s analysis is fast and generates context-
sensitive information about escaping objects, but operates at compile-time and disallows
the dynamic loading of classes. In contrast, the technique employed by Domani et al.
operates at runtime and tracks sharing on-the-fly, allowing it to work with dynamically-
loaded classes, but it must perform unbounded work in its write barrier to achieve this.
This research focuses on a technique that offers the advantages of both by using an
escape analysis at runtime and a mechanism for handling dynamic class loading, and

the next chapter goes on to discuss the theory behind this new technique in some detail.



Chapter 5

Heap Partitioning

Thus far garbage collection and escape analysis have been introduced, including a
technique that combines the two in a static Java compiler. This chapter further explains
the idea of combining garbage collection with escape analysis and proposes a novel heap
partitioning that allows these techniques to function in the presence of dynamic class
loading. Examples and illustrations are provided throughout that make clear the ideas

being introduced.

5.1 Closed Systems

In a closed system, where all classes are available at analysis time and dynamic loading
of classes is forbidden, there are only strictly local and strictly global objects. Strictly
local objects are those that can be proved to be local from the point of creation until
when they are collected, for all possible execution paths of a given program. Conversely,
global objects are those that may become shared amongst threads at some point in their
lifetime, whether it be immediately at creation time or just before collection.

Determining such objects in a closed system is relatively straightforward given some
definition of escapement. Because the classes of all potentially executed methods are
available at the time of analysis, complete type information is available. The possible
types of a receiver object can be determined and the set of invokable methods computed.
The analysis can thus trace all possible paths of execution and prove an object to be
either strictly local or strictly global for all points in a program.

By Steensgaard’s notion of escapement (§ 4.1 on page 49), strictly-global objects
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are those reachable from both a global variable and from outwith their creating thread.
Strictly local objects include those that are method-local, objects assigned to instance
fields, and those assigned to static fields but never reachable from another thread. This
latter part of the definition is important: objects referenced by static fields are allowed in
per-thread heap regions, but are still part of the global root set. As a result, Steensgaard
must perform a global rendezvous of all threads and a trace of the global roots even for
collection of a per-thread region.

Ideally, this global rendezvous should be avoided so that threads can collect their
own heap region independently of other threads and the shared heap. Threads should
be able to collect themselves by scanning only their local roots instead of having to scan
global roots. Global variables must, therefore, be disallowed from referencing objects in
a thread’s heap region.

To make this possible, an amendment to the notion of escapement is necessary:
strictly global objects are those that are reachable from a global variable or from outwith
their creating thread. This has the effect of restricting references from global roots into
a per-thread region, thereby removing the need for a thread to scan roots other than
those on its own stack. Performing a collection, then, is a matter of tracing only from
a thread’s stack, with the guarantee that there are no outside references into the region
and the liveness of objects in the thread’s region is dependent only on local roots.

Note that this refined definition is more conservative than that of Steensgaard.
Everything reachable from static fields is now escaping, and as such there are likely to
be fewer local objects than with the base analysis performed with Ruf and Steensgaard.
This definition, however, is exactly like that employed by the analyses of Choi et
al. [CGS199], and Whaley and Rinard [WR99], both of which achieve good results
for typical Java programs, including heavily-threaded server applications.

Division of the heap to allow for the segregation of objects is like that of both Domani
et al. and Steensgaard. Each thread T is given its own local heap region, or heaplet 17,

while there remains a single region for shared objects, the global heap G.

5.1.1 Invariants

A number of invariants are imposed on the references between heap regions in a closed

system. Let T and T’ be distinct thread instances in program P, with 77, and T}
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their respective heaplets. Let MT be the implicit main thread, and G the global heap.
Further, let £ and y denote objects in either of these heaplets or the global heap, with
the constraint that an object is allocated by a particular thread and exists only in that
thread’s heaplet or, if shared, in the global heap. Finally, let — indicate a reference

between these objects. Then:

Invariant 1. Vy € Ty, - if * — 1y then x € Tr. If there is some reference to an
object in a thread’s local heaplet then it must originate within the heaplet itself. No
references from the shared heap, nor those from another thread’s heaplet, are allowed.
A local heaplet is thus dependent only on its owning thread for collection, and never on

another thread or any roots in the shared heap.

Invariant 2. Vy € G- if t — y then x € G or x € Ty,. If there is some reference to
an object in the shared heap G then the reference may originate in either the global heap
itself or the heaplet of any thread. Collection of the shared heap G is thus dependent on
all threads and their heaplets.

Thread Objects

Threads are created in Java using the Thread class. It would seem natural to place
these thread objects in their own heaplet, as they are local and will be used as roots for
a local collection. However, doing so would require that the thread’s associated heaplet
be constructed before the thread object itself is created. The analysis already tracks
thread creation sites, and so it would be possible to modify these to use a special new
opcode that instructs the virtual machine to construct a heaplet first and then allocate
the thread instance within it.

Although this approach is practical, the idea of having a thread-local thread object
is unsound. Notice that the method creating the thread also holds a reference to the
new thread object on its stack, which in turn means that its invoking thread can see the
reference. Even if this reference is never stored into a static or instance field, it is still
reachable from two different threads: itself, and more importantly, the creating thread.

The problem arises when a garbage collection is performed. If the thread object
is within a local heaplet then it will be visited by the collector, which may want to

relocate the object, either by copying it between semi-spaces or promoting it to an older



CHAPTER 5. HEAP PARTITIONING 60

generation. Such a relocation requires that all references to the object be updated, and
so the reference on the stack of the creating thread must be modified. Since this is a
local collection, however, the creating thread is still running (only the thread owning
the heaplet must participate in the collection), and so there is the possibility of a race
condition on the reference.

The solution is to place the thread object physically in the shared heap section while
still treating it as logically-local. Tt is thus treated as a root for a local collection, but
is not itself visited and so is never moved, thereby avoiding any races. During a shared
collection all threads are stopped, so it can safely be relocated if necessary.

An unfortunate consequence of this, however, is that it breaks the first invariant,
which disallows references from the shared heap section into a local heaplet. To account

for this, the invariant is amended as follows:

Invariant 1. Vy € T, - if * — y then x € Tt or x = T. If there is some reference
to an object in a thread’s local heaplet then it must originate within the heaplet itself or
the thread’s associated object in the shared heap. A heaplet is thus dependent only on
its owning thread for collection, and never on another thread or any roots in the shared

heap.

5.1.2 Examples

Seven examples are given below that demonstrate the heap layout for a number of
programs in a closed world. For each example the source for the program is shown
alongside an illustration of the heap at a particular point in the program. The
illustrations indicate the relevant threads, their stacks, and any heap sections and the
objects they contain. Detailed descriptions are given for each example that explain how

the heap arrived in the state shown.

Figure 12: Common classes A and B

class A { class B extends A {
public A(Q) { public B() {
} }
public void foo(Object in0) { public void foo(Object in0) {
System.out.println("A.foo()"); System.out.println("B.foo()");
} }
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class C extends B { class MyThread extends Thread {
static Object sf; private Object f£f;
public void foo(Object in0) {
System.out.println("C.foo()"); public void run() {
sf = in0; this.f = new Object ();
} Object p = new Object();

} }
public synchronized

Object field() {
return this.f;

Figure 13: Common classes C and MyThread

Note that the examples share a number of common classes. Figure 12 shows classes
A and B, which both have an empty constructor and a method foo(). The method
prints a short message but makes no change to its incoming parameter in0. Figure 13
illustrates classes C and MyThread. C extends A, again overriding method foo() (like
B), but it does not simply print a message and return; instead, it assigns the incoming
parameter inQ to the static field sf, causing it to be reachable from a global variable
and thus escaping. Class MyThread extends the Thread class, which means its run()
method will execute within a separate thread. This method allocates two objects and

stores the first in instance field £ and the second in local variable p.

Example 1

Class Ex1, shown on the left-hand side of Figure 14, has the standard entry-point method
main (), which is implicitly executed within the main program thread MT. It constructs
a new instance o of the Object base class and then exits. Object o is method local,
as it is never assigned to anything and is not passed out of main() to another method,

and is hence also thread-local. It can be allocated within MT’s local heaplet.

Figure 14: Example 1

class Ex1 { ‘ Objecf‘ String ‘ Runncble‘ Thread I Ex1 ‘
public static void main(String[] args) { MT 51 ; ; : : i
Object o = new Object (); ‘ ‘ ‘ ‘ ‘

% ‘1 \.
3})

MT;
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class Ex2 { ‘omuﬂ$Mg‘Rmmmﬂmmm FH‘A‘

public static void main(String[] args) { MT g1 1 1 1 1 -
© 066 6 o0
®

Object o = new Object ();
A a = new A();
a.foo(o0);

G

M,

Figure 15: Example 2

The heap at the end of main() is shown on the right-hand side of Figure 14. Static
roots, including default classes Object, String, Runnable and Thread, and loaded
class Ex1, are at the top of the diagram and reference objects in the shared heap G.
On the left is the main thread MT’s stack, MTsrk, which grows downwards. The
stack contains two elements: the incoming parameter args (an array of references to
String objects), which is allocated by default in the global heap; and local variable o,
which was determined to be local and so points to a new object in MT’s thread-local
heaplet, MTy. Note that objects also have back-references to their class, so objects o
and args should point to the Object and String classes, respectively, but these have

been omitted for clarity. Note further that these references also respect the invariants.

Example 2

The second example (Figure 15) introduces classes A and Ex2. A has an empty
constructor A() and a method foo() that takes a single parameter in0 of the Object
base class. The method prints a short message and exits, making no change to parameter
in0. Ex2 again has only the main() method, but this time, in addition to creating an
object o of class Object, it creates an object a of class A, and then invokes method
foo() on a with o as a parameter. Object o now escapes its creating method through
the actual parameter to method foo(), but the analysis knows that the only possible
target method for the call is A.foo (), since object a is guaranteed to be of type A and
its superclass, Object, has no matching method. As a result, it is able to examine foo ()
and determine that o will never escape its thread, and so o is once again thread-local
and can be allocated in MT’s local heaplet.

The right-hand side of Figure 15 shows the heap at the exit point of A.foo(). Classes

Ex2 and A have been loaded and are part of the static roots. On the main thread’s stack
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class Ex3 { ‘omuﬂ$Mg‘Rmmmﬂmmm hw‘s

public static void main(String[] args) { MT g1 1 1 1 1 -
© 066 6 o0

Object o = new Object ();
B b = new B();
b.foo(o0);

MT;

Figure 16: Example 3

are parameter args and local variables o and a, both of which have been determined as
local. The program is currently in foo(), and so the stack has grown to accommodate
the implicit receiver this and also the actual parameter inQ. Note the boundary line
that marks the separation of method frames in the stack: everything above the line is
in main()’s frame, while everything below is in A.foo(). Finally, the object pointed
to by local variable o and parameter in0 has been allocated in the main thread’s local

heaplet.

Example 3

In class Ex3 (Figure 16), object o is again created, but is this time passed to method
foo() of class B, an instance of which exists in b. B extends A and overrides method
foo(), but again just prints a short message and does nothing to incoming parameter
in0. Within main(), the analysis must again compute the set of target methods for
foo(). In this instance, the possible targets are A.foo() and B.foo(). The analysis
can prove, however, that b is only ever a B, since it is created within the same method
and is never aliased, and so the target can only be B.foo(). Again, B.foo() does
nothing to formal parameter in0/actual parameter o, and so although o escapes its
creating method it never escapes its creating thread, and can be allocated locally to
MTy,.

The heap presented on the right-hand side of Figure 16 is similar to that of the
previous example. Parameter args and local variables o and b are on the main thread’s
stack, as are the implicit this and parameter in0 that are part of method B.foo().
The object pointed to by o and in0 is again in the main thread’s local heaplet, as it

has been determined to be thread-local.
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class Ex4 { ‘omuﬂ$Mg‘Rmmmﬂmmm Fm‘
static Object so; MT s : : : : :
BN
public static void main(Stringl[] args) { .:
Object o = new Object(); : \. ,‘
S0 = 0; 5 ) G
3 -
‘ Lun

Figure 17: Example 4

Example 4

The next example illustrates an object reachable from a global variable. Class Ex4
(Figure 17) includes a static field so of type Object, which is considered a global root,
and thus strictly global regardless of sharing amongst threads. In method main(), object
o is created as in previous examples, with Object as its type, but is then assigned to the
static field so. Because o is now reachable from so, that is, since o is in so’s transitive
closure, it is also global, and so must be allocated in the shared heap G.

The args parameter and local variable o both point to objects in the shared heap
shown on the right-hand side of Figure 17. The latter is reachable from the shared field
so of class Ex4, which is part of the static roots. Nothing is placed in the main thread’s

local heaplet.

Example 5

Example 5 (Figure 18) introduces another thread to the program. The main () method
creates T, an instance of the MyThread class (Figure 13 on page 61). Because MyThread
extends the Thread class its run() method will be executed within a separate thread.
Class Ex5 invokes the start () method on T. The Thread class will start its underlying

thread and then pass control to its run() method, which will run alongside the main

Figure 18: Example 5 (Source)

class Ex5 {
public static void main(Stringl[] args) {
MyThread T = new MyThread();
T.start(); // calls T.run()
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‘ Object‘ String ‘ Thread ‘ Runnable I Ex5 ‘ MyThread

Tsik

Figure 19: Example 5 (Heap)

thread MT in which main () is executing. run() creates two new objects and assigns the
first to instance field £ and the second to local variable p. Field f is method escaping,
since it can be reached outside of method run(). At no point, however, is it reassigned,
and so it is never accessible to a thread other than T, which in this example is MT. It
can, therefore, be allocated alongside local p in thread 7T’s local heaplet T7..

The heap at the end of method MyThread.run() is illustrated in Figure 19. Classes
Ex5 and MyThread have been loaded and are part of the static roots. MyThread instance
T is on the main thread’s stack and has been placed in the shared heap section (§5.1.1).
The new thread’s stack Ts7k is shown on the right, where it currently holds the receiver
parameter this, which points to the thread object in the shared heap, and local variable
p, which points to an object in its heaplet 7. Instance field £ has been placed in the
local heaplet despite being reachable from thread object T, since the thread object is

logically-local and the invariants are obeyed.

Example 6

Like example 5, this example (Figure 19) creates a MyThread instance T. The run()
method remains the same in this example, but an addition is made to the main()

method that causes T’s instance field f to escape its creating thread. After constructing

Figure 20: Example 6 (Source)

class Ex6 {
public static void main(String[] args) {
MyThread T = new MyThread();
T.start(); // calls T.7run()
Object o = T.field();
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‘ Object‘ String ‘ Thread ‘ Runnable I Ex6 ‘ MyThread
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Figure 21: Example 6 (Heap)

thread T and then setting it running, main () assigns T’s public instance field f to local
variable o. This statement is executed in the main thread M T, but accesses field £ which
was created by T.run() within thread T. The field is thus reachable from outwith its
creating thread, and so is thread-escaping. As a result, it must be allocated not in T’s
local heaplet but instead in the global heap G.

Figure 21 shows the heap at the end of method MyThread.run(). Everything is as
in the previous example except for instance field f, which has been placed in the shared
heap because it was explicitly accessed from outside its creating thread T by the main

thread MT.

Example 7

The final example illustrates an escaping parameter object in a potentially long-running
Java program. Class Ex7 (Figure 22) has a method bar() in addition to the usual
main(). This method is static and takes a single parameter inA which can be of class
A or any subclass thereof. It creates a new object o of class Object, and then invokes
method foo() on inA with o as a parameter. It is called solely by method main(),
which creates three new objects and passes them to bar(), but the last is separated
from the first two by a loop of indeterminate length. The first two are objects a and
b, of classes A and B respectively. The loop is then entered, the condition and body
of which are omitted. After the loop exits, the objects are passed to method bar ().
Object c of class C is then created and passed to bar () (the reason for this late creation
will become clear in Section 5.2.4, where further examples are based on this one).

For objects a and b passed to bar(), the analysis is able to prove that o never
escapes. The possible method targets for foo() invoked on receiver inA are A.foo ()

and B.foo(), respectively, neither of which do anything with their formal parameter
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class Ex7 {
public static void main(String[] args) { r
STK
A a = new AQ);

B b : new B(); orgs ‘ ‘ ‘ ‘ ‘ ‘
\\f\.ﬂé'pwwwww, :

this |
ino |-~

‘ Objecf‘ String ‘ | Ex7 ‘ A ‘ B ‘ c ‘

aQ

o

o

while (...) {

inA

o

}

bar (a);

%A
bar (b);

4

C ¢c = new CQ);
bar (c);

}
static void bar(A inA) {

Object o = new Object ();
inA.foo(o0);

}

Figure 22: Example 7

in0, and hence object o. For object c, however, the target is C.foo(), which, as
explained above, causes its formal parameter in0 to escape through C’s static field sf.
Since object o is the actual parameter to this call, it too escapes through sf, and so
cannot be allocated locally and must instead be placed in the shared heap G.

The right-hand side of Figure 22 shows the heap at the exit point of method C.foo ().
Classes Ex7, A, B and C are all loaded and present in the static roots along with the
default classes. The stack of the main thread contains three frames. The first, for
main(), holds parameter args and local variables a, b and c, of classes A, B and C,
respectively. Each points to an object in the local heaplet of the main thread (note
that the objects referred to by a and b have been omitted for clarity). Method bar ()
comprises the second frame, which contains incoming parameter inA, which references
the same object as ¢ in main(), and local variable o, which points to an object in the
shared heap that is also reachable from static field so of class C. The final frame holds
the implicit this for method C.foo() and parameter in0. The latter references the
same shared object o allocated in method bar (), which is reachable from the static

roots.
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5.2 Open Systems

In contrast with a closed system, an open system allows new classes to be loaded at
some future point of execution. Java, in particular, employs dynamic class loading,
where classes are loaded at runtime only on first use. Without any restrictions on
this dynamic loading, an analysis that operates in such an environment may not have
complete type information available. It cannot determine precisely the type of a given
receiver object and, hence, the method targets for a given invocation on that receiver.
Consequently, it cannot prove an object passed as a parameter to the methods invoked
on the ambiguous receiver to be strictly local or global for all possible paths of execution
in a program.

Instead, a partial-world analysis must be performed that accounts for the incomplete
type information. The idea is to perform a snapshot analysis at runtime, stopping the
program at some point of execution. A conservative approach to identifying local and

global objects is then employed that allows for the loading of classes in the future.

5.2.1 Basic Approaches

One such approach is to assume conservatively that, where a receiver is of an incomplete
type, that is, its exact type is unprovable at the time of analysis, objects passed as
parameters to any method invoked on that receiver are both method- and thread-
escaping. They are thus strictly global, and so must be allocated in the shared heap.
This is similar to the phantom nodes used by Choi et al. [CGS199] to represent the
missing formal parameters of a method target at a call-site. If the target’s class has
not been loaded by the time the interprocedural pass is applied, the phantom nodes are
assumed to be escaping and are mapped as such onto the nodes representing the actual
parameters. The outside nodes employed by Whaley and Rinard [WR99] also work in
a similar fashion, where they and the inside nodes that represent the actual parameters
at a call-site are treated as escaping if a method target does not exist.

A less conservative approach is to presume objects to be local if they are passed as
parameters to methods invoked on receivers of incomplete type, but then to re-analyse
the method of any call-site where this occurs if a new class is loaded that overrides

the method targets at that site. The snapshot analysis is performed as before, and
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local and global object-allocation sites are identified and modified. Execution of the
application is then resumed until a new class is loaded, at which point the analysis
processes the new class, computes the call-sites affected by the methods of the class,
and then compares the previous result of the analysis at those sites. Should any of them
differ, a local object has now become global, and its containing thread-local heaplet now
has outside references. The objects referred to can no longer be collected locally and
must be treated as part of the shared heap, which may involve logically associating the
entire heaplet with the shared heap, so that they are collected together, or physically
copying the objects out of the heaplet.

This last approach, however, breaks the definition of strictly-local, since local objects
may now become global at some future point of execution. Strictly-local objects are
supposed to be those for which the analysis can prove them local for all possible paths
of execution. Furthermore, both of these approaches have implications on performance.
The first approach has the drawback that many objects will conservatively be assumed
to escape when in fact they might not. New classes may never get loaded because input
to the program changes the path of execution, and even if classes are loaded they might
not change object escapement at all. The second has the disadvantage that entire heap
regions of local objects are made shared when a single call-site is affected, losing objects
that really are local as well as those that were identified as potentially escaping. The
alternative is to identify the escaping objects and to copy them out of the heaplet, but
identification is impractical. References to these objects must be updated, and would
require suspension of all threads to which these references are visible. Furthermore, the
cost of copying is unbounded, since the transitive closure must be traversed, although it
need only be performed once for each object since once an object is global it can never

revert back to local.

5.2.2 Hybrid Approach

It is possible to do better than these approaches by combining them into a hybrid.
Central to this new hybrid approach is the introduction of an object type that lies
between strictly-local and strictly-global objects: optimistically local objects. These
are those objects that are determined to be local at the time the time of analysis, but

because they might escape into a method invoked on a receiver of incomplete type, the
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analysis must assume that they might escape at some future point of execution. With
the given approaches, these objects must either be treated as strictly-global, forcing
them into the shared heap, or the definition of strictly-local must be broken so that
they can exist in the local heap until the analysis finds that they have become global.
By treating them as a separate type, however, they can be handled differently and the
definition of strictly-local and strictly-global maintained.

The original object kinds are handled as before. Strictly local objects are those
proved local for all points of execution, and are placed in a local, per-thread heaplet.
They are guaranteed never to become global at any future point, regardless of what
classes might be loaded. Similarly, strictly global objects are those proved shared for
some points, and are allocated in the shared heap. They are global from their allocation
to the time of collection. Optimistically-local objects, however, are those that cannot
be proved local for all points, but are also not observed to be shared at the time of
analysis. These objects are conceptually local, but may become shared in the future.

To account for this, they are allocated in their own optimistically local heaplets.
Each thread T thus has its own optimistically local heaplet Tpy, in addition to its 77p.
The idea is to apply the first approach, but where local objects are deemed global
to account for future class loading, they are instead marked as optimistically local and
allocated as such. The second approach is then applied to handle dynamic class loading.
After snapshot analysis, new classes are analysed immediately as they are loaded. The
analysis must process the methods of the new class and then compute the call-sites
affected, after which it compares the new methods with the call-sites as before. If the
results differ, suggesting that an object that was once optimistically local is now global,
then the new class is termed non-conforming. The optimistically local heaplet of the
thread that allocated the object now contains outside references that must be treated
as roots of collection. Because tracking individually escaping objects is impractical, the
thread’s optimistically-local heaplet is logically associated with the shared heap.

This approach has advantages over the others. It is less conservative than the
first approach, which deems objects not strictly-local to be global, even if they are
unreachable at the point of analysis from another thread or a static field. This ensures
that objects can be allocated locally to a thread (albeit in the optimistically local

heaplet, and not the local one) and remain there as long as no new classes change their
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escapement. It also has two benefits over the second approach. Firstly, the definition
of strictly-local objects is maintained. Secondly, and more importantly from a runtime
perspective, should a new class be non-conforming, only the optimistically-local heaplet
must be made shared; the local heaplet of the owning thread remains unaffected.

Furthermore, because the focus is on long-running server applications, the analysis
can be delayed until most classes have been loaded so that it can take advantage of as
much knowledge of the program as possible. This reduces the chance of loading a non-
conforming class in the future. Most classes that are loaded are expected to conform,
as it is unusual for a sub-class to allow an object to escape its thread (for example, by
allocating it to a static field) when its parent class did not.

The worst-case outcome using this approach, then, is that there are initially no local
heaplets and that all optimistically-local heaplets eventually become global. But this

case is simply the status quo: a single shared heap.

Reflection

This hybrid solution does not yet support reflection. The java.lang.reflect API
enables runtime introspection, including the examination and modification of classes
and objects. Using this API, it is possible to modify instance fields, instantiate new
objects, and invoke methods in an indirect manner that is difficult to trace using an
escape analysis. A conservative solution is to treat any instances passed to this API
as shared. Hirzel, Diwan and Hertz [HDH04] employ a more precise technique that
captures modifications made by reflection at runtime and folds them into their analysis.
The system presented here uses neither of these approaches and instead disallows the

use of reflection.

5.2.3 Invariants

In addition to the invariants enforced on a closed system, a number of invariants are
also necessary for an open system where optimistically local objects and heaplets are
present. Let Tor, and Tf,; be the optimistically-local heaplets of distinct threads 77,

and T, respectively. Then:

Invariant 3. Vy € Tor- if x — ythenz € Tor or x € Ty, or x = T'. If there is some

reference to an object in a thread’s optimistically-local heaplet then it must originate
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within the heaplet itself, the same thread’s local heaplet, or the thread’s associated object
in the shared heap. No references are allowed from either of another thread’s heaplets
or from the shared heap. An optimistically-local heaplet is thus dependent only on its
owning thread for collection, and never on another thread or any roots in the shared

heap.

Invariant 4. Vy € G- if x — y then x € G or x € Tpy, or © € Ty,. If there is
some reference to an object in the shared heap then the reference may originate in either
the global heap itself, the optimistically-local heaplet of any thread, or the local heaplet
of any thread. Collection of the shared heap is thus dependent on all threads and their

heaplets.

Pre-analysis Objects

Once the analysis has run, any allocation sites determined to be local or optimistically-
local are marked as such, and the objects allocated from these sites placed in their
respective heaplets. Notice, however, that prior to analysis these allocation sites were
allocated into the shared heap, which is the default; as a result, there are objects that
are now considered local that are already in the shared heap, and these objects may
hold references into their allocating thread’s local or optimistically-local heaplets.

Like the shared objects on local pages in Domani et al., these pre-analysis, logically-
local objects pollute areas of the shared heap, and have the potential to trap regions that
could otherwise be reused elsewhere, thereby adding to fragmentation. The possibility
of relocating such objects to their owning heaplet is thus worth investigating.

One approach to relocation is to find these objects at collection time by performing
a number of traversals of the object graph. The first is a traversal of objects reachable
from the local roots of a heaplet, and can be combined with the local root scanning
phase. Any objects found to be reachable from a local root but physically in the shared
heap are marked as being logically-local using a bitmap. Each bit represents two heap
words!, and the bit corresponding to the object’s header is set to indicate that the
object is logically-local. A second traversal is then made, this time starting from the

global roots (it can be combined with root scanning of the shared heap). Any objects

!The minimum object size is constrained by the size of the header, which is two words or eight bytes
(8 7.2.2 on page 102).
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discovered to have been marked as logically-local in the shared heap have their bit
cleared, as these objects are truly shared (they are reachable from a shared root). The
bitmap is then scanned for set bits, which indicate objects that are still logically-local.
These objects are truly local, as they are unreachable from shared roots, and are thus
candidates for relocation.

Relocation would seem to be a simple case of copying an object from the shared heap
to its local heaplet, but it is complicated by the fact that there might be more than
one reference to the object. The collector requires a mechanism for marking an object
as having been relocated so that it does not relocate it again for a different reference.
The forwarding address technique used by semi-space collectors could be employed to
good effect here. The object would be relocated to its heaplet and its new address
written over the header of the old object. Subsequent attempts to relocate the object
would then update the referring field with this new address instead of trying to relocate
the object a second time. Finally, note that the old object must be reclaimed at some
point. In a semi-space collector the object will be skipped on the next allocation. For a
mark-sweep collector, the object can explicitly be marked as a free block, or it can be
left as-is for the next collection, when it will be indentified as dead and reclaimed.

The cost of this relocation is related only to the final bitmap scan, as the two
traversals can be tied to normal root scans. The cost of the scan is proportional to the
region of the bitmap that represents the shared heap. Objects marked as logically-local
must then be relocated, which adds cost proportional to the number and size of these
objects. Furthermore, the relocation can only be performed during a shared collection,
meaning the logically-local objects exist in shared space until such a collection occurs.

The benefits of relocation are thus not as attractive as they would initially seem.
It might be better to leave these logically-local objects in the shared heap despite the
possibility of fragmentation, thereby avoiding the costly traversal and copy. They can
safely be collected by the shared heap should they ever become unreachable, and for
local collections they are still treated as part of the object graph, thereby preserving
any references from them into the heaplet. In this respect, they are exactly like thread
objects, which exist physically in the shared heap but are treated as if they are local.

Regardless of the approach adopted, these pre-analysis, logically-local objects will at

some point exist in the shared heap, and as such the invariants must again be amended
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to allow references from these objects into a local or optimistically-local heaplet. Let

LLPA denote the set of logically-local, pre-analysis objects. Then:

Invariant 1. Vy € Ty, - if x — y then x € T, or x =T or x € LLPA. If there
is some reference to an object in a thread’s local heaplet then it must originate in the
heaplet itself, the thread’s associated object in the shared heap, or a logically-local, pre-
analysis object also in the shared heap. A local heaplet is thus dependent only on its
owning thread for collection, as well as any local objects that were allocated by its thread

before the analysis.

Invariant 3. Yy € Tor, - if t — ythenx € Tor or x € T, or x =T or x € LLPA.
If there is some reference to an object in a thread’s optimistically-local heaplet then it
must originate in the heaplet itself, the same thread’s local heaplet, the thread’s associated
object in the shared heap, or a logically-local, pre-analysis object in the shared heap. An
optimistically-local heaplet is thus dependent only on its owning thread for collection, as

well as any local objects that were allocated by its thread before the analysis.

5.2.4 Examples

A further three examples are presented below that demonstrate the heap layout in an
open system. As before, these examples share the common classes A and B (Figure 12),
and C and MyThread (Figure 13). They also reuse class Ex7, which is shown in Figure 22

on page 67. Only the relevant fragments of this class are illustrated in the figures below.

Example 8

This example shows an open system using a conservative approach to handling dynamic
class loading. Given a sufficiently long loop inside main(), it is possible that only
instances of classes A and B have been created and loaded at the point of snapshot
analysis (ignoring the base class Object, which is always loaded, and Ex7, which must
be loaded for the program to execute). The analysis processes the main method and
finds references to classes A, B and C. It analyses A and B, but not C. It then examines
method bar() and tries to compute the set of methods that could possibly be targets
for foo () invoked on parameter inA. It has knowledge of classes A and B, both of which

are possibilities for inA, and neither of which cause object o to escape. But class C, of
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‘ Object‘ String ‘ | Ex7 ‘ A ‘ B ‘

while (...) {
// analysis runs here
// figure shows heap at this point

3

Figure 23: Example 8 (Analysis)

‘ Object‘ String ‘ | Ex7 ‘ A ‘ B ‘

bar (a);
bar(b); // figure shows heap
// at this point

MT;

Figure 24: Example 8 (bar (b))

which the analysis has no knowledge, could also be passed into bar (). It is thus unable
to prove that object o is strictly local, and so it is marked conservatively as global.

Figures 23, 24 and 25 illustrate the heap at different points in the program. The
first shows the heap at the point of analysis, somewhere within the while loop. The
program has not yet had to create (and therefore load) an instance of C. The stack
contains parameter args and local variables a and b, each of which reference objects in
the local heaplet of the main thread (the objects referenced by args and a have been
omitted for clarity).

The heap at the exit point of method B.foo() is shown on the right-hand side of
Figure 24. The loop has exited by this point and the program is now calling bar ()
with b as the actual parameter. The stack has grown accordingly to accommodate the
new method, and holds incoming parameter inA, which points to the object referenced
by b in main (), and local variable o. The object referenced by o has been allocated in
the shared heap despite not yet being reachable from a static root or from outwith its
thread, because the analysis could not prove it local for C.foo(), of which it has no
knowledge. Finally, the stack contains this and parameter in0 for method B.foo(),

which point to the objects referenced by inA and o, respectively.
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Figure 25 shows the heap at the exit point of method C.foo (). Here, class C, about
which the analysis previously had no knowledge, has finally been loaded and is part of
the static roots. An instance of C, referenced from local variable c in main’s stack frame,
is on the local heaplet of the main thread. Object o in bar () is, as before, allocated in
the shared heap, and has now become reachable from the static roots through C’s static

field sf, to which it was assigned in C.foo().

Example 9

The less conservative approach is demonstrated in this example, with the snapshot
analysis running as before during the loop in main(). Where the previous approach
assumed object o in method bar () to escape, o is instead left as local and allocated as
such. The program then resumes execution, and eventually the loop exits. An instance
c of class C is now created. This entails loading class C, initialising it, inserting it into
the global table of classes, and then performing the actual allocation of the object; it
is between the first two steps of this process, loading and insertion into the table, that
the analysis must intervene, thus ensuring that no other thread is able to use the class
before it has been analysed. C is processed and formal parameter in0 in foo () is found
to escape through the static field sf. The analysis compares this formal parameter with
the actual parameter in bar (), which has so far been found to be local. The two differ,
with the former being worse in terms of escapement than the latter, and so object o is
now capable of escaping should inA be of class C. To account for this, the local heaplet of
the main thread must be made shared (it being the only thread to call bar (), assuming
no others are created within the loop in main()).

The heap at the exit point of B.foo() is illustrated in Figure 26. The approach

Figure 25: Example 8 (bar(c))

[object] sting [..Je7 [A [ [C ]

C ¢c = new C();
bar(c); // figure shows heap
// at this point

M,

HEERER
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‘ Object‘ String ‘ | Ex7 ‘ A ‘ B ‘

MT s

bar (a);
bar(b); // figure shows heap
// at this point

S
5

Figure 26: Example 9 (bar (b))

‘ Object‘ String ‘ | Ex7 ‘ A ‘ B ‘ c ‘
MT g ; ; R S

C c = new CQ);
bar(c); // figure shows heap
// at this point

L

Figure 27: Example 9 (bar(c))

leaves object o local in method bar (), despite having no knowledge of what C.foo()
might do, and so o is placed in the main thread’s local heaplet.

Figure 27 shows the heap at the exit point of C.foo(). Class C has now been
loaded and analysed, and object o has become reachable from the static field sf. As a
result, its escapement no longer matches with what the analysis previously assumed at
the invocation of inA.foo(), and so the main thread’s local heaplet has been logically
associated with the shared heap and is shaded as such in the diagram.

The final figure (Figure 28) in this example again shows the heap at the exit point of
C.foo(), but this time, instead of logically associating the main thread’s local heaplet
with the shared heap, the escaping object o has been moved. Note that the references

to it from the stack and the static field sf have been updated to reflect this.

Example 10

The hybrid applies in a similar fashion to that of the second approach presented in
the previous example. Instead of leaving object o in method bar() as local, however,
it is marked as optimistically local, because the analysis has incomplete knowledge of

parameter inA (which can be of unknown class C) and therefore cannot prove that o
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‘ Object‘ String ‘ | Ex7 ‘ A ‘ B ‘ c ‘

MT 1k

C ¢ = new C();
bar(c); // figure shows heap
// at this point

A ML,
Figure 28: Example 9 (bar(c))

‘ Object‘ String ‘ | Ex7 ‘ A ‘ B ‘

bar (a);
bar(b); // figure shows heap
// at this point

Mo,

MT;

Figure 29: Example 10 (bar (b))

never escapes. Object o is marked as allocating in the optimistically local heaplet of
the main thread, and execution of the application resumes. When class C is analysed,
the analysis again finds that the actual and formal parameters for the call to foo()
on receiver inA differ: object o now escapes through the formal parameter of C.foo(),
which itself is reachable from the static field sf. Where the second approach forced the
main thread’s local heaplet to be shared, the hybrid need only force its optimistically
local heaplet to be shared. The heaplet and its object are treated as part of the shared
collection from this point on, while the local heaplet of the main thread is left untouched
and the objects therein remain local.

The right-hand side of Figure 29 illustrates the addition of an optimistically local
heaplet. The program is at the exit of point of method B.foo (). The object referenced
by local variable o is now optimistically local, because the analysis can prove it neither
strictly-local nor strictly-global, and so it is placed in the main thread’s optimistically
local heaplet. The objects referenced by local variables a and b are allocated as before
in the main threads local heaplet MT7,, while the classes are left in the shared heap G.

The right-hand side of Figure 30 shows the heap after class C has been loaded
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‘Object‘string ‘...IEx7 ‘A ‘B ‘c ‘
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C ¢ = new C(); A
bar(c); // figure shows heap
// at this point
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MT;

Figure 30: Example 10 (bar(c))

and method C.foo() is about to exit. When object ¢ was instantiated, the analysis
processed class C and found object o to escape through parameter in0 into the static
field sf, making it reachable from the static roots. To fix this, the main thread’s
optimistically local heaplet M T, has been logically associated with the shared heap
so that they are collected together. The thread’s local heaplet MT7,, however, has been

left as is, preserving the objects therein as local.

Summary

This chapter introduced the theory behind a technique that combines escape analysis
and garbage collection. A definition of escapement was proposed that is appropriate
to the technique. Its application in a closed system was discussed, and an examination
then presented of the problems involved when using it in an open system where dynamic
class loading is allowed. A solution to the problem was proposed and extensive examples
used to illustrate its operation. Subsequent chapters will expand on this by detailing

an escape analysis and garbage collector that implement this technique.



Chapter 6

Thread-local Analysis

The preceding chapters have introduced garbage collection, escape analysis and thread-
local heaps. A novel technique was then proposed that allows thread-local collection to
operate in the presence of dynamic class loading. This chapter introduces an analysis
that supports this technique. The requirements of the analysis, and the motivation
for these requirements, are stated. A formal definition is then presented of the types,
domains, and state in the analysis. Finally, the phases and passes of the analysis are

detailed, and the rules employed therein are defined and examined.

6.1 Requirements

The technique proposed in the previous chapter imposes a number of requirements on

the escape analysis:

1. The analysis must operate at runtime in a virtual machine rather than in a static

compiler.

2. Tt must, therefore, account for an open system with dynamic class loading. As
such, it should be able to operate with only a conservative estimate of runtime
types and must treat those that are ambiguous as potentially non-conforming

classes (§ 5.2 on page 68).

3. Identification of not only local and global objects but also those that are
optimistically-local must be possible. The allocation sites of such objects should

be marked accordingly.

80
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4. Tt must operate in the background of an application on a number of classes at
a time. It must also operate on-demand should new classes be loaded so that a

check for non-conformance can be made.

5. Context-sensitivity can introduce exponential complexity in the worst-case, but
this has been shown to be unlikely in practice, and the cost of specialisation is
worth the added precision it affords (§ 3.1.4 on page 30). The analysis should thus

be context-sensitive.

6. Flow-sensitivity, however, offers a negligible benefit in precision when the analysis
is already context-sensitive (§3.1.4). It computes a separate solution for each path
in the control-flow graph, and merges them when two or more paths meet, but this
affects only the solution within a method itself. The solution between methods is
made sufficiently precise because of the context-sensitivity, and so flow-sensitivity

is an unnecessary overhead. As such, the analysis should not be flow-sensitive.

7. In addition to this, it is faster and more space-efficient to use an equality-based
flow-insensitive analysis rather than one that is subset-based (§3.1.4). The analysis

should, therefore, also be equality-based.

Given requirements six to nine, it would seem that the work of Ruf (§ 3.2.5 on
page 42) and Steensgaard (§ 4.1 on page 49) would make a suitable foundation for the
analysis. Their analyses are flow-insensitive but context-sensitive, and are equality-
based rather than subset-based. In addition to this, they are fast, processing more
than seventeen-thousand statements a second, and are the most precise of the analyses
examined in Section 3.3. They also perform well in the presence of multiple threads,
where the other analyses are focussed more on removing unnecessary synchronisation
from single-threaded applications. Furthermore, Steensgaard has already proved that
is is possible to combine an escape analysis with a custom garbage collector to support,
to some extent, thread-local collection of heaplets, although the actual effectiveness of
the system has not been documented.

As such, Steensgaard’s system, based on Ruf’s analysis, has been chosen as the basis
for a custom analysis that will support thread-local heaps. Much of their terminology

is used, and many of their rules and functions have been adapted to meet requirements
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ValueKind ::=  New | ArrayElem | Param | Local | Field | Literal
Value = (kind)
Sharing = Local | OptLocal | Shared

SharingDiff = Same | Better | Worse
AliasSet = (fieldMap, Sharing)
AliasContext ::= (ag, ..., Gn_1)

Figure 31: Types

one through five, which deal mainly with incomplete type information and the dynamic

loading of classes at runtime.

6.2 Types, Domains and State

Values represent the named reference storage locations in a program and include local
variables, parameters, fields and string literals. For values that are fields, that is, of
kind Field, the mapping OWNER returns the owning value from the analysis state.
Each value can retrieve its type (the class of which it is an instance) using the TYPE
mapping.

A value is associated with an AliasSet tuple that models the aliases of the location
to which the value points. This set includes all other values that could possibly refer to
the same location. An alias set initially contains only the value itself until any aliasing
occurs. A mapping AS exists that returns a value’s set, while the mapping VALUES
returns all values associated with a set. Sets have a fieldMap that acts as a dictionary
for alias sets of fields, where the name of the field is the key. This map also contains
an entry for the elements of an array, the key for which is the distinguished name $ELT.
Alias sets further contain a sharing attribute that indicates their escapement. This can

be one of Local, OptLocal or Shared, and two sharing attributes can be compared to

Figure 32: Domains

vk € VK ValueKind

v eV Value

a, a0, al, b,r,e € A AliasSet
59 € string  FieldName
sh € S Sharing

d, nd e SD SharingDiff
sc, mc e AC AliasContext
t e T Type

D, q eE M Method

thrd € THRD Thread
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AS =V-4 (AliasSet of Value)

TYPE =V->T (Type of Value)

OWNER =V->V (Owner of Value)
ALLOCATOR =V — THRD (Allocating Thread)
VALUES =A->PV) (Set of Values)

VALUES =A Xx VK- P(V) (Set of Values of Kind)
MC =M— AC (MethodContext of Method)
TARGETS =Mx V—>P(M) (Set of invocation target Methods)
SCC =M —P(M) (Set of Methods in SCC)
INV_METHODS =M —P(M) (Set of invoking Methods)
INV_THREADS =M — P(THRD) (Set of invoking Threads)
SPEC =Mx AC— M (Specialised Method)

My =M (Current Method)
THRD,,,, = THRD (Current Thread)

PC..»r = int (Current PC)

BROKEN =P(THRD) (Set of broken Threads)
POST_SNAPSHOT = boolean (Post-snapshot phase)

Figure 33: State

give a SharingDiff value that indicates if escapement of the second is Better, the Same
or Worse than that of the first.

Method arguments are modelled by grouping alias sets into AliasContexts. A context
is a tuple of alias sets, where the first represents the receiver, the penultimate the return
value, and the last an exception value. Any other sets are standard parameters in the
order in which they would appear in the source. Ruf’s terminology is adopted for
different contexts: site contexts hold the actual parameters at a call-site, while method
contexts hold the formal parameters of a method.

Methods are represented by the opaque type Method. Mappings are defined that give
a method’s context (MC), the set of possible runtime TARGETS, the strongly-connected
components of which a method is a member (SCC), and also the set of invoking methods
INV_METHODS and threads INV_.THREADS. It is possible to retrieve the current
method from the analysis state by using the M,,, mapping, while PC,.,, gives the
program counter of the statement being processed.

Threads too are an opaque type, and the current thread is always available through
the THRD¢y, mapping. A set of BROKEN threads is maintained that holds those
threads whose optimistically-local heaplets must be fixed. Threads become broken when
a non-conforming class causes an object in their optimistically-local heaplet to escape,

forcing the heaplet to become shared.
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| # | Pass | Description | Traversal
1 | Merge Merge alias sets Any
2 | Thread Analysis | Find shared fields of threads Any
3 | Unification Unify site and method contexts | Bottom-up
4 | Specialisation Specialise by calling context Top-down

Table 2: Overview of analysis passes

6.3 Preliminaries

The analysis is comprised of two phases. The snapshot phase is entered at some arbitrary
point in execution and an analysis performed on all classes loaded at that point. Once
these classes are processed a post-snapshot phase is entered, where classes are analysed
on-demand as they are loaded.

Both phases must initialise alias sets for reference values. Some values, for example
those that are static fields and string literals, are reachable from global roots and are
thus shared by the definition of escapement (§ 5.1 on page 57); their associated alias
sets are initialised with their sharing attribute set to Shared. All other alias sets are
assumed to be local to their creating thread until shown otherwise by the analysis, and
are marked as such.

The snapshot and post-snapshot phases are further divided into a number of passes,
an overview of which is shown in Table 2. The first and second columns indicate the
number and name of each pass, respectively. The third gives a short description, while
the fourth column shows the order of traversal. Some passes perform only an intra-
procedural analysis, ignoring the calling context and any method targets, and so no
ordering is imposed on these passes; they simply process classes one at a time. Others
apply an inter-procedural analysis, joining solutions across method calls, and for these
the analysis walks the call-graph. Traversal of the graph can be in bottom-up topological
order, walking from the roots to the leaves and then applying an analysis on the way
back up the graph, or in top-down topological order, where the analysis is applied to a
method before its callees are walked.

Each pass is composed of rules and functions. The rules apply to the statements in
a method, where a statement contains a number of values. Statements are presented

as they would appear in a real Java program, with keywords and value names. Only
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Rules

Statement Action

vg =1 Merge(AS(vy), AS(v1))

vo = v1.f Merge(AS(vo ), AS(v1).fieldMap(f))

vo = v1[n] Merge(AS(vy ), AS(v1).fieldMap($ELT))
v = new C Merge(AS(v), AS(mew C))

v = new C[n] Merge(AS(v), AS(new C[n]))

return v Merge(AS(v), r)

throw v Merge(AS(v), e)

v =pvo,...,Un_1) mone

Figure 34: Merge rules

statements that comprise reference values are interesting, and so all statements related
to primitives are omitted. Synchronisation statements are also omitted, as these do not
affect escapement. Some passes operate only on specific statements, and so for brevity

only the first set of rules shows all possible statement forms.

6.4 Snapshot Phase

This phase is entered at an arbitrary point of execution and a snapshot taken of all
loaded classes. Each pass is then applied one at a time to the entire snapshot, so
that, depending on the ordering required, all classes are processed before progressing
to the next pass. Any additional classes loaded during processing are assumed to be

post-snapshot, and are queued so that they can be handled in the next phase.

6.4.1 Merge

The first pass merges the alias sets of all values in a statement, thereby making the
analysis equality-based. The effect of this is that the rules of subsequent passes need
be applied only to the first value in each statement, the alias set of which is shared by
the remaining values. It further causes escapement of alias sets to propagate through a

method. This pass does not, however, merge the aliases of site and method contexts, as
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Merge(a, b)
a.sharing := lub(a.sharing, b,sharing)
a.fieldMap := a.fieldMap U b.fieldMap
Y(f,a:) € a.fieldMap
Y{g,b;) € b.fieldMap

if (f=g9)
Merge(a;, b;)
Delete(b)
b:=a

Figure 35: Merge functions

this would cause escapement to propagate between methods, thereby making the analysis
insensitive to the calling context. Instead, alias contexts are left untouched until a later
pass. There is no need to impose any ordering on this pass, as the final merge of the
alias sets in a statement is not dependent on the call-graph. It thus operates on a class
at a time, with no traversal of the call-graph.

Figures 34 and 35 show the rules and functions for this pass. Statements are
processed and the alias sets of all values are joined, a pair at a time, using the Merge()
function. The least upper bound of the sharing attributes of both sets is computed,
where Local = OptLocal = Shared, and the result stored to the first set. The alias sets
of each matching entry in both maps are then merged by recursively calling the Merge()
function on them, thereby covering the transitive closure of both alias sets. Finally, the
values of the second alias set are updated so that they point to the first set, which holds
the final result of the merge. The second set is then destroyed.

An example of a merge is given in Figure 36. The alias sets for values vg and vy are
merged together, with the missing fields from the second set being added to the first.
v1 is then updated so that both values point to the resulting set.

Figure 36: Example of a merge

Before After

AS(vo) = ({f:({}, Shared)}, OptLocal)  AS(vo)

AS(v1) = {{g:({}, Shared)}, Shared) AS(v1)

= ({f:({}, Shared), g:({}, Shared)}, Shared)
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Rules

Statement Action

vg =1 ThreadCheck(AS(vo))
vo =v1.f ThreadCheck(AS(vo))
vo = v1[n] ThreadCheck(AS(vo))
v =new C ThreadCheck(AS(v))
v = new C[n] ThreadCheck(AS(v))
return v ThreadCheck(AS(v))
throw v ThreadCheck(AS(v))

v :p(vO,"'avnfl) Vv,
ThreadCheck(v; )

Figure 37: Thread Analysis rules

6.4.2 Thread Analysis

The definition of escapement states that an object may escape if it is reachable from a
global variable or from some thread other than its creating thread. The only manner
in which the latter can occur is if a reference to it is written into a field of its creating
thread, and that field is then accessed by another thread. This analysis pass identifies
such fields and marks them as thread-escaping.

The rules of this pass, shown in Figure 37, may be applied to statements in any order,
provided each method is processed once for every thread that might invoke it. Except
for method invocation statements, the alias set of the first value in each statement is
processed; for call-sites, the analysis must process the alias set of each actual parameter,
since these were not merged and do not share a single alias set. Function ThreadCheck(),
shown in Figure 38, is called for each alias set. The Field values associated with the
alias set are retrieved and their type examined to see if they are threads, that is, an
instance of the Runnable class. For those that are, the analysis must compare the owner
of the field to the current thread THRD.,,. If the two do not match, then the field is
being accessed outwith its creating thread, and so the object referenced by the field

escapes; the alias set is marked as Shared. Those that match are ignored.
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ThreadCheck(a)
Vv; € VALUES(a, Field)
if (TYPE(v;) instanceof Runnable)
if (OWNER(v;) # THRD,,)
a.shared := Shared

Figure 38: Thread Analysis functions

6.4.3 Unification

The initial merge pass joined alias sets within assignments together but ignored those at
call-sites. This had the effect of propagating the escapement of each value in a method
to its aliases, but only within the method. This pass propagates escapement out of
methods and up the call-graph to the roots, pulling sharing attributes from the formal
parameters of each method context at a call-site to the actual parameters in the site
context.

The call-graph is traversed in bottom-up topological order, walking back up from
the leaf methods and applying an inter-procedural analysis. Figure 39 shows the only
rule in this pass. It operates on invocation statements, applying the Unify() function
to the alias sets of each matching actual and formal parameter for each possible target
at a call-site. Note that this rule introduces zip(), which is defined in many functional
languages. It takes a pair of lists and zips them together, returning a list of pairs. It
operates here on alias contexts, which are tuples of alias sets.

Unify(), shown in Figure 40 takes a pair of alias sets, where the first is the actual

Figure 39: Unification rules

Rules (Down)

Statement Action

v = p(UOa . 'avnfl) sC == <AS(U0); EEY) AS(Unfl)} AS(U)) 6>
Vp; € TARGETS(p, vo)
mc := MC(p;)
if (S CC(Mcur) # S CC(pi))
Y{a;, b;) € zip(sc, mc)
Unify(ai, b;)
else
Y{a;, b;) € zip(sc, mc)
Merge(a;, b;)
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Unify(a, b)

a.sharing := lub(a.sharing, b.sharing)
missing := b.fieldMap \ a.fieldMap
Y(f, b;} € missing

a.fieldMap = a.fieldMap U (f, Clone(b;))
Y(f, a;) € a.fieldMap

Y(g, b;) € b.fieldMap

if (f=9)
Merge(a;, b;)

Figure 40: Unification functions

parameter and the second the formal parameter, and stores the least upper bound of
their sharing attributes to the first set. It then performs a set-difference operation on
the field maps of the sets, resulting in a new field map that contains only the entries
from the second map that are not in the first. For each entry in this map, a clone of the
alias set is created. This cloned set is then added to a new entry and inserted into the
field map of the actual parameter’s alias set. This is in contrast with the merge of field
maps, where entries in the second map that were not in the first were added without
cloning, thereby sharing the original between the maps. This is undesirable here, as it
would join alias sets across methods instead of simply progagating their escapement.
The alias sets of each matching entry in the maps are then unified by recursively calling
the Unify() function, thereby covering the transitive closure of both maps.

Figure 41 illustrates the unification of two alias contexts. The site context is shown
on the top line, with the method context underneath. Escapement of the alias sets in the
method context has been pulled to the matching alias sets in the site context, thereby
propagating the sharing up the call-graph. Notice how the sharing of the second alias
set in the method context is unchanged; this is left for the next pass, which propagates
escapement down the call-graph in a context-sensitive manner.

Escapement is supposed to propagate up the call-graph during this pass, from the

Figure 41: Example of unification (non-recursive)

Before After

sc = (({}, OptLocal), ({}, Shared),...) sc = (({}, Shared), ({}, Shared),...)

mc = (({}, Shared), ({}, OptLocal),...) me = (({}, Shared), ({}, OptLocal),...)
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leaves to the roots, with each method only being processed once. This works only if
the call-graph is acyclic, and ensures that, once a method is processed, its escapement
cannot change. Unfortunately, this may not be true of the program’s call-graph, as
methods may be recursive and thus introduce cycles into the graph. If a method is
recursive, then its escapement can change even after it has been processed, because the
method may exist further up the same call-chain as part of the cycle.

The rule for unification accounts for this by first checking for recursion between the
current method and the target that must be unified. If the methods are in the same
SCC of the call-graph, each depends on the other’s escapement. The classic solution
to dealing with this is to iterate over both methods, updating their escapement until a
fixed point is reached, after which the escapement does not change, but this iteration
is unbounded and can be costly. A better solution is to merge the contexts of the
two methods instead of unifying them, thereby ensuring that a change to one will be
automatically propagated to the other and also any other methods in the cycle. The
analysis thus applies the Merge() function in these situations instead of Unify().

Unification of recursive methods is shown in Figure 42. Here the alias sets have been
merged together instead of applying Unify(), joining the actual and formal parameters
and resulting in alias sets that are shared between the call-site and the method. A
change to the escapement of one of the sets will now affect the site and the method,
and so the escapement is kept up-to-date.

This solution, however, is not without a disadvantage. The alias sets of the site
context and the target’s method context are shared after the merge, and so the result
of the target is no longer independent of the calling context. The result is that context-
sensitivity is lost for recursive methods, and so the precision of analysis is somewhat

weakened.

Figure 42: Example of unification (recursive)

Before After

sc = ({{}, OptLocaly, ({}, Shared),...) sc

= (({}, Shared), ({}, Shared),...)
mc = (({}, Shared), ({}, OptLocal),...) mc
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Rules (Up)

Statement Action

v=po,...,Un_1) sc:= (AS(v), ..., AS(vp_1), AS(v), €)
Vp; € TARGETS(p, vo)
me := MC(p;)
if (CompareAliasContexts(sc, mc) = Better)
if (SPEC(p;, sc) = &)
spec := CreateSpec(p;, sc)

Rules (Down)

Statement  Action

v =new C case AS(v).sharing of
OptLocal:
AddAllocationPatch(Meyy, PCeyr, OptLocal)
Local:
AddAllocationPatch(Meyy, PCeyr, Local)

Figure 43: Specialisation rules

6.4.4 Specialisation

The previous pass unified the alias sets of formal parameters with those of actual
parameters, thereby propagating escapement up the call-graph from leaf methods to
the roots. Escapement must now be propagated in the opposite direction, from the
roots to the leaves.

One approach to this is to reuse the unification of the last pass by again applying the
Unify() function, but this time reversing the order of the alias sets so that sharing passes
from the site context to the method context, and hence from the actual parameters to the
formal parameters. This approach, however, would generate a single solution for each
method, regardless of the calling context, thereby significantly weakening the precision
of the analysis [HP00].

A better approach, and one that is context-sensitive, is to use specialisation. A
new method is generated for each target of an invocation. Escapement at the call-site
is then mapped to each new target so that the sharing attributes of the alias sets in
the original targets are preserved. This process then repeats for the call-sites in each
of the targets, creating more specialised targets as necessary, so that the escapement

eventually propagates down the call-graph to the leaves. To minimise the work required,
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CompareSharing(a, b)

if (b<a)
return Better

elif (b == a)
return Same

else
Assert(POST_-SNAPSHOT)
Assert(a = OptLocal)
return Worse

CompareAliasSets(a, b)
d := CompareSharing(a.sharing, b.sharing)
if (d = Same)
Y{f,a;) € a.fieldMap
Y{g, b;) € b.fieldMap
if (f=g)
d := CompareAliasSets(a;, b;)
if (d # Same)
return d
return d

CompareAliasContexts(sc, mc)
V(ai, b;) € zip(sc, mc)
d := CompareAliasSets(a;, b;)
if (d # Same)
return d
return d
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Figure 44: Specialisation functions

the analysis can keep a record of the specialisations created for a target and only create

a new one when an appropriate one does not already exist. A further optimisation is

to compare first the sharing attributes of alias sets in site contexts with those of the

sets in method targets, and then only create a specialised method if they do not match.

This avoids creating specialisations where escapement of a call-site and that of a target

is the same.

This pass, the rules for which are shown in Figure 43, performs a top-down

topological traversal of the call-graph, applying exactly the process outlined above —

including the two optimisations — to each method on the way down the graph. For each

target in an invocation statement the method context is retrieved. The escapement of

each pair of sets in the contexts is then compared using the CompareAliasSets() function,
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shown in Figure 44. This in turn calls CompareSharing() on the sharing attributes of
the given sets.

CompareSharing() takes a pair of sharing attributes as parameters, a and b, with
the first belonging to an alias set in the site context and the second to an alias set in the
target’s method context. It then compares the second with respect to the first under the
same invariant that applies to the least upper bound of two sharing attributes: Local
C OptLocal T Shared. If b is less than a, for example where a is Shared and b is Local,
then the formal parameter is less escaping than the actual parameter, and so the result
is Better with respect to b. The analysis is able to specialise the target if this is the final
outcome of the comparison. If the two are the same, then the result is clearly Same,
and the analysis has nothing further to do for this target. Otherwise, if b is greater than
a, for example a is Local while b is Shared, then the result is Worse with respect to b,
as the formal parameter is now less escaping than the actual parameter.

Note that the third outcome is not allowed during this phase of the analysis. The
previous pass already pulled escapement of method contexts to site contexts by unifying
actual with formal parameters, and so escapement should already have propagated up
the call-graph from the leaves to the roots; discovering a formal parameter with worse
escapement than an actual parameter would thus imply that the unification pass was
incorrect. As such, CompareSharing() asserts that the analysis is not in the snapshot
phase if this result is encountered. It further asserts that, when this legally occurs in
the post-snapshot phase, the actual parameter being examined is optimistically-local;
failing this assertion is also an indication that the analysis is incorrect, as it should be
impossible for a Local object to become Shared.

Once the sharing attributes of the sets have been compared the function examines
the alias sets of their respective field maps. CompareAliasSets() is called recursively on
the matching entries in the field maps of both sets so that their transitive closure is
covered. Should the comparison indicate a mismatch in escapement, whether it be of
the original alias sets or some pair in the transitive closure, then comparison terminates;
the target method will have to be specialised regardless of any further mismatches, and
so there is no point in continuing.

If the result of CompareAliasContexts() is Same, then the analysis has nothing

further to do for the current target and is free to process the next. If the final result
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Before After
sc = ({{}, Shared),({}, Shared),...) sc = (({}, Shared), ({}, Shared),...)

me = (({}, Shared), ({}, OptLocal),...) mc = ({{}, Shared), ({}, Shared),...)

Figure 45: Example of specialisation

is Better, the analysis can specialise the target method by cloning it and applying the
escapement of the site context to the method context of the clone. For each specialisation
the analysis must ensure that the current statement is patched to reflect the change in
the method being invoked. The analysis can then walk this specialised target instead
of the original, repeating the process of comparison and specialisation until it reaches
the leaves of the call-graph. The third result of the comparison, where escapement of
the formal parameter is Worse than that of the actual parameter, is disallowed in this
phase, and is covered in the next section, where the on-demand, post-snapshot analysis
is discussed.

Specialisation of a method context is illustrated in Figure 45. The sharing attributes
of the second alias set in each context do not match: the actual parameter is Shared,
while the formal parameter is OptLocal, and so the comparing them yields Better. The
analysis must specialise the method by creating a new body and context for it, the alias
sets of which will have the same escapement as those in the site context.

In addition to applying a rule on the way down the graph in this pass, the analysis
must also apply a rule when it falls back up to the roots. The rule applies only to
allocation sites, where new objects are created and assigned to values. These sites need
to be modified so that they allocate into the appropriate heaplet as determined by the
escapement of the alias sets belonging to the values at the site. The analysis examines
the sharing attribute of the first value’s alias set, and if it is optimistically-local then a
patch record is added to the site that will force it to allocate into the current thread’s
optimistically-local heaplet. Similarly, if an alias set’s escapement is local then the site
is patched to allocate into the current thread’s local heaplet. No action is taken for alias

sets that are shared, as allocation is into the shared heap by default.
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6.4.5 Transition

The snapshot phase is now complete. Snapshot classes have been processed and the
analysis passes have been applied using the rules above. The system is now in a position
to create specialised methods that match the contexts created in the final pass. It is also

able to modify object creation sites so that they allocate into the appropriate heaplet.

6.5 Post-snapshot Phase

The analysis enters a post-snapshot phase once all classes in the snapshot have been
processed. Classes in this phase are processed on-demand as they are loaded so that
they can be checked for conformance. In this mode it is not necessary to walk the entire
call-graph to analyse the methods of a new class; the new methods are added to the
call-graph at their calling points, and the analysis walks them from there, taking care
to walk a method for each thread that could possibly invoke it.

The passes from the first phase are applied to the new class, with the merge, thread
analysis and unification passes operating as before. The rules and functions of the
specialisation pass, however, are amended so that non-conforming classes are identified.
The amended rule is shown in Figure 46. This pass must not only compare contexts
and aliases with specialisation in mind, but must now also discover optimistically-local
objects that have become shared. These are actual parameter objects in a method of
an existing class that, when passed into a method of the new class, become reachable
from outwith their creating thread or from a global variable. The allocating threads of
such objects are broken and so need to be fixed by making them logically shared. Such
logically shared heaplets can no longer be collected independently of the shared heap,
that is, without stopping all threads.

CompareAliasContextsPS(), shown in Figure 47, is a post-snapshot version of the
same function from the snapshot phase. In addition to a pair of alias contexts, this
function also takes as a parameter a set into which escaping alias sets will be added.
The matching actual and formal parameters from the two contexts are then compared,
but unlike the snapshot version this function cannot terminate when a pair does not
match; it must continue to compare the remaining pairs so that all escaping parameters

can be added to the set. In addition to this, the result of each comparison must itself
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Rules (Up)

Statement Action

v =po,...,Un_1) sc:= (AS(v), ..., AS(vn_1), AS(v), €)
Vp; € TARGETS(p, vo)
mc := MC(p;)
escaping := {}
case CompareAliasContextsPS(sc, mc, escaping) of
Better:
if (SPEC(p;, sc) = )
spec := CreateSpec(p;, sc)
Worse:
Va; € escaping
Yv; € VALUES((J%)
BROKEN := BROKEN U {ALLOCATOR(v;)}

Figure 46: Specialisation rules (post-snapshot)

be compared with the result of the previous comparison. The least upper bound of the
two is computed, where Same T Better C Worse, which ensures that the final result of
the function will be the worst escapement of all sets compared.

The post-snapshot function CompareAliasSetsPS() is used to compare the escape-
ment of each pair of parameters. This function first compares the sharing attributes
of the two given alias sets using the snapshot function CompareSharing(). The third
outcome of the comparison, where escapement of the formal parameter is Worse than
the actual parameter, is now allowed. This result indicates that the actual parameter,
which was previously optimistically-local, has escaped through the formal parameter
and is now shared. The alias set is thus added to the escaping set, which tracks all such
now-shared sets.

Like CompareAliasContextsPS(), this function must continue to compare the
transitive closure of the sets even if escapement of the sets themselves does not match.
It traverses the field maps of both sets, recursively calling itself on each matching entry
and taking the least upper bound of the previous and current comparison.

The rule for invocations is modified to reflect these changes. It initialises an empty
set to hold any escaping objects and then calls CompareContertsPS() to compare the
contexts of the site and target method. If the result of the comparison is Same then
no action is taken, while if it is Better then a specialisation is created as before. The

third outcome of the comparison, Worse, is now allowed, and here the escaping set will
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CompareAliasSetsPS(a, b, escaping)

d := lub(Same, CompareSharing(a.sharing, b.sharing))
if (d = Worse)

escaping := escaping U {a}
Y(f,a;) € a.fieldMap

Y(g,b;) € b.fieldMap

if (f=9)
d := lub(d, CompareAliasSetsPS(a;, b;))

return d

CompareAliasContextsPS(sc, mc, escaping)
d := Same
V{a;, b;) € zip(sc, mc)
d := lub(d, CompareAliasSetsPS(a;, b;, escaping))
return d

Figure 47: Specialisation functions (post-snapshot)

contain those alias sets that represent optimistically-local objects that are now shared.
The analysis must iterate over the elements in the set, retrieving the values for each and
then adding their creating thread to the set of broken threads. These threads will be
fixed once the pass is complete by making their optimistically-local heaplets logically

shared.

6.6 Summary

A novel analysis that supports the use of thread-local heaplets was introduced in this
chapter. The analysis accounts for the dynamic loading of classes at runtime, and is able
to operate both at an arbitrary point of execution with incomplete type information and
also on-demand as knowledge of new classes becomes available. The requirements of
the analysis, as well as the reasons for adapting the work of Ruf and Steensgaard, were
stated. The analysis was formalised and the pertinent rules and functions presented,
with a detailed explanation given of how non-conforming classes are handled. With this
formalisation in place the implementation of the analysis and custom garbage collector
can be detailed, and the next chapter introduces the virtual machine that serves as the

foundation for this implementation.



Chapter 7

ExactVM Internals

A formal definition of an escape analysis that operates in the presence of dynamic
class loading was presented in the previous chapter. This analysis, along with a
supporting garbage collector, aims to identify and eliminate allocator-collector and
collector-collector synchronisation. The goal of this research is not simply the design
of such an analysis and collector but also the implementation thereof in a real virtual
machine. This chapter introduces such a virtual machine, including clear explanations
of the data structures used therein. The mechanisms employed for performing method
invocation, the workings of which are crucial for the escape analysis, are also described.
In addition to this, an overview of the interface between the virtual machine and its
collector is presented. Subsequent chapters will then show how the escape analysis and

garbage collector are efficiently realised in the context of this virtual machine.

7.1 Overview

ExactVM [WG98] is a high performance virtual machine embedded in JDK 1.2.2 [jvmO04].
It is a rewrite of much of the ClassicVM that comprised JDK 1.0 [jvm04]. Key differences
between the two include the threading model, the just-in-time compiler and object
management.

The native threading model of the underlying operating system is used instead of
platform-independent user-level threads (the Green Threads library). These threads
are lightweight and the operating system is responsible for scheduling them. However,

extra support is needed in the virtual machine to ensure that threads can be suspended
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and resumed when a garbage collection is necessary.

Two compilers are included as standard: sunwjit, which is the default, and the
Java Back-End (JBE) compiler. The former is a fast compiler that employs only basic
optimisations. Methods compiled by sunwjit cannot be recompiled later, except in
special cases where not doing so would break a newly-loaded class (for example, if a
new class overrides some previously inlined method). JBE, on the other hand, offers
several levels of optimisation, the best of which generates superior code, but with a
corresponding increase in compilation time. It is also capable of recompiling methods
in a background thread if appropriate, for example if heuristics suggest that an already
compiled method could benefit from a higher level of optimisation.

The virtual machine is pointer-based, meaning objects are referenced from inter-
preted and compiled code directly via pointers. This is in contrast to the ClassicVM,
where object reference is by indirection through a handle. Using direct pointers is faster
but requires more cooperation between the virtual machine and the garbage collector.
The virtual machine must ensure that it is safe for the collector to move objects before
a collection is initiated, and the collector must update all pointers to objects if they are
moved. Note that despite using these direct pointers there is still some use of handles
within the virtual machine. For example, when passing objects to JNI methods, the
object references are wrapped in handles that hide the pointer. Access to these objects
is solely through an interface provided by the virtual machine that can dereference the
handles. This ensures that it is safe to perform a collection even when these methods
are being executed. Furthermore, collection is exact, meaning the virtual machine can
accurately distinguish between references and primitive values. To enable this, stack
and object maps are kept that describe the contents of thread stacks and object fields
respectively.

The heap in ExactVM is generational, with a semi-spaces copying collector in
the young generation. The collector used in the old generation is configurable
at launch-time, allowing the user to pick the collector most appropriate to the
application behaviour. An incremental train [HM92] collector is provided for interactive
applications, where responsiveness of the user interface is key; for servers, where high
throughput is crucial, a mark-sweep and a mark-compact collector are included. A

mostly-concurrent variant of the latter is also provided that performs collection work
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alongside the mutator threads [PD00]. In addition to this, collection of the heap
can be done in parallel, with a separate collector thread running on each available

processor [FDSZ01].

7.2 Data Structures

There are many data structures that are fundamental to the workings of the virtual
machine and compiler. Some, like the constant pool, are part of the Java language, and
their representation in classfiles is well specified in the JVMS (Java Virtual Machine
Specification) [LY99]. Their representation within the virtual machine, however, is
implementation specific, and depends on trade-offs between space and performance. Of
these structures, several are of particular relevance to this research. They are needed
for the implementation of the custom escape analysis and garbage collector discussed in

Chapters 8 and 9, respectively, and are described in some detail in the sections below.

7.2.1 Classes

Each class in the virtual machine is represented by three separate data structures:
a class block, a nearclass, and a class object. The first structure (third from left in
Figure 48) is constructed when a class file is loaded, and is allocated in the system heap
rather than the garbage collected heap. It can be explicitly deleted should the class
ever be unloaded. The class block is of sufficient size to contain the members of the
class inline, thereby ensuring good locality. Such blocks hold the name of the class, a
pointer to the superclass block, pointers to the block’s associated nearclass and class
object, the constant pool, all static fields and the method table for the class. This latter

element contains only those methods directly implemented by the class, and is not used

Figure 48: An object with a nearclass, class and method

nearclass — [[]]..... [ flags fonetonnn] NECICIOISS - [foo

hash [ agd] lock size - [ flags o Jov

map i name e class
farclass I method_table catch frames
RN map
vtable_i constant_pool ; index
viable_c - : bytecode
imtable fields . [cco

Object Nearclass Class Method
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for virtual method lookup. Instead, a separate table called the virtual table (vtable) is
used. Building this table requires that all superclasses be loaded so that the size of the
table can be calculated, but the virtual machine allows class blocks to be constructed in
advance of the superclasses. As such, the virtual table cannot be allocated at the same
time as the class block.

The nearclass (second from left in Figure 48) is constructed once all superclasses
have been loaded, and is thus able to hold the virtual table. It contains two such tables,
with the first (vtable_i) for interpreted methods, or those with plain bytecodes, and the
second (vtable_c) for compiled methods, or those created by the just-in-time compiler.
A third table, the interface table (imtable), contains methods that implement some
interface. In addition to these tables, the nearclass also contains the object map for the
class, which describes the instance fields of the class and enables the garbage collector
to distinguish accurately those fields that are references from those that are primitives,
thereby providing exact collection. The size of class instances is stored within the
nearclass for use by the garbage collector. Each nearclass also holds a pointer back to
its class block, which in the context of a nearclass is known as a farclass. Nearclasses,
like class blocks, are allocated within the system heap, and their contents, including
the two vtables, is always inline. They are accessed frequently by the virtual machine,
especially during garbage collection, and so are always aligned for fast access. Like
class blocks, nearclasses are explicitly deleted should the class become unused and get
unloaded.

Finally, class objects represent classes as real Java objects, of type Class, making
them accessible at the language level. These are allocated in the garbage-collected
heap just like any other object, and so are automatically collected should the class ever
become unused (the reference to the class object from the class block will be destroyed,
making it unreachable). An extra field is added at runtime to Class that enables the
class objects to point back to their actual class block. Together with the class object
field in class blocks, this allows for efficient conversion between the two formats. The
virtual machine can thus pass classes to functions that require either the internal or

external representation of a class.
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7.2.2 Objects

Object headers comprise two words, or eight bytes (left-hand side of Figure 48). The
first points to the object’s type, as compactly represented by a nearclass structure. This
structure is frequently accessed, as it contains the size of the object and the interpreted
and compiled vtables for virtual method invocation. Access to the object’s full type is
through the farclass field of the nearclass. The nearclass field is also used to hold the
live mark for the object, which is used by the garbage collector to signify a reachable
object. The mark occupies the least-significant bit of the field, which is safe because the
pointer to the nearclass is guaranteed to have its three lower bits free due to double-
word alignment. The second is a multi-use word, the contents of which depends on the
bottom two bits that indicate the lock state. For objects that are not locked, the rest of
the word contains the hash code and a few bits that hold the age of the object, as used
by a generational garbage collector. For objects that are locked but uncontended the
format of this word is the same. However, for objects that are locked and contended,
only the lock state remains. The rest of the word is a pointer to a lock record, which
contains extra synchronisation information as well as a copy of the original multi-use
word. When the lock on the object is released, this copy is written back to the object’s

header.

7.2.3 Methods

As class blocks represent classes, so method blocks represent methods (right-hand side
of Figure 48). These blocks are constructed inline within their owning class block’s
method table when the class is loaded. They contain the method’s name and signature,
a pointer to the owning class block, exception table with catch frames, bytecode and
stackmaps. Method blocks that have been compiled by the just-in-time compiler have
compiled code containers (CCCs), which hold the generated native code, a table that
maps from bytecode to compiled code, the stackmaps for the compiled code and a list
of dependencies for recompilation. Method blocks in classes that were compiled with
debugging information also contain line number and local variable tables. All method
blocks have an invocation function pointer that either invokes the interpreter on the

method’s bytecode or calls a stub function that sets up execution of the method’s
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compiled code. Finally, a field is reserved in the block that indicates its index in the
virtual table or interface table of its owner class. For static and constructor methods,
this value is invalid (-1), as they reside only in the method table and never in the virtual

tables.

7.2.4 Constant Pool

The constant pool is used for runtime resolution of classes, methods and fields that are
named in a class’s source. Its representation in a Java classfile is specified by the JVMS.
The most basic pool entry is a string literal. Compound entries, such as classes and
methods, are composed of indices to string entries; entries in the pool are thus symbolic,
rather than direct. The entry for a class is an index to the string entry containing the
fully qualified name of the class. Similarly, method entries hold indices to their name
and signature strings, while a third index points to the entry of the owning class of the
method, which itself points to a string containing its name. Field entries contain indices
to entries for their owning class and name.

Its representation within the virtual machine differs only slightly. Constant pool
entries have a resolved flag that is initially true only for string literals; all other entry
types are unresolved until runtime. When a lookup is performed on an entry this flag is
examined, and if false then the entry must be resolved. Resolution is from the simplest
entries first and proceeds back up to the more complex ones. Thus, for field and method
entries, the entry describing the owning class is resolved first. The name of the class is
retrieved from the string literal entry (which is always resolved) and used to search the
directories and archives specified in the Java classpath for the associated class file. If
the class is found then a class block, class object and nearclass are created for it and the
class block added to the class table!. The class block is similarly added to the constant
pool entry, replacing the index to the entry containing the name of the class, and the
resolved flag is marked as true. Future lookups on this class entry will find it already
resolved, and thus have direct access to the class block structure. For method entries,
it is now possible to look up the method block in the table of the owning class using the

entries containing the name and signature. The same applies to fields, lookup of which

!Classes that are not found cause an exception to be thrown.
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is possible using the specified name entry and the field table of the owning class.

7.2.5 Virtual Tables

A virtual table is an array of methods. It is built only when a class is fully loaded, and
holds all virtual methods for the class, including methods inherited from superclasses
for which there is no override. In this manner it is distinct from the method table of
the class, which holds only the methods directly implemented by that class, and thus
no inherited methods. The virtual table for the Object base class is always constructed
first. The methods of the class are examined, and those that are not constructors or
marked as static are added to array slots starting from index zero. As methods are
added, their index in the array is stored within a field in the method block structure.
For each class subsequently loaded a virtual table is constructed; unlike for Object,
however, the methods of these classes are not added to the table linearly. Instead, if
a method m in the new class overrides some method n in the direct superclass, then
m must be placed in the same slot in the vtable of the new class as n. Methods that
do not override those of the superclass can be appended to the table. This process
is repeated for all subsequent classes, so for that for any given method, all overrides
of that method will be at the same array index in the virtual tables of all subclasses;
similarly, all methods that it overrides will be in the same index in the virtual table of
all superclasses.

Figure 49 shows the method and virtual table layout for class Object and subclass A.
Object, which is the first class in the listing on the left-hand side of the figure, has three
methods in its table: Object (), which is the constructor; equals(), which compares
the receiver with another instance of the same class; and toString(), which returns a

String representation of an instance. Each table entry is depicted with three parts: the

Figure 49: Method and virtual tables for classes Object and A

class Object { " ‘method_table  ©  method_table ¢
public Object() { ... } - [0] Object -1: ' [o[A -
public boolean equals(Object obj) { ... } o [ 1] equals 0| : 1| foo 2
public String toString() { ... } o |2]toSting |1 o |2]toSting |1

} i : viable_i . viable_i

class A extends Object { : [0] equals | ©  [0] Object.equals] :
public AQ() { ... } - [1] tostring | © i [1]tosting
public String toString() { ... } : oo [2]foo

. public void foo() { ... } object | A
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index in the method table, which is just the slot in the array; the name of the method;
and the index into the virtual table, which is kept in the reserved field of the method
block (note that Object () has -1 for this latter field, since it is not present in the virtual
table). The virtual table itself is shown below the method table, and because Object is
the base, its layout has been determined purely by the order of entries in the method
table. Slot 0 is occupied by (a pointer to) method equals(), while slot 1 is occupied
by toString().

A is the second class in the listing, and its method table contains entries for methods
A(Q), toString() and foo(). The layout of its virtual table has been determined by
Object, as is the case for all subclasses. A does not override equals(), so slot 0 in
the virtual table is occupied by (a pointer to) the same method in the same slot in
the virtual table of the superclass, which is Object.equals(). This ensures that the
inherited method will be invoked should that slot ever be accessed. toString() has
been overridden, and so it has been placed in slot 1, thereby overlaying its parent method
in the superclass. Finally, method foo has no equivalent in Object, and so it has been
added to the end of the table in slot 2. Further subclasses of A that override this method

will place their foos in the same slot in the virtual table.

7.2.6 Interface Tables

Interface tables are used to hold methods that implement some interface class. Like
virtual tables, these are built when a class is loaded, with the table for Object always
constructed first. Unlike virtual tables, however, these tables are not a flat array of
methods. Instead, each slot in the table is itself an array of indices into the virtual table
of the same class. The slot further holds a pointer to a class block that identifies the
interface that is being implemented. The reason for this indirection is that, whereas a
class only directly extends a single other class, it can directly implement any number of
interface classes. It is thus impossible to arrange the interface table as a flat array (like
the virtual table) where the methods in the array overlay those of the parent. Instead,
a slot is added in the table for each interface that is being implemented. The array in
that slot is then initialised to hold an index into the virtual table of the implementing
class for each method in the interface class. The order of the indices in the array is such

that they match the order of the methods in the virtual table of the interface class.
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interface I { Cviableli % ! 'method fable

public void bar(); - [0 bar ©:[o]B -1

} Lo Tmmm— [ foo 2|

C 2] 3]

class B extends A implements I { Cimidbie viable._i :

public B() { ... } 0] Object.equals]

public void foo() { ... } ; ; : 1| AtoString :
public void bar() { ... } : 2 | foo

} - 3 | bar :

Figure 50: Method, virtual and interface tables for classes I and B

Figure 50 shows the method, virtual and interface table layout for interface I and
class B. The interface, the source for which is at the top of the listing on the left-hand
side of the figure, defines methods that concrete classes should implement. Its method
table (not shown) contains only bar(), which is also the only method present in its
virtual table.

Class B is a subclass of A. Its source is shown at the bottom of the listing. Its method
table holds the constructor B(), an override of foo() and also an implementation of
interface method bar(). It inherits Object.equals(), which is in slot 0 of its virtual
table, and also method A.toString(), which is in slot 1. Slots 2 and 3 are occupied
by foo() and bar(), respectively. In addition to its method and virtual tables it also
has an interface table. The interface table holds only one entry, for interface I. The
entry has an array of slots, where the index of each matches the indices of I’s virtual
table: slot 0, for bar (), holds index 3, which points to slot 3 in B’s virtual table, thus

matching the interface method with its implementation.

7.3 Method Invocation

Two kinds of methods are supported: instance methods and class methods. The former
rely on the type of the receiver object on which they are being invoked. This receiver is
exposed at the language level through the this keyword, which refers to the object on
which the current method was invoked. Dynamic, or late binding is done for instance
methods, which means that the method is only bound to the receiver at runtime,
depending on its type. Class methods have no receiver object, and do not depend
on a runtime type for binding. Static or early binding is performed on these methods,

meaning that the method invoked is always that declared in the source.
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For all invocation types the method arguments, that is, the actual parameters that
match the formal parameters declared in the method’s signature, are pushed onto a
new stack frame. If an instance method is being invoked then the receiver must also be
pushed. The arguments are pushed in reverse order, with the receiver being pushed last,
that is, at the top of the stack. The method is then invoked. The arguments, including
the receiver for instance methods, are popped off the stack. On method exit the new
frame is deleted and the return value, as specified by the the method’s signature, is

pushed onto the frame of the caller, which then pops it off as appropriate.

7.3.1 Static Methods

The simplest invocation is invokestatic, which operates on static methods only. The
compiler generates the push opcodes for the arguments and then writes the invocation
opcode, the operand of which is the index of the entry in the constant pool that describes
the method. On invocation, the entry in the constant pool is resolved and the method
block retrieved. No receiver is required, as the method invoked is exactly that as declared
in the source; only the constant pool of the current class is needed. It can thus be invoked

directly.

7.3.2 Special Methods

Class initialisers, or constructors, superclass constructors, and private methods are
all invoked using invokespecial. This type invokes instance methods, but operates
as a static method call for constructors and private methods, while for superclass
constructors it must invoke the method of the immediate superclass. The compiler
generates the push opcodes as before, but this time includes the receiver object, despite
the call being statically bound and not needing the runtime type. The invocation opcode
is written, with the index into the constant pool again inserted as the operand. For class
constructors and private methods, the entry in the constant pool is resolved and invoked.
For superclass constructors, however, the method block in the constant pool entry is
that of the current class, which is incorrect, and so the corresponding constructor in the

superclass is retrieved from its method table and invoked.
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7.3.3 Virtual Methods

The instance methods invoked by invokespecial are special cases that do not rely
on the type of the runtime receiver. However, for general instance methods that do,
invokevirtual is used. Push opcodes are generated by the compiler for the method
arguments and the receiver, and the invocation opcode is inserted with the constant
pool index as the operand. At runtime, the method block described by the constant
pool entry is resolved. This method cannot be invoked, as it is that specified by the
static type of the invocation, not the runtime type. Instead, a late bind is performed
using the type of the receiver object, as indicated by its nearclass. The index stored in
the retrieved method block is used as an index into the vtable of the nearclass. The
index was computed when the vtable for the class was built, and the method at the
index is either an override belonging to the class of the receiver or an inherited method

from one of its superclasses. In either case, this method is the one that is finally invoked.

7.3.4 Interface Methods

To invoke instance methods on interface classes the invokeinterface opcode is used.
As with invokevirtual, interface methods require the runtime type of the receiver, but
cannot be retrieved directly from a vtable using the index of a method in the constant
pool. The compiler generates push opcodes for the arguments as well as the receiver, and
then writes the index of the interface method as an operand to the invocation opcode.
It also reserves a bytecode after the opcode that will later be used as a hint for fast
lookup of the runtime method (this hint is initialised to zero). At runtime the method
block in the constant pool is resolved as for all invocation types, but as with virtual
invocations the method cannot be invoked, as it is that of the interface class and not the
class that implements it. The actual class is specified by the type of the receiver object,
the interface table of which contains offset arrays for all interfaces implemented by the
class. The table is searched for an entry that matches the interface class, starting from
the hint that was written as part of the opcode. If the entry is found, its index in the
interface table is written back to the bytecode as a hint for the next interface lookup,
thereby avoiding future searches of the table; otherwise, the table must be searched

from the first index for the matching entry. Once the appropriate entry has been found,
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the index stored in the interface method is used as an index into its offsets array. The
offset points to the runtime method in the vtable of the receivers nearclass, and this is

the method that is invoked.

7.4 GC Interface

The ExactVM GC Interface (GCI) [WG98] is a framework on top of which new collectors
can be built. Similar to the Java Memory Toolkit (JMTk) [BCMO04], and previously
the Garbage Collection Toolkit (GCTk) [BJMMO2], the interface allows collectors to
be plugged into the virtual machine at compile-time. GCI abstracts over the virtual
machine on one side and the collector on the other, allowing the two to communicate
through a clean but thin and efficient layer.

Root discovery is handled in the virtual machine by examining thread stacks, static
(class) fields and explicit roots, and the interface passes these to the collector for
scanning using a callback mechanism. The collector is then able to iterate over the
reference fields in the object using a macro provided by the interface. Safe access to an
object’s header is also provided by the interface, for example to get an object’s nearclass
or size, to mark it as live (using the lower bit of the nearclass field), or to increment
its age for generational collection, and all of these operations are safe regardless of the
state of the object’s header?.

The collector itself must implement several key routines that the interface then calls
as necessary. These include initialisation, object allocation, collection (with parameters
that specify the type — for example a major collection — and the promotion policy),
expansion and contraction of the heap, and also a handful of heap inspection routines
(for example to determine if an object is being collected, or to iterate over all objects
in the heap).

In addition to these, the collector must also define the read and write barriers for
instance fields, statics and handles. If the collector is able to batch writes or reads
to arrays then special barriers can also be defined to handle these. All barriers are

implemented as macros, and those that are not needed can be left empty, thereby

2The object might be locked and contended, in which case its header will be swapped out to the lock
record (§7.2.2).
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imposing no performance penalty on the virtual machine.

Summary

The high-performance virtual machine used in this research was presented in this
chapter. Internal data structures were examined, including the object header layout
and various class formats. The layout of virtual and interface tables was also discussed,
with examples and illustrations where appropriate, and their interaction with Java’s
invocation mechanism was made clear. This knowledge provides a thorough background
for the next chapter, which describes the implementation of the analysis that was

formally defined in the previous chapter.



Chapter 8

Analysis Implementation

The previous chapter detailed the internals of a high-performance virtual machine.
This virtual machine provides the foundation upon which a custom escape analysis and
garbage collector can be implemented to enable the use of per-thread heaplets. These
heaplets can be used in the presence of dynamic class loading, but only because the
analysis has been designed to account for incomplete type information. This chapter
documents the implementation of the analysis introduced in Chapter 5 and formally
defined in Chapter 6. An overview of the system is given, followed by an examination
of the data structures used. A detailed account of the phases and passes used by the

analysis is then presented.

8.1 Overview

The analysis is able to run both in the background of the main application in its own
thread of execution, and also on-demand when an application thread loads a new class
that needs immediate analysis. For the former, using a separate thread provides an
opportunity to run without blocking the execution of the application threads, and allows
the possibility for it to run on a separate, idle processor should one be available. The
thread is initially asleep and is woken only after a user-specifiable period of time, the
default for which is ten seconds.

Application classes that are loaded during this period are added to the snapshot
queue (SQ), which is processed during the first phase of background analysis when the

thread awakens. This snapshot phase builds the intermediate representation for the
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| # | FD# | Pass | Description | Traversal |

1| N/A|IR Construct intermediate rep. Any

2 1 | Merge Merge alias sets Any

3 | N/A | Call-graph Construct call-graph Bottom-up
4| N/A | SCC Find SCCs Bottom-up
5 2 | Thread Analysis | Find shared fields of threads Bottom-up
6 3 | Unification Unify site and method contexts | Bottom-up
7 4 | Specialisation Specialise by calling context Top-down

Table 3: Overview of analysis passes

methods of all classes in the snapshot queue. While the representation is being built,
new classes can still be added to the snapshot queue as they are loaded.

Classes that are loaded after the snapshot queue has been processed are added
to a post-snapshot queue. The analysis continues to run in the background and
performs a number of passes (as defined in the previous chapter) over the intermediate
representation built for the classes in the snapshot queue. Following these passes, the
analysis processes the post-snapshot queue one class at a time. From this point on, the
analysis is in the post-snapshot phase. For each class, the same passes that were applied
to the classes in the snapshot queue are again applied.

When the queue is empty the analysis suspends the application so that patches can
be applied and method specialisations completed. It is necessary to stop all application
threads at this point so that they are unable to interfere while the bytecode of running
methods is patched. It is further unsafe to specialise fully method structures while they
are running, as this may cause races on their fields, and so any specialisations created
during the snapshot and post-snapshot phases are completed here.

An overview of the passes applied by both phases is given in Table 3. The first column
is the number of the pass, while the second column shows the corresponding pass number
from Table 2 on page 84, which is part of the formal definition given in Chapter 6.
The rules of the formal definition operate on statements and values, and clearly
these must be constructed from the method bytecodes in the classes being analysed.
Later passes require that the call-graph be walked, and this too must be constructed.
Furthermore, knowledge of thread creation sites is necessary for finding shared fields,
and the strongly-connected components of the call-graph must be discovered. As such,

these are additional passes in the implementation that are not in the formal definition.
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8.2 Common Data Structures

The two phases of the analysis share a number of common data structures. Some, like
Statements and Methods, are part of the intermediate representation and aid application
of the rules outlined in Chapter 6. Others, like Alias Sets and Alias Contexts, are
implementations of the formally-defined types (§ 6.2 on page 82). Finally, types like
Templates have no analogue in the formal definition, but are imperative for an efficient

implementation.

Aliases

Aliases represent reference wvalues. They are categorised by the kind of name they
represent rather than the type of object to which they refer. As such, each alias has a
kind field that indicates whether it is a Local variable, Field, Parameter, Literal value
and so forth. Aliases must track the static type of the object to which they refer, and
so each has a class field that points to a class information structure. The kind and type
of an alias is initialised at creation time and for the most part is immutable; only in
special circumstances can the type of an alias change after creation. For aliases that are
of kind Field, meaning that they represent a static or instance field, the owning alias
of the object to which the alias refers can be found through its runtimeOuwner. This
allows the analysis to trace at least one step back up the transitive closure of an alias.
Aliases also have two flags, static and array. The former indicates that the aliases is —
or its object is reachable from — a static class field, or global variable, while the latter
indicates an array, whether it be of primitives or object references. Finally, aliases have

a sharing attribute, sharing, that indicates if they are Local, OptLocal or Shared.

Alias Sets

An alias set groups the aliases that refer to an object. The set is a linked list of aliases
held through a head field. It is intrusive, meaning the aliases themselves (the nodes)
hold the next pointer and also a reference back to their containing set. Sets are created
along with aliases, so that there are no empty sets: a set always contains at least its
original alias, pointed to by the field orig. Alias sets keep a kindMap that compactly

represents the kinds of aliases stored within the set and enables the analysis to quickly
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determine if a set contains a given kind. Alias sets also have their own sharing attribute,
which is modulo that of the contained aliases, but can also be modified as necessary
to reflect transitive sharing. In addition to this, each set has a fieldMap that maps
field names to the aliases that represent those fields. An alias in the map will have its
runtimeQuwner field set so that it can reach the set owning the map. Insertion of fields
into the map is lazy, so that a field is only created and inserted when it is first named.
Similarly, sets for which the original alias is an array have an element field that points
to an aggregate alias representing the array elements.

Alias sets are managed through a simple reference counting scheme. When an alias
is placed in a stack element, local variable slot, field map entry, or other location, the
reference count of its containing set is incremented. Similarly, when one is removed
the count of the containing set is decremented. Should the count become zero, the
set and its aliases can be destroyed. Because the reference count is only accessible
via an alias in the set, instead of directly through the set itself, the alias acts as an
indirection, or handle to the containing set. This allows sets to be merged and then
deleted without having to fix the locations that point to them. To make this uniform,
all other operations on alias sets, including accessor methods on an alias set’s fields, are

also performed indirectly via an alias; there is no direct access to an alias set.

Templates

Alias sets can be compactly represented by templates. These store the sharing attributes
of the set (those modulo the aliases in the set) as well as their own compact fieldMap
and array element, but contain no other fields. This allows them to model the structure
of an alias set and its transitive closure without the space overhead. Every alias set
embeds its own template, initialised to mirror the sharing of the set, but templates are
primarily employed in situations where creating new alias sets is too expensive. For
example, when specialising methods, templates are created to represent the parameters
of the specialised method instead of copying the alias sets of the original. Templates
and alias sets can be logically unified, so that the sharing attributes of one are passed
to the other, or applied, where the sharing of a free-standing template is applied to that
of an alias set. Templates also remember their initial state so that they can be later

reset to the sharing attributes with which they were initialised by an alias set.
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Alias Contexts

The aliases that represent the parameters in an invocation statement are packaged into
alias contexts. Because the number of arguments to a call is fixed the parameters can
be held in an array, params. The implicit receiver parameter is held in its own field.
For static methods, which have no runtime receiver, a special alias belonging to the
method’s class is used to fill the receiver slot. The context also holds aliases 7 and e
for the return and exception values, respectively. The former models values returned
by callees and also the return value of the current method, while the latter models
exception objects that are thrown from callee to caller methods. Alias contexts that
represent the actual parameters at a call-site are site contexts, while those that represent

the formal parameters within the target method are method contexts.

Template Contexts

As templates compactly represent alias sets, so template conterts represent alias
contexts. A template context contains a template for each of the implicit receiver
parameter, formal parameters, return, and exception values. Creation of a template
context is from an alias context of a call-site for which one of its targets is being
specialised. The template of each alias set in the site context is cloned and added
to the template context. The target specialisation holds this context and applies the
templates within to the templates of its actual alias sets (those in its real alias context)
whenever it is walked by the analysis. Using these template contexts prevents having

to clone alias sets for specialisations, thereby reducing the space cost of the analysis.

Statements

There are four primary statement types. New statements model object allocation sites,
including arrays, reference arrays, and multi-dimensional arrays, and track the alias set
of the object being created. Invocation statements model the four standard Java method
invocations static, special, virtual and interface. In addition to these, the standard
invocation types can be re-written once type information is available as a further five
specialised types, including two for the default constructor and run() method of the

Runnable class and three for the default constructor and run() and start () methods
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of the Thread class. Each invocation statement, whether standard or special, contains
aliases that represent the actual parameters of a call. The statement also holds the static
type of the invocation as indicated in the bytecode. Once further type information is
available, this static type can be resolved to a number of potential method targets for
special, virtual and interface invocations. Assignment statements contain aliases for
both sides of an assignment. This separation in the intermediate representation allows
the overlying analysis to be either Steensgaard-style (unification-based) or Anderson-
style (subset-based), since it can later choose to merge both sides of the assignment or
allow values to flow only from right to left. Finally, Simple statements represent all
other statement types that need hold only a single alias, including exception throws,
returns, and synchronisation statements (although the latter are ignored in the analysis).
Common to all of these statement types is the program counter (pc) at which the
statement can be found in a method’s bytecode, and a next field that joins statements

into a list (and thereby forms a block).

Methods

Methods within the virtual machine are represented by method blocks, which exist only
for methods of classes that are loaded. To account for methods that are named but not
yet loaded the intermediate representation uses a method handle abstraction. These
handles can represent either a resolved or an unresolved method, and provide a common
interface to both, allowing access to the name, signature and class name of a method
whether it be loaded or not. All method handles contain a list of caller methods that
enable the analysis to trace back up the call-graph as well as down. When new classes
are loaded the analysis can use this facility to find the callers of an overridden method
and reanalyse them. Handles also contain a list of specialisations that are used during
the transformation phase of the analysis.

For method handles that are resolved, the handle further points to the method
block itself as well as a shared structure that holds analysis information about the
resolved method block. This shared structure is so known because all specialisations
of the method need to share the same information. It contains the alias context of the
method, which stores the formal parameters, return and exception aliases, and also the

block of statements that comprise the method.
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Classes

Just as method blocks represent loaded methods within the virtual machine, class blocks
represent loaded classes. Again, the handle abstraction is applied to the problem of
unloaded classes. Class handles represent both resolved and unloaded classes, and the
name of a class is available through a common interface over both. Each class, whether
resolved or not, holds a method table, which itself holds the method handles belonging
to that class. For classes that are unresolved, only the methods named so far in the
program will have method handles and hence be entered into the table. The table allows
lookup of methods by (name, signature) pairs, and can optionally create a new handle
for unrecognised pairs. For resolved classes, the handle points to the class block.
Common to all class handles is a next field that links the class into either the
snapshot or post-snapshot queues. Handles also keep a special receiver alias that can
be used for the alias contexts of static methods. Method handles are explicitly created
for the default constructor and finalize () methods of a class, and are referenced by
the class handle to avoid lookup through the method table. Like alias sets, class handles
have a fieldMap. This maps field names to aliases, but for static class fields instead of
instance fields. Finally, class handles have an isInstantiated field, which indicates that
an object instance of the class has been created. This field is needed when constructing

the call-graph (§8.4.3).

8.3 Analysis State

The analysis maintains a state structure that holds information common to all phases
and the passes within them. Primary of the items in the structure is the class table,
which holds the handles for all named classes, whether resolved or not. Handles
to various system classes are also held directly by the shared state. These include
handles for Object, Class, String and Thread. The state also maintains handles
to the application entry-point method main() and its containing class, and also an
alias that represents the implicit main application thread MT. Storing these handles
directly avoids potentially costly lookup later on. Finally, the shared state maintains an
mSnapshot flag that indicates whether the analysis is in the snapshot or post-snapshot

phase.
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Two fast allocation regions termed arenas are also provided by the shared state.
Arenas comprise a list of memory chunks, each 256 Kbytes by default, within which
allocation is linear. In this respect, an arena functions much like a local allocation
buffer (§ 1.2 on page 4). A free marker tracks the allocation point within a chunk, and
when the chunk is exhausted a new one is added to the list and the free marker placed
at its base. There is no corresponding free operation, and so the arena continues to add
chunks as necessary. It can, however, be reset, which moves the free marker back to the
base of the first chunk in the list so that the chunks are reused, or released, which causes
the arena to return its chunks to the underlying memory manager. The first arena is
reset for each method processed by the analysis; the second is reset after each pass
performed by the analysis. Together, they ensure fast storage for temporary analysis
structures. Structures that are more permanent, such as aliases and contexts, are never

allocated in an arena but instead directly via the underlying memory manager.

8.4 Snapshot Phase

8.4.1 Intermediate Representation

The methods of each class in the snapshot queue are processed one at a time by an
intermediate representation builder (IRBuilder). For each method in a class block a
method handle and shared structure are constructed (methods of classes in the snapshot
queue are always resolved). A local variable table is then allocated. Java places the
incoming parameters of a method into slots at the front of the local variable table, and
so the size of the table is determined by the sum of the number of locals and parameters.
For static methods, the special receiver alias of the method’s owning class is used as the
receiver, while for virtual methods an alias is created that matches the static type of the
receiver. All parameters are then packaged into a method context, which is associated
with the method handle’s shared structure. The bytecodes of the method are then
pre-analysed using a simple stack interpreter to create a control-flow graph, where each
node in the graph is a block with its own stack. The pre-analyser processes only flow
control bytecode operands; all other operands are ignored, other than for their length.

Another interpreter pass then processes the bytecode again, this time building

complete statements from opcodes that operate on references. Primitive values are
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ignored, except to place them on the stack where appropriate to keep it consistent.
Control flow operands are also ignored unless two paths converge, in which case
the stacks of the converging blocks are merged to form a new stack; otherwise, all
interpretation is linear, simply following bytecodes in the order in which they appear
with no branching.

This linear interpretation has important consequences for operands that rely on local
variables, as these object references (actually, their associated aliases) are expected to
have been created down some path. Where there is a single, linear path, these objects
might not yet exist, and so aliases must be created for them. In many cases, no class
is available for the alias, and so it must be initialised with the base Object class. This
is conservative, and makes the later construction of the call-graph inaccurate. As such,
slots in the local variable table have a needsInit flag that is set when this situation
occurs. At the next assignment made to the alias after creation, the flag is checked, and
if set the IRBuilder can safely overwrite its type with the class of the alias on the right-
hand-side. The hope is that the type of the right-hand-side will be less conservative,
thus yielding more accurate type information. Note that this is the only point in the
analysis at which the class of an alias may be modified after initialisation; in all other
cases the class remains immutable.

A further issue is that Java reuses local variable slots for blocks down different paths.
It is possible for a local variable slot to hold an object of a different type in one block
from that of another. Blocks are merged when the control flow paths converge, resulting
in local variable aliases with differing types occupying the same slot, and this too causes
problems for call-graph construction. The TRBuilder therefore attempts to refine the
type of the alias in the slot using that of the right-hand-side of an assignment. If the
types on both sides overlap, i.e. are a superclass or subclass of each other, then the class
is left as is. Otherwise, the type can be refined, but it cannot simply be overwritten,
as previous statements may rely on its current type. Instead, a new alias is created,
initialised with the class of the right-hand-side and then used to replace the existing
one.

Operands are handled and statements are built according to the following rules:

e new: A new object is created of the class specified in the constant pool via the

bytecode. It is then pushed onto the stack in preparation for the call to its
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constructor. The IRBuilder constructs an alias of kind New to represent the
object and then stores the alias in a statement of similar type. The class of the
alias has its isInstantiated flag set to indicate that an instance of the class has

been created.

e newarray, anewarray: For the first, an array of primitive values is created; the
second creates an array of object references. The type of the array is specified in
the constant pool via the bytecode, and the array is pushed onto the stack. An alias
of kind New and a corresponding statement are constructed. The isInstantiated

field of the class is also set.

e multianewarray: This creates a multi-dimensional array of object references.
The type is specified in the constant pool, while the dimensions of the array are
specified directly in the bytecode. The array is pushed onto the stack once created.
As before, an alias of kind New is constructed and added to a statement of similar

type. The isInstantiated field of the class is again set.

e aload: This operand and its variants push the object reference at a specified slot
in the local variable table onto the stack. For construction of the intermediate
representation, this means pushing the alias at the given slot of the local variable
table onto the stack of the current block. Should the slot at the index be empty (as
explained above), a new alias is created of kind Local with the base class Object.
The needsInit flag of the slot is also set so that the analysis knows to refine the

type of the alias when it is assigned to. No statement is created here.

e astore: The object reference at the top of the stack is popped and stored into a
specified slot in the local variable table. In this case, an alias is guaranteed to be
on the stack, but as with aload there might not be one in the slot. If not, then
one is created using the class of the object being stored, which results in more
accurate type information. For aliases already in the slot, their needsInit flag must
be checked. If the flag is set, the class of the alias can be overwritten with that of
the alias being stored. This is safe because the alias in the slot was conservatively
initialised with the Object base class for an aload instruction. However, for slots

that do not have their needsInit flag set, it is still beneficial to try and refine



CHAPTER 8. ANALYSIS IMPLEMENTATION 121

the type of the alias stored therein. If the types of the local and the alias being
stored do not overlap, then a new alias is created and the existing one replaced.
This ensures that aliases of distinct types are later merged together, yielding more
accurate type information. Finally, once aliases are created and types are refined,
an Assignment statement is created that holds the local alias in its left-hand-side

and the alias being stored in its right.

e athrow: The object reference at the top of the stack is popped, assumed to be an
exception, and then thrown. An alias of kind Fzception is guaranteed to be on

the stack, and so is popped and added to a new Throw statement.

e areturn: The object reference at the top of the stack is popped and returned. An
alias of any kind is guaranteed to be on the stack, and so is popped and added to

a new Return statement.

e getfield: An object reference is popped from the stack. The object reference
in the field indexed in the bytecode is then loaded from the popped object and
pushed onto the stack. Here, the IRBuilder pops an alias from the stack and then
performs a lookup on its field map using the slot specified by the bytecode. As
with aload, it is possible that there is no alias in the slot, and so a new alias of
kind Field is created. However, the type of the alias is always specified via an
index in the bytecode into the constant pool, and so the new alias is always given

the correct class. No statement is created here.

e getstatic: As with getfield, but no object need be popped from the stack, as
the field is per-class instead of per-instance. The class specified in the constant
pool via an index in the bytecode is accessed and the object in the named field is
pushed onto the stack. The IRBuilder performs a lookup on the fieldMap of the
class, and should no alias exist in the specified slot then one is created as above

for getfield. Again, no statement is created for this operand.

e putfield: Two object references are popped off the stack for this operand. The
first is the reference being stored, the second the object holding the field being
written-to. The name of the field and its corresponding class are specified via an

index in the bytecode into the constant pool. Like getfield, it is possible that
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the alias in the slot does not yet exist, and so a new one must be created. The alias
can be initialised with the correct class as the class of the field being written-to is
specified via the bytecode in the constant pool. The alias representing the object
being stored is then popped off the stack and an Assignment statement is created

that contains both aliases.

e putstatic: In contrast with putfield, this operand only pops a single object
reference off the stack, as the field being written is per-class instead of per-instance.
The class containing the field being written-to and the name of the field are found
in the constant pool via an index in the bytecode. Again, there might not yet
be an alias for the field being written-to, and so one is created as before. The
alias representing the object being stored is then popped off the stack and an

Assignment statement created as for putfield.

e invoke: For all invocation operands, the parameters being passed are taken off the
stack in reverse order. The method to be invoked is specified in the constant pool
via an index in the bytecode (§ 7.3 on page 106). For static invocations, the receiver
is given by the class of the invoked method, while for all others the receiver must be
popped off the stack. Methods that return a reference push it onto the stack when
they exit. The IRBuilder takes aliases off the stack for each parameter, including
one for the receiver if the invocation is not static. If the method is supposed
to return a reference, it builds an alias for the returned value. A site context is
constructed for the invocation that packages the receiver, parameters, return alias,
and the exception alias of the current method. An Invocation statement is then
created that holds the context and also a method handle representing the method

to be invoked.

Once the intermediate representation for a method has been constructed according
to the given rules the IRBuilder is free to cleanup. The aliases in the local variable
table are dereferenced (their reference count is decremented) so that those no longer
needed can be destroyed; only aliases that are reachable from statements and method
contexts will survive. The table itself and all blocks and their associated stacks are then

destroyed.
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8.4.2 Merge

In the intermediate representation, the values on either side of an assignment statement
are left distinct. The analysis used is flow-insensitive, equality-based, where the values
on both sides of an assignment are joined, and so the containing sets of the aliases on
both sides must now be merged. This is accomplished in the second pass, which operates
on the newly constructed intermediate representation instead of directly on the method
bytecodes. The statements of every method belonging to a class in the snapshot queue
are processed. For each assignment statement, the containing sets of the aliases on both
sides of the assignment are merged together; all other statements are ignored.

The merge operation first computes the lowest upper bound of the sharing attributes
of both sets; the result is stored into the left-hand-side set A. It then removes the aliases
from the containing set B of the right-hand-side and adds them to the containing set
A of the left-hand-side. Because the aliases themselves act as nodes in the set, joining
the two is a simple prepend of the aliases in B to the head alias of A. However, the
field pointing to the containing set of each alias in B must be updated to point to A,
and so complexity of the operation is determined by the number of aliases in set B.
The aliases in the field maps of both sets are then recursively merged using the same
operation. Similarly, if the alias sets represent arrays, then the containing sets of the
array element aliases must also be recursively merged. To avoid recursively merging two
alias sets more than once, a worklist is used that tracks the alias set pairs passed to the
merge operation. Pairs that are already in the list can be ignored. This worklist can
be large, and so is implemented as a red-black tree that allows for O(logn) searches.
Once the recursive merge terminates, set B can be destroyed, as its aliases and their

transitive closures are now reachable only from set A.

8.4.3 Call-graph

The second pass merged aliases on both sides of assignment statements. A consequence
of this is that the possible types of a value, as seen by different aliases, are now
represented within a single alias set. It is, therefore, possible to perform some basic
type analysis on receiver objects and estimate the set of potential method targets at a

call-site, and this is the function of the third pass.
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Conservative Typing

The intermediate representation of the methods of all classes in the snapshot queue is
again processed, but this time only the invocation statements are examined. Methods
are processed one at a time, which limits the the scope of the analysis to the method
itself. This makes the typing conservative, as type information for the formal parameters
of the method is limited to the static types given in the method’s signature.

Achieving more accurate type information would require that the types of values be
passed across method calls. The class of each actual parameter’s alias would have to be
propagated to the alias of the corresponding formal parameter. This type propagation
causes a feedback loop, since changing the type of one value can alter the call-graph, the
effect of which might be to call a method that again changes the type of the value. Type
analyses of this kind are thus iterative, requiring that they propagate types repeatedly
until they reach a fixed-point solution where the types no longer change. As a result,
their implementation tends to be expensive, and they are, therefore, better suited to
static compilers [GDDC97]. Instead, the simple per-method type analysis employed in
this pass trades off some precision for a faster analysis.

To account for the inaccurate type information of the formal parameters they must
be treated conservatively. These parameters could themselves be used as receivers for
method invocations, the actual parameters of which might later escape. As such, the
formal parameters of every method must be marked as ambiguous (§ 5.2 on page 68).
An ambiguous statement, then, is one with a receiver of an ambiguous type for which the
analysis cannot determine exactly the possible set of method targets using the simplified
type analysis.

To resolve the invocation statements the analysis examines the type of invocation.
If the invocation is static then the only possible method target is that specified in the
constant pool via the bytecode, regardless of whether the statement and receiver are
ambiguous. Similarly, for special invocations, there is only one possible target (unless
specific conditions are met that make the call virtual [LY99]), and so again the method
target is simply that specified in the constant pool, regardless of ambiguity.

For virtual and interface invocations, however, the rules are more complex, as the

type of the receiver and the ambiguity of the statement must be accounted for. The
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target method depends on the runtime type of the receiver object and not the static type
given in the constant pool via the bytecode. It is, therefore, necessary to include the
class of every alias in the receiver’s alias set, as each could contain a potential method
target for the invocation.

If the invocation is not ambiguous, that is, if the receiver is not a formal parameter
and thus of a known, complete type, then the set of classes is those given by the aliases.
The superclass of each is also included in this set, as dynamic dispatch allows methods
to be called from further up the class hierarchy. The subclass, however, need not be
included, as for complete types a method further down the hierarchy cannot be called.
The analysis has simply to perform a lookup of each class to see if it contains a method
that matches the name and signature of the method specified in the constant pool.
Methods that match are added to the invocation statement as possible targets, while
those that do not are ignored.

Statements that are ambiguous need further processing, as it is possible for them
to call methods in existing or future subclasses. The analysis includes the class and
superclass of each alias in the receiver’s alias set, but then adds to this the subclass of
each. It then performs a lookup as before on the classes using the name and signature
of the method specified in the constant pool, treating methods that match as potential

targets for the invocation.

Type Pruning

Because the set of potential methods for these invocations can be large, the analysis
employs a simple form of target pruning similar to that of Rapid Type Analysis (RTA)
[BS96]. RTA adds method targets only for classes that have been instantiated, that is,
object instances of those classes must have been created at some point in the program.
If no instances exist then the class has not been instantiated and cannot possibly be
a valid type for an object (except as a superclass of some instantiated class), and so
the methods of that class cannot be invoked. To take advantage of this approach, the
analysis must track those classes that are instantiated. This is easily achieved through
the isInstantiated field of class handles, which is set when an alias of kind New is
created. The analysis is thus able to tell, given an alias representing some receiver

object, whether the class of the receiver has been instantiated. Those that have can be
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added to the set of classes for the virtual invocation, while the rest can be omitted and
their methods ignored.

Note that the pruning cannot be used for static and special invocations. For these,
the class of the target method will be loaded as necessary when the virtual machine
tries to resolve it in the constant pool. The method can thus be invoked regardless of
whether the class has been instantiated, and so must be added unconditionally as a

target for these invocation statements.

Ambiguity of Type

For all of the above invocation types care must be taken with classes that are outwith
the snapshot analysis. These include classes that are not yet loaded and also those that
were loaded after the snapshot and are now in the post-snapshot queue. For the former,
the analysis has no knowledge of the class, which could be non-conforming and cause
objects to escape at some future point of execution (§ 5.2 on page 68). For the latter it
would seem that the analysis has knowledge of them because they are already loaded,
but as they are not in the snapshot queue an intermediate representation for them has
not yet been constructed and the analysis passes have not yet been applied. As such,
these classes must also be treated as if they could cause objects to escape. The analysis
handles these classes by reusing the idea of ambiguity, where receivers of incomplete type
cause their containing statement to be correspondingly marked as ambiguous. Here, the
analysis can mark a statement as such when given a method target belonging to a class
outwith the snapshot.

The analysis makes use of the ambiguity information once all method targets for
a given statement have been added. This applies to statements that were marked
ambiguous because their receiver is a formal parameter, and thus of ambiguous type,
and also to those that were marked as such because a method target belonged to a class
that is outwith the snapshot. The analysis must treat the actual parameters to the
call as being optimistically local, since they could potentially escape when a new class
is loaded at some future point of execution. As a result, all aliases in the invocation
statement’s site context, including the implicit receiver and parameters, are marked as
optimistically local. This ensures that their corresponding objects will be allocated in

their creating thread’s optimistically local heaplet, and can be easily moved should a



CHAPTER 8. ANALYSIS IMPLEMENTATION 127

class be loaded later on that is non-conforming and alters their escapement.

Statement Rewriting

Finally, to simplify later passes, the analysis must rewrite certain invocation statements
in a specialised form. Special invocations that invoke the constructor of a Thread
subclass have their type rewritten as ThreadInit, while those that are not Threads but
implement the Runnable interface are rewritten as Runnablelnit.

For subclasses of Thread, the analysis also looks for the statement holding the
corresponding start () method of the class. This method will start the thread instance
running from either its own run() method or that of an instance of Runnable passed
to the thread constructor. In both cases the run() method is the real entry-point
for the thread, and the analysis must analyse from that point during later passes.
Unfortunately, the start() method is native, meaning it is implemented not in a
Java class but instead in an external library. The analysis is thus unable to build
an intermediate representation for this method and then apply the passes to it, and it
consequently has no link to the run() method that will get called. The solution is to
construct a specialised virtual invocation statement of type RunnableRun or ThreadRun,
depending on whether the thread will use its own run() method or that of a given
instance of Runnable, and store within it a reference to the alias representing the new
thread instance. This statement acts as an explicit call to the run() method, and is
inserted immediately after the call to start(). When later passes are applied, the
analysis can walk the call-graph from this statement and access the appropriate run()
method in the new thread.

Note, however, that finding the corresponding start() method is only possible
within the current method. To do better would require that the type of the newly
created thread be propagated and followed outside of the method, which is akin to the
more complete but expensive type analysis described earlier. The simple, per-method
type analysis employed makes this infeasible, and so the search must be constrained to
the thread’s creating method. This somewhat restricts the set of programs that can be

optimised.
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8.4.4 Strongly-connected Components

The fourth pass computes the strongly-connected components in the program’s call-
graph. These are used in the later unification pass, which logically joins the site and
method contexts at call-sites. For non-recursive invocations, the analysis can simply
unify the alias sets of the contexts, but for recursive ones it must merge the alias sets so
that any updates to one will affect the other. Having the strongly-connected components
ensures that the analysis is able to merge the transitive callees of the method so that
they too are updated as necessary.

Again, the intermediate representation is used, but instead of processing a method
at a time from the snapshot queue the analysis can now walk the call-graph itself in a
bottom-up topological fashion. It starts in the entry-point method main(). It pushes
main() onto a call-stack and then walks the callees of main(), which are given by the
targets of each invocation statement in the method, but only if they are not recursive,
that is, they do not appear on the call-stack!. If they are recursive then they and their
transitive callees are part of the strongly-connected components of the method. Targets
that are not recursive are pushed onto the call-stack and their own callees then similarly
tested for recursion and walked, and this process continues until a leaf method is reached.
Leaf methods are those that have no method invocations, that is, no branches to further
methods in the call-graph. They may also be those for which the targets are outwith
the snapshot analysis and so cannot be walked. No analysis is applied to the methods
on the way back up the graph, other than to continue walking any remaining invocation
statements.

The strongly-connected components are represented using a handle abstraction that
is similar to that of alias sets and their contained aliases. Every method handle has
an SCC handle that points back to the method and also to a shared SCC structure.
The structure holds a list of its contained handles and a reference count. Like alias
sets, shared SCC structures can be merged and their handles updated to point to the
result. This allows methods to be easily added to the strongly-connected components
of another by simply merging the two together. The reference count is maintained as

for alias sets, with the count being incremented for each method that points to the

L At this point, since main() is the only method to be invoked, the only possible recursion is for it to
call itself.
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shared SCC structure via an SCC handle. Because the strongly-connected components
of a method are never removed, the count is only decremented and the SCC shared

structure destroyed when the method handle is finally destroyed.

8.4.5 Thread Analysis

Objects accessible from outwith their creating thread are discovered during this pass,
which also has the task of computing, for each method in the program, the set of threads
in which it can be invoked. The analysis again processes the intermediate representation
in a bottom-up topological fashion. Invocation statements are processed and method
targets followed down the graph from the main() method until a leaf method is reached,
at which point the analysis walks back up the graph and applies an intraprocedural
thread analysis to each method.

In contrast to the previous pass, however, the analysis must also keep track of the
current thread. Initially, the alias representing the implicit main thread M T is used and
passed along as the call-graph is walked. When an explicit RunnableRun or ThreadRun
statement is encountered, the analysis uses the alias of the thread instance stored in the
statement as the current thread and walks the call-graph from the corresponding run()
method. As the analysis proceeds down the call-graph it adds the given thread alias to
each method’s set of invoking threads. This set enables the analysis to later find the
threads for methods of non-conforming classes that cause optimistically local objects to
escape.

The intraprocedural thread analysis determines those objects that are accessible
from outwith their creating thread. It begins by examining the Field aliases of every
statement in a method, that is, all aliases that represent instance or class fields. Class
fields can be ignored, as these are reachable from a global variable and are thus already
escaping. Of the instance fields, only those that are fields of a thread instance are
interesting. As the field may be aliased by other names, the analysis must process each
alias in the field’s containing alias set. It checks the class of the runtimeQOwner of each
and, if it implements Runnable or is a subclass of Thread, compares the instance with
the current thread that has been passed down the call-graph. If the two are different
then the object represented by the alias is being accessed by a different thread from the

one that created it. The object is thus escaping and the alias is marked as such.
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8.4.6 Unification

This pass applies the unify operation to alias contexts. There is no need to unify alias
sets in assignments, as they have already been merged together to form a single set
by the second pass. Return and exception values have similarly been merged, and so
only the alias sets of site and method contexts must be unified. This logical join pulls
the sharing attributes from the method context to the site context, and so propagates
escapement up the call-graph. As for the previous pass, the call-graph is walked in
bottom-up topological order from the main() method by following the method targets
of each invocation statement. An intraprocedural analysis is applied to each method
once its transitive callees have been walked, and only the invocation statements of a
method are processed. Other statement types can be ignored because the alias sets
contained therein have already been merged and so do not need to be unified.

All method targets of the statement are examined. For those that are recursive, that
is, the target is in the strongly-connected component of the current (caller) method,
the analysis must merge the site and target method contexts instead of simply unifying
them. Leaving them distinct and logically joining them through their sharing attributes
would mean that in the future, when either side is again part of a recursive call, the
attributes would not be correctly updated. By physically merging them the analysis
ensures that the sharing attributes will be correctly propagated. The merge operates
as before, where the alias sets (and their transitive closure of fields and array elements)
of the site are joined with those of the target method.

For non-recursive method targets the analysis is free to unify the alias sets of the
site context with those of the target. The sharing attributes of the alias sets in the site
context are bitwise-or’d with those of the target so that the sharing is propagated back
to the caller and hence up the call-graph. Like the merge of two alias sets, unification
also operates on the transitive closure, with the fields and array elements of the target
sets being unified with those of the site sets. As before, a worklist is used that prevents
the recursive unification of the same pairs of sets.

In contrast with the merge, however, the analysis must also ensure that the sets on
both sides are symmetric, that is, the structure of two sets being unified is the same, so

that both contain the same number of fields or array elements. This is a consequence
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of the lazy creation and insertion of fields into a set’s map. With the merge, the two
sets are implicitly symmetric because they are joined, but here the sets can differ, with
one having fields in its map that the other does not. For the sharing attributes to
be correctly propagated up the call-graph, it is necessary to construct this symmetry
on-the-fly by cloning the alias sets of fields in the target context where appropriate. So
that the propagation is also correct on the next pass, when the sharing is pushed down
the call-graph instead of up, the analysis must also clone the alias sets of fields in the

site context.

8.4.7 Specialisation

This pass introduces context-sensitivity by specialising methods according to their
calling context. In the previous pass the sharing attributes of aliases in method contexts
were passed up through the call-graph so that escapement is propagated to the root
method main(). Because of this, the escapement of objects represented by aliases in
site contexts is guaranteed to be either the same or worse than those in the corresponding
method contexts, but never better. Formal parameter objects that are shared in a target
method cause the actual parameter objects at a call-site to be shared as well, while the
same applies to formal parameters that are optimistically-local. However, for the other
direction this is not true, as the sharing attributes have yet to be passed down the
call-graph. For example, the actual parameters may be shared but the corresponding
formal parameters will still be local. The analysis must pass the sharing attributes in
the other direction, so that escapement propagates down the graph as well as up.

Unlike previous passes, this pass operates in top-down topological order. It starts
from main() and applies an intraprocedural analysis to the method before walking the
targets of its invocation statements. Each method is thus analysed before its transitive
callees so that they can be specialised if necessary and the specialisation walked instead
of the original target.

The intraprocedural analysis has the task of analysing a method and propagating
escapement to the method targets of each invocation statement. However, it cannot
simply push the sharing attributes across the method calls; doing so for one target
method at a call-site would affect the escapement of all subsequent calls of that method,

thereby losing context-sensitivity. Instead, the analysis must compare the site context
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of the call-site with the method context of each target method. The comparison is made
using the templates of the alias sets in the contexts instead of the alias sets themselves.
There are only two possible outcomes of the comparison: either the templates of the site
and target match, in which case the escapement of the formal and actual parameters
is the same, or the escapement at the call-site is worse than that of the callee’s formal
parameters, in which case the target method must be specialised. The third outcome,
where escapement of the actual parameters is better than that of the formal parameters,
is impossible during snapshot analysis, as the sharing attributes were already pulled
across the call during the previous, bottom-up pass. It is only when new classes outwith
the snapshot are analysed that this outcome is allowed, where the actual parameters
may be optimistically local and the formal parameters shared (local objects can never
change their escapement). Such classes are non-conforming, and this result indicates
that a previously optimistically-local object now escapes and is shared.

For contexts that match, the analysis can walk the method target as-is. For those
that do not match, that is, the escapement of the templates in the site context is
worse than that of the templates in the method context, the analysis must specialise
the target before it can be walked, but only if an appropriate specialisation does not
already exist. The list of specialisations belonging to the original target’s method handle
is searched for one with a template context (specialised method handles have template
contexts as well as the method context stored in the shared method structure) that
matches the site context. If one is not found then a template context is created from
the site context and attached to a new, specialised method handle. The method block
of the target’s handle, in this context known as the original, is then cloned to create a
specialised method block. Cloning of the block is partial, and includes only those fields
that can be copied consistently while the application threads are still running; copying
of other fields may result in races with the application. Instead, the remaining fields,
including the method’s bytecode, will be copied during the post-snapshot phase when
the analysis suspends all application threads. The new handle is then added to the list
of specialisations in the original’s shared structure.

To modify the invocation statement so that it calls the specialised method a patch
record must be created. The patch maintains the location of the statement and holds a

reference to the specialised handle. Because the patch affects several bytecodes for each
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invocation it cannot be applied atomically while the methods are running. Instead, the
analysis must again wait for the stop-the-world phase to apply the patches, which it can
do after it has completed the cloning of specialised method blocks. Application of the
patch involves replacing the standard invocation opcode in the method’s bytecode with
a custom opcode (invisible outside of the virtual machine). This opcode forces a lookup
of the method in a pool that is separate from the standard constant pool associated
with each class. The index of the specialised method in the pool is then written into
the bytecode after the custom opcode.

Note that so far it has been assumed that the handle of the target method at the
invocation statement is resolved, that is, the method’s owning class has already been
loaded. However, the analysis may encounter target handles that are not resolved for
which it is unable to perform the comparison with the site context, as the method
will not have a shared structure and thus no method context. The analysis flags such
invocations as ambiguous and then later marks the alias sets in the site context of the
ambiguous invocation as being optimistically-local (§8.4.3). If the class is then loaded
at some future time the analysis must examine its methods, starting from their callers,
and determine if escapement of the alias sets in their contexts is different from that of
those in each site context. It can do this by performing the above comparison, since
the method handle is now fully resolved. If the escapement of the target is worse, the
optimistically-local objects have now become shared, and the analysis must fix their
containing heaplets. If the escapement is better, then the analysis is free to specialise
the method and patch it into the caller.

Specialisations for resolved methods are walked by the analysis in place of the original
method target. Before walking a specialisation, its template context, created from the
site context of the invocation statement, must be applied to its method context. This
ensures that the escapement of the site is propagated up the graph, but only for this
particular calling-context.

Once the targets of the invocation statements in the method have been followed, that
is, the analysis has walked the transitive callees of the method and specialised them if
necessary, the escapement of all objects allocated within the method is finalised. Barring
the loading of new classes, the sharing attributes of their alias sets can no longer change,

as they have been propagated both up the call-graph to the root (in the unification pass)
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and now down the call-graph to the leaves. The analysis is thus in a position to modify
their allocation sites so that the objects are placed in the appropriate heaplet. Like the
patching of specialisations, it is unsafe to perform this modification now, as doing so
would result in races with the interpreter and JIT on the method’s bytecode. Instead,
patch records are added to the method that, like those used for specialisation, describe
the location of the allocation site that must be patched. They further indicate the type
of heaplet into which allocation should occur. These records will be applied later with
the specialisation patches when the analysis suspends the application threads.

This specialisation process continues down the call-graph, comparing site and
method contexts and creating specialised handles as necessary. When a leaf is reached
the analysis falls back up the graph. As it exits each method on the way up it must
reset the templates of the alias sets in all statements of the method, including those in
the site contexts of invocation statements, so that they have their initial values and are

ready for other calling contexts and future specialisations.

8.4.8 Transition

The snapshot phase is now complete and classes in the snapshot queue have been
processed. An intermediate representation has been built for each class, a call-graph
constructed and thread entry-points discovered. The rules from the formal definition
have been applied, and alias sets and contexts are merged, unified and specialised as
appropriate. Specialisations, however, have not yet been completed, and no patches
have been applied. The analysis must now process any classes that were loaded after
the snapshot, that is, those added to the post-snapshot queue. In preparation for this,

the inSnapshot flag of the analysis state is set to false and all arenas are reset.

8.5 Post-snapshot Phase

The analysis now enters the post-snapshot phase. So far the analysis has assumed
knowledge of only those classes in the snapshot queue, and has treated those outwith
the queue conservatively, even if they are resolved. These classes, which were added
to the post-snapshot queue while the analysis was in the snapshot phase, must now be

processed. The analysis must also complete the method specialisations created in the
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final pass of the snapshot phase, insert them into their owning classes, and apply all

patch records.

8.5.1 Post-snapshot Queue

The classes in the post-snapshot queue are processed one at a time by applying all
passes of the snapshot phase to them, that is, all passes are applied to a single class
at a time before processing the next class in the queue. The analysis constructs the
intermediate representation of each class in the queue. The alias sets of assignment
statements are then merged and invocation statements are resolved. These two passes

operate as before with no change, by simply processing all methods of the class.

Traversal from Callers

All subsequent passes, however, require that the call-graph be walked, and here the
analysis differs from that employed previously. During the snapshot phase, identification
of strongly-connected components, thread analysis, unification, and specialisation are
performed by doing a bottom-up or top-down topological traversal of the call-graph,
starting from the main() method. Doing so in the post-snapshot phase would require
walking the entire call-graph to analyse the methods of the new class. Due to the
imprecise construction of the call-graph it can be large, and walking it for every class
in the post-snapshot queue would add a considerable time cost to the analysis.
Instead, the analysis walks the methods of the new class from their callers only.
During the resolution of invocations in the snapshot phase, the callers of all invoked
methods were recorded in a list within the method’s handle. This list gives the analysis
sufficient knowledge with which to compute the set of callers for the new methods. The
analysis first builds a set of existing classes for the class being processed. These include
the superclasses, all of which must exist for the class to have been loaded, and also the
interfaces implemented by the class. Then, for each method in the class, it performs
a lookup on the classes in the set using the method’s name and signature. Methods
found by this lookup are base implementations of the method in the new class, that
is, the method in the new class overrides instead of inheriting them. The callers of
these overridden methods are, therefore, potential callers of the new method, and so are

added to its own set of callers. Using this final set, the analysis can walk the methods
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from their callers and avoid the potentially costly re-walk of the call-graph.

Note that when the walk is performed in the snapshot phase, the analysis passes
the implicit main thread MT through the call-graph. The analysis must also walk
the associated (and implicit) run() method of any new thread created by the program.
When walking from the callers, however, the analysis has no such starting thread, and so
must rely on all threads that could possibly invoke a given method. This set of threads
is present in every method handle, and was discovered during the thread analysis pass
of the snapshot phase. Thus, given a caller method, the analysis must walk the graph
from the caller once for each thread by which it can be invoked, passing the appropriate
thread along the graph each time.

The analysis must also ensure that the new methods are themselves added as targets
to the invocation statements of their callers. The analysis performs an extra pass
that examines each caller and attempts to resolve once again its invocations, but this
time with full knowledge of the classes in the post-snapshot queue. Previously omitted
methods that override those in already analysed superclasses can now be added as
targets to virtual invocation statements. In this manner, the call-graph is made more
accurate with each post-snapshot class that is processed.

Once the call-graph has been refined using the new classes, the analysis is ready
to apply the remaining passes, this time walking the call-graph from the callers only.
The strongly-connected components of the methods in the class are computed, and the
SCCs of existing methods updated as necessary to reflect any recursive calls of the new
methods. The thread analysis is then performed as before, with the analysis discovering

new thread creation sites and their associated run() methods.

Unification

The unification pass proceeds as before, walking down to the leaves and then unifying
site and method contexts on the way back up, but the analysis stops short of performing
the unification on the site contexts of the caller methods from where the walk begins.
Doing so would change the escapement of already analysed methods, which would in
turn change the escapement of their caller methods, and so forth. The new escapement
would have to be propagated all the way up the call-graph, as during the snapshot

phase. This is impractical, as not only is it costly to perform for every post-snapshot
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class, but decisions have already been made based on the existing escapement of these
methods, and specialisations have already been created. The analysis must, therefore,
skip the unification of the new methods’ contexts with the site contexts where they are
invoked?. Instead, it relies on the next pass to compare the contexts and specialise or

add broken threads as necessary.

Specialisation

The specialisation pass starts from the call-sites in the caller methods and performs the
comparison of site and method contexts as for the snapshot phase. Site and method
contexts that match need no further processing other than to walk the targets and
continue the top-down traversal. Sites that have worse escapement than the contexts
of their new targets cause specialisation of those targets, so that their escapement is
propagated up the call-graph.

The third outcome of the comparison is now allowed, that is, escapement of the
actual parameters in a site context may be better than that of the formal parameters
in the method context with which it is being compared. This is because the previous
pass was unable to unify the aliases of the site and method contexts together. If the
comparison results in this outcome then the class is non-conforming and the method has
caused some object to become shared. The aliases at the site are guaranteed to have
been marked as optimistically-local, because the invocation statement must already
have been flagged during the resolution of invocation statements in the snapshot phase
as being ambiguous. The thread that allocated the object is now broken and must be
added to the list in the analysis state so that its optimistically-local heaplet can later
be fixed.

Processing of the class is complete once the specialisation pass has been applied.
The analysis continues processing classes in this fashion, adding any new classes to the

queue as it progresses, until it is empty.

ZNote that it is safe to unify the contexts of existing methods with site contexts in new methods.
The sharing flows only in one direction, to the site, and escapement of new methods is not yet finalised.
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8.5.2 Stop-the-world

All application threads are suspended, including any background recompilation or
finaliser threads. The garbage collector is also prohibited from running. This avoids
races on methods blocks, which are being fully cloned, and class blocks, to which
specialisations will be added. It further prevents races on method bytecodes, which
will be modified as patch records are applied.

Specialisations are completed for the methods of all classes in the analysis state’s
class table. Specialisations are held by a list in the shared structure of every method
handle, and for each the method block must be fully cloned. To save space, some fields
can be safely shared between the original and the clone. These include the signature,
access flags and exception table, as well as debug structures such as the line number
table, which are immutable. Other fields must be copied in their entirety so that they
can be modified for the specialisation. Primary of these is the bytecode of the methods,
the allocation opcodes of which must be modified to reflect escapement of the objects
in the specialisation as indicated by their alias sets. Invocation opcodes will also be

modified so that further specialisations can be called.

Specialised Virtual Tables

Specialisations for instance methods must be inserted into the virtual table of their
owning class for proper lookup during invocation. The vtable is allocated inline within
the nearclass with only enough space to hold those instance methods present when the
class loads, meaning that it would either have to be allocated with sufficient slack to
hold all future specialisations, or the nearclass itself would have to be reallocated. Both
of these approaches, however, are impractical: it would be difficult to predict how many
specialisations would be created, and too little slack would cause them to be left out
(which is unsafe) while too much would waste space, while reallocating the nearclass
would require that all references to it be updated, forcing it to keep back-pointers to its
referees. A further approach would be to have the vtable out-of-line, making it easier to
expand, but this would impose a performance penalty on all virtual invocations, which
is undesirable. The solution is to place specialisations in a separate virtual table called

the spec vtable. This table is allocated out-of-line with the nearclass structure, thereby
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wasting no space and imposing a performance penalty on specialisations only.

Organisation of the spec vtable is not as simple as that of the normal virtual table
where methods are laid out in a flat array, one after the other, and overlap those of
the superclass. Here, each method may have several specialisations, each of which must
be inserted into the table in its own slot but must still overlap those in the superclass.
One approach is to keep the table as a flat array and put the specialisations for each
method one after the other. The spec vtable of any subclass is then organised so that
the specialisations of its methods overlay those of the superclass. A problem arises,
however, when the method of a subclass has more specialisations than the same method
in the superclass. Adding these extra specialisations to the spec vtable causes those of
the next method to be shifted up, thereby breaking the rule that they should overlap
those of the superclass. The only solution is to insert any extra specialisations at the
end of the table so that they do not interfere with the overlap.

A better solution is to make the specialised vtable logically two-dimensional, with
each slot in the table a pointer to an array of specialisations. To find a specialisation
in such a table the index must be partitioned: the first part gives the slot in the spec
vtable, and is the same as the index of the original method in the normal vtable; the
second gives the position in the array at the slot indexed by the first part, and this holds

(a pointer to) the specialised method block itself. The index field in a method block is 32

216 216

bits, and so dividing it exactly in half allows methods, each with specialisations.
A better partitioning might be to have more methods and fewer specialisations, but
the indexes into the normal vtable are themselves only 16 bits, thus giving no extra
advantage.

This two-dimensional layout is also more space efficient than the flat organisation,
because for methods that are inherited the corresponding array of specialisations can
be shared with that of the spec vtable in the superclass. It also has the property that
the index of the slot in the spec vtable for any specialisation is the same as the index
of the original method in the normal vtable, which simplifies construction of the table.

An unfortunate consequence of the out-of-line allocation of the spec vtable and
its two-dimensional layout is that two further levels of indirection are introduced for

method lookup. Instead of retrieving the required method directly from the slot in an

inlined vtable, which is at a fixed offset in the nearclass, the out-of-line vtable must
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be first be accessed, followed by an access to the specialisation array and then another
to retrieve the required specialisation. Two extra instructions are thus necessary for
each invocation: one to load the table and another to load the array of specialisations
(the third instruction, which loads the method pointer from the specialisation array, is
equivalent to the single instruction required to load the method pointer in the original
virtual table).

However, specialised virtual tables have at least one advantage over their normal
counterparts. There is evidence to suggest that virtual method invocations are
responsible for a significant number of data TLB misses [SSGS01] because the tables are
created lazily as classes are loaded, and so are scattered sparsely about the heap. Spec
vtables are created together for all analysed classes, and thus provide an opportunity for
a custom allocator to co-locate them, packing them tightly together on a small number
of pages. This minimises the chance of both a TLB and a cache miss, and should offset
somewhat the performance penalty of the extra instructions necessary to perform the

invocation.

Specialisation Pool

Method specialisations must also be inserted into the constant pool of any class that
might invoke them, but here too inline allocation causes a problem: adding new entries
to the constant pool would require expanding it, but this is impossible because it is
allocated inline within the class structure. The solution, as with vtables, is to use
a separate, out-of-line structure to hold the specialisations. The spec pool holds all
specialisation invoked by a class. This structure is linear, just like the constant pool,
as there is no need for the special overlapping that is required for efficient lookup in the

virtual tables.

Patching

Once the tables have been built the patches can be applied. This is done last because
the index of a method in the spec pool is required before the invocation opcode can
be modified. Patch records are held in a list by the block to be patched (and not its
handle) and are applied in no particular order.

The standard invocation opcodes are inappropriate for handling specialisations, as
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they hold indexes into the constant pool only, which itself holds normal method blocks
with single-part indexes into the vtables. It is therefore necessary to use specialised
invocation opcodes that will index into the spec pool and spec vtable/imtables. Four
new opcodes are thus introduced to mirror the existing ones: invokestatic_s, which
indexes into the spec pool; invokespecial_s, which indexes into the spec pool, and
then, if necessary, into the spec vtable by using the two-part index from the specialised
method block; invokevirtual s, which indexes into the spec pool and always into the
spec vtable; and invokeinterface_s, which does the same but for the spec imtable.
These new opcodes are part of the reserved range as specified in the JVMS [LY99] and
are internal to the virtual machine; they are only ever patched into methods at runtime,
and so their use is completely transparent to .class files and the user application.

The allocation opcodes must also be patched so that they allocate into the
appropriate heaplet. As with invocation opcodes, special, internal-only allocation
opcodes are introduced to handle this: new_ol, which allocates into the current thread’s
optimistically-local heaplet, and new_1, which allocates into its local heaplet.

The invocation and allocation opcodes must also be fixed in JIT generated code.
One approach to this is to force a recompilation of all patched methods. The compiler
will generate fresh native code from the patched bytecodes and then update the
compiled code container of each method. The drawback of this approach is the cost of
recompilation. Compilation is expensive enough that it is performed only for frequently
executed methods or those with loops. Recompiling a number of methods would
considerably lengthen the stop-the-world phase and stall progress of the application.

The alternative is to queue the methods for later recompilation by a background
thread. JBE (§ 7.1 on page 98) uses exactly such a system for the recompilation of
methods, and this mechanism could be reused here. However, this allows methods to
run unpatched, thereby allocating objects into the shared heap when they should be
placed in a local or optimistically-local heaplet. Such objects, like those that are pre-
analysis, are logically-local, and this increases the number of external roots that must
be tracked for a heaplet.

The only practical solution, then, is to directly patch the compiled methods in the
same manner as the bytecode. This approach is fast, touching only those instructions

that are modified. Furthermore, because application threads are stopped at GC points,
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this approach is safe. Such points always lie on the first instruction of a compiled
opcode, and so new instructions can be written over the old ones without corrupting
the stream of execution.

This approach, however, is not without its shortcomings. The first is related to
the length of the instruction sequence for specialised invocations. Such invocations
require two extra indirections due to the out-of-line allocation of the specialised vtable
and its logically-two-dimensional layout; two additional instructions must therefore be
generated to retrieve the method pointer when performing a specialised invocation.
Specialised invocations thus require more space than their normal counterparts. This
poses no problem if methods are recompiled, as code would be generated from scratch.
With in-place patching, however, this difference in size must be accounted for. The
simplest solution is modify the compiler so that the instruction sequences for a normal
and specialised invocation are the same. The compiler can pad normal invocations with
two null operations (nop). When a patch is applied, the nops are simply overwritten.
The disadvantage to this is the two wasted instructions, which cause code expansion
and are also likely to impose some penalty on performance, and this is quantified in
Chapter 10.

A second shortcoming is related to inlining. The patcher must be able to map from
bytecodes to compiled instructions. This mapping is simple when bytecode is translated
directly into compiled code. However, when inlining is enabled, the original and
compiled methods no longer match, as callees have now been inlined into the compiled
code. The mapping for the inlined code is not currently preserved, and so without
some modification of the compiler there is no way to patch caller methods into which
inlining has occurred. Inlining is thus disabled in this implementation, and without this
optimisation the performance of the system is likely to suffer. Measurements for this
are given in Chapter 10.

The final shortcoming is related to the complexity of inline caches [LBSKT00].
Virtual invocations are implemented as a load of the method pointer from the vtable
followed by an indirect jump to the method. This indirect jump is not easily scheduled by
modern superscalar processors [PH97]. An optimisation is to inline into the instruction
stream a cache of possible targets. Each entry in the cache is indexed by a nearclass

pointer and holds a direct jump to a target. An invocation is implemented as a simple
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compare-and-branch of each entry in the cache, where a target is selected if its nearclass
matches that of the current receiver object. If none is found then the normal invocation
path is followed and the cache updated with the address of the target. This approach
would seem to be slow, since it entails a search of the cache rather than a load and jump;
however, processors are better able to schedule the direct jump once it is selected, so
much so that the cost of the search is worthwhile.

The problem with this optimisation is the complexity of its implementation. Inline
caches require a number of support functions that handle cache misses and update the
cache. The interactions of these functions were not well understood at the time of
implementation, and so they were not modified to account for specialised virtual tables.
As such, inline caches are disabled in the current implementation. The effect of this on

the performance of the system is measured in Chapter 10.

Broken Threads

The analysis is now free to fix any broken threads. These threads, discovered during
the specialisation pass, invoke a method belonging to some post-snapshot class that has
worse escapement than one of its calling sites. The method therefore causes a previously
optimistically-local object to become reachable by some object in the shared heap, and
its allocating thread’s optimistically-local heaplet must thus be treated as part of the
shared heap for future collections. This fix-up is easily achieved by marking the heaplet
as being shared, which, should its thread ever trigger a local collection, will instead
force it to collect the shared heap.

Once all broken threads are fixed the background analysis is complete and all
application threads are resumed. The temporary arenas in the analysis state are
discarded and the background thread is put to sleep. From this point on specialised
methods will be executed and objects placed in local or optimistically-local heaplets as

necessary.

8.5.3 On-demand Analysis

Classes loaded after the stop-the-world phase may be non-conforming. These classes
may override existing methods and cause previously optimistically-local objects to

escape into threads other than their creator or to become reachable from global roots.
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As such, new classes must be analysed as part of the loading process so that they are
checked for conformance before they become visible to the application.

The analysis is invoked within the thread performing the load, and runs after the
class and any superclasses have been loaded but before they are added to the class table.
Application threads are thus unable to resolve and use the class until the analysis is
complete. The analysis is performed as for the post-snapshot queue, walking methods
from their callers and applying the post-snapshot rules.

Note that because classes must be analysed even after the background analysis is
complete, it is unsafe to discard the data structures belonging to the analysis at any
point. Doing so would mean reconstructing them when a new class loads, which would
costly in terms of time. Instead, all analysis data structures are retained and reused as
necessary when new classes are loaded. However, this imposes a considerable memory
overhead, as these data structures consume part of the C heap for the lifetime of the

application.

Summary

The implementation of a custom escape analysis was described in this chapter. The
data structures and intermediate representation were documented, and the two phases
of the analysis examined. The passes applied in each phase were discussed in some
depth, with a focus on how incomplete type information is accounted for. The next
chapter goes on to document a custom garbage collector that complements this analysis

by enabling the allocation into and collection of per-thread heaplets.



Chapter 9

GC Implementation

This chapter builds on the previous by describing a custom collector that supports per-
thread heaplets. The reasons for building a collector from scratch are discussed and the
requirements of the collector are stated. Modifications made to the GC Interface are
also noted. Finally, a detailed look into the implementation of the collector is presented,
including the internal data structures, the operations thereon, and their interactions

with each other and the GC Interface.

9.1 Requirements

The generational collector in ExactVM is mature and robust, and has proven effective
under extreme workloads. Its implementation, however, is complex, and it is geared
towards a single, two-generation heap. There are also a number of areas in the virtual
machine where assumptions are made about the collector implementation, for example
the barriers (§7.4) and also the allocators. This research, in contrast, focuses on per-
thread heaplets, and so a new collector has been designed and implemented with the

following requirements in mind:

1. Per-thread heaplets are fundamental: there must be local and optimistically-local
heap sections for each thread. Collection of these heaplets must be local to the
owning thread, that is, no other thread need be suspended or need participate in
the collection. The only limit on the number of heaplets should be the number

of threads (which is limited only by the stack space required for each) plus some
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small space to hold the heaplet structures themselves.

2. There must be a shared heap section for shared objects. All threads must be
suspended to collect this section, but only the garbage collector thread need
participate in the collection. In order to provide a baseline for benchmarking
it must be possible to run an application with only this shared section, that is,

with no allocation into or collection of per-thread heaplets.

3. The heap should not be statically partitioned into fixed-sized heaplets. A fixed
maximum size would limit threads that allocate aggressively and waste space for
those that do little allocation. Heaplets should, therefore, be able to expand.
Furthermore, once a heaplet has expanded it should be able to contract. This
ensures that aggressively allocating threads do not waste space should they stop
allocating at some future point. Heaplets must thus be dynamically sized and able

to expand and contract on demand.

4. The internal structure of a heaplet should be hidden, and the heap should not
be dependent on the collection algorithm being used in a particular heaplet. It
should be possible to mix moving and non-moving as well as generational and

non-generational heaplets within the same heap.

5. Given the address of some arbitrary object, it should be possible to find the heaplet
into which the object was allocated. This is for root and reference scanning, where
the GC Interface passes only the address of an object to the heap, which then needs
to determine the owning heaplet. This is complicated by the dynamic nature of
heaplets; if they were fixed it would be easy to determine an object’s heaplet given
its address, but heaplets can expand and contract, and they may not necessarily

occupy the same part of the heap over their lifetime.

6. It must be possible to determine the sharing of an arbitrary object given its
address. This is related to the previous requirement and is complicated by having
three types of sharing. Were there only two, it would be possible to allocate local
and shared objects from opposite ends of the heap, making it easy to determine
the sharing given the address. With optimistically-local objects, however, this is

not possible.
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7. It must be possible to track not only references out of heaplets (as with card
marking) but also those into heaplets. This is necessary to handle the exception
to the invariants, which allows local objects allocated in the shared heap to refer

to those in local heaplets.

9.2 GC Interface Modifications

The GC Interface requires that the collector define barriers that can be used by the
virtual machine for reference stores and loads. The compiler too must enforce such
barriers, but this is, unfortunately, one area to which the GC Interface does not extend.
A card marking barrier has been hardwired into the compiler for the generational
collector, preventing collectors that require a different barrier from being used. As
a result, some modification of the compiler and the interface has been necessary. The
interface has been extended with heavyweight barriers for the three types of reference
stores — instance, static and array (batched) — with a version of each for the virtual
machine and the compiler (the latter assumes that the reference being stored is not
null, the check for which is inlined by the compiler). These barriers accept the same
parameters as for the macro versions, but must be implemented as functions!. To
complement these new barriers, modifications to the compiler have been made that
cause it to generate appropriate calls to them, but only if the collector configuration
requires them; if the collector does not, then the compiler defaults to the card marking
scheme used for the generational collector.

A further modification has been made to enable the use of heaplets. Threads need to
construct their heaplets (local and optimistically-local) at creation time, allocate into
them, and then destroy them on exit. New fields have thus been added to thread
structures (execution environments) that represent their heaplets. These fields are
opaque, exposing none of the internal structure of a heaplet, and the overhead is one
word per heaplet, or two words per thread. In addition to this, the GC Interface has
been further extended with functions that abstract over the required operations, and

the virtual machine been modified to call these functions as appropriate. Finally, new

!This imposes a penalty only for the debug build of the virtual machine, in which inlining of functions
is disabled.
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opcodes have been introduced that instruct the interpreter or compiler to allocate into
a thread’s heaplets. These opcodes are internal to the virtual machine and are not

exposed at the source level.

9.3 Heap Structures

9.3.1 Page Manager

The page manager abstracts over the physical heap of the process in which the virtual
machine is running. It manages logical pages that are some multiple of the physical page
size. In at least one respect it is quite different from the heap managers typically found
in Java virtual machines, which map the maximum number of pages but commit only the
minimum; they then commit the remaining pages as expansions occur. A requirement of
this collector is that heaplets be dynamically resizable, able to both expand and contract
on demand. Committing and de-committing pages for each expansion and contraction
is infeasible due to the relatively high cost of such the commit. The page manager thus
maps and commits at least as many pages as are required for the maximum heap at the
time of initialisation.

Logical pages are some multiple of the system page size and have headers of 2 words
each. A page’s rangeType can denote Single pages, the Start of a range of contiguous
pages, or a page In a range. The nextOrSize field holds the size of a page range (in
pages) or a pointer to next range in some list. The semiSpaceld is the identifier of
the semi-space to which the page has been allocated and is only valid for pages in the
young generation. This identifier is necessary for ignoring references into Tospace when
scanning roots, as these references point to objects that are implicitly live by their
location but do not have their live mark set. The genld is the identifier of generation
to which the page was allocated. This identifier is used when filtering old-to-young
references into heaplet remsets. Both identifier fields are limited to two values, as each
occupies only a single bit in the header. This is sufficient for the semi-spaces, as there
are never more than two, but limits the number of generations allowed in a heaplet.
This poses no problem in the current collector configuration, but future collectors that
use more generations will require an expanded page header. The header also maintains

a heaplet field that holds a (compact) pointer to the owning heaplet, that is, the heaplet
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struct _PageHeader { Headers (magnified)
next0rSize : 29; // next or size ‘ / ‘2"‘0““‘”"#' 2 ‘*“‘Oxéc?‘_]‘l})l ! ‘DV‘VGI‘OX“??"‘?“I ﬁ
rangeType : 2; // Nome (0), In (1), T T

// Starts (2) ‘H(‘ao‘d(‘ars‘\\ \. \\\\ I e e e
semiSpaceld : 1; // From (0), To (1)
heaplet : 29; // pointer to heaplet
s
s

sharing 23 // L (0), OL (1), § (2)
genId : 1;  // Young (0), 0ld (1)

};

Pages

Figure 51: Page header format and heap pages

that allocated the page and the objects on it. This is needed for scanning, so that
references outside of the heaplet can be filtered when performing a local collection, and
also for the shared to local remsets, which must track references from the shared heap
into local heaplets. The type of owning heaplet is also stored directly into a sharing
field for fast access, and requires two bits since there are three possible values — Shared,
Optimistically-local and Local.

Placement of page headers is a trade-off between good performance and practicality.
Keeping headers directly on pages is fast but would prevent large objects that span
several pages, as the headers would be overwritten by the objects. Placing a header
only on the first page in a contiguous range solves this problem and allow objects to
span the range, but makes finding the header difficult given some arbitrary page; a
crossing-map that points back to first page in range is required, and maintaining such a
map can be costly. The optimal solution is to use out-of-line headers, keeping the page
headers in a separate table that is indexed by page address. Lookup of the header is
slower than if it were kept directly on the page, but this scheme allows large objects to
span multiple pages without the use of a crossing-map, and the space overhead is only
two extra words per logical page. Given the default of two system pages per logical
page, where each system page on 64-bit Solaris is 8 Kbytes, this results in an overhead
of 1 byte for every 2 Kbytes of heap memory.

Using these out-of-line headers provides time and space efficient access to information
about any object given only its address. The address is masked to find the page on which
it was allocated, and the address of that then used to index into the table and find the
header. This gives the escapement of the object, the semi-space in which it currently
exists, its generation, and its owning heaplet.

Figure 51 illustrates the page header format and also the layout the heap as
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subdivided into a number of pages. The header format is shown in the listing on
the left-hand side of the figure as a C struct. The fields are packed into two words,
with each field being a bitfield of the minimum possible size. The right-hand side of
the figure shows three heap pages at the bottom with the headers magnified at the
top. Between them lies the table of out-of-line headers. The first page is the start of
a range, as indicated by the 2 in its rangeType field. It further belongs to Tospace (1)
in the young generation (0) of the heaplet at 0x8c00. Note that it is also marked as
optimistically-local (1), and is shaded accordingly. The second page is marked as being
part of the range (1) and holds the size of the range (2 pages) in its nextOrSize field. It
belongs to the same space, generation and heaplet, and is also optimistically-local. The
final page is a Single, as indicated by the 0 in its rangeType field. It belongs to the old
generation of heaplet 0x8caa, which is the shared heap, and is thus of a slightly darker
shade than the other pages.

Pages are organised using a Bitmap F'its allocator [WJNB95]. Such allocators are
popular in mark-sweep collectors and disk block managers because of their low space
overhead and potential for good performance. A bitmap is employed where each bit
represents a logical page, which in the default configuration gives an overhead of one
byte for every 128 Kbytes in the heap. Finding a free page or a range of contiguous
pages is by a linear search of the bitmap, with allocated pages being marked as Is and
free pages being marked as 0s. This linear search can be slow, and as an optimisation a
lowest-free index is used that gives the index of the lowest free bit in the map. Searches
start from this index and ignore all preceding bits, which are guaranteed to be allocated,
and as allocations and frees are performed the lowest-free index is updated to reflect
the changes in the bitmap. A further optimisation is to search the bitmap a byte at
a time for runs of the desired length, but this has not yet been implemented. Setting
and clearing of bits, however, is done a word at a time, and is thus fast. The bitmap
further gives zero-overhead coalescing, since the bits, and the pages they represent, are
already ordered by address. This address ordering also benefits the allocation of pages,
and often results in good locality of data and lower fragmentation.

The page manager is able to allocate a number of single, possibly disjoint pages at
a time. This is useful for the young generation semi-spaces, where objects are always

smaller than a page, so only a page at a time is needed. If more than one is requested,
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the pages are joined into a list. To prevent races during allocation, the page manager
holds a lock on the bitmap and the lowest-free index. It acquires the lock, finds a
page in the bitmap, and then updates the lowest-free index accordingly. The lock is
then released, so that so that locking is per-page instead of per-allocation. The page’s
header is then marked as being single and initialised with the generation, semi-space,
heaplet and escapement. It is then joined into a list using its nextOrSize field, which for
single pages does not need to hold the size (as it is always one). The process repeats for
each page required until all are joined into the list. Single pages can be later freed as a
list. The list is bounded by the maximum size of a semi-space in the young generation
(the old generation allocates ranges, not lists of single pages) and so is usually small.
Here, the page manager acquires the lock around the entire free operation. The bits
representing the pages in the list are cleared, their headers reset, and the lowest-free
index updated.

In order to satisfy requests from the old generation, where objects are allowed to
span several pages, the page manager is also able to allocate ranges of contiguous pages.
To allocate a range of a given size it acquires the lock, searches the bitmap for a run
of free bits, updates the lowest-free index and then releases the lock. Locking is thus
for the entire range, but initialisation of the page headers can be done outside the lock.
The first page in the range is marked as the start and its header initialised with the
semi-space, generation, heaplet and escapement. Its nextOrSize field is set to null and
will be initialised by the old generation if necessary to join it into a list of ranges. If
there is a second page in the range then it is marked as being in the range, its header
initialised, and its nextOrSize field set to hold the size of the range (see Figure 51 for
an illustration of a range). Thus, to find the size of a range, the second page of the
range (by address) is always examined (note that it must be marked as being within a
range; otherwise it is the start of a new range or a single page, in which case the size of
the current range must be one). The remaining pages in the range, if any, are marked
as being in the range and their headers initialised. The neztOrSize field of these pages
is set to null, since they hold neither the size of the range nor a pointer into a list of
ranges. To free a range of pages, the page manager acquires the lock, clears the run of
bits, resets the lowest-free index if necessary, and the releases the lock. The headers of

the pages being freed are then cleared.
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struct _ObjectHeader { struct _FreeBlock {
nearclass : 29; // nearclass nearclass : 29; // mo mnearclass
reserved : 1; // reserved reserved : 1;  // reserved
isFreeBlock : 1; // O for objects isFreeBlock : 1; // 1 for free blocks
liveMark : 13 // 1 if marked liveMark :1; // 0 for free blocks
e size; // size in words

}; next ; // mext block in bin

pad; // padding
};

Figure 52: Object and free-block headers

9.3.2 Block Manager

The mark-sweeper in the old generation does not use linear allocation, and deallocation
of free-blocks is in-place, with no moving or compaction. Individual blocks must,
therefore, be tracked, and this is the job of the block manager. Block headers comprise
three words, and so blocks themselves are a minimum four words due to double
alignment. As a result, objects in the mark-sweeper must be at least this size?. So
that free blocks can be manipulated as objects during the collector’s sweep phase, the
first field of a block’s header mirrors the nearclass field in an object header (§ 7.2.2 on
page 102). This gives uniform access to the bottom two bits, which are used as follows:
00 indicates a valid but unmarked object; 01 is an object marked as live by collector;
and 10 indicates a free block held by the block manager. Block headers also have a size
field, which gives the size of the block in words, and a next field, which is used to link
the block into a list. The last word of the header is used to pad it to double alignment.

Figure 52 shows the format of the object and free-block headers side-by-side so that
the overlay can be seen. The nearclass, reserved, isFreeBlock and liveMark fields are
at the same offset in both formats, making it easy for the mark-sweeper to distinguish
between objects and free blocks during the sweep phase.

Blocks are managed using segregated free lists [WJNB95]. Lists called bins hold
blocks of a particular size or range of sizes. Eract bins hold blocks of one size only, and
there is one for each multiple of the minimum block size up to 128 words (512 bytes).
Blocks in the exact bins are not sorted but allocated and freed in FIFO order from the
tail of the list (using the tail gives almost address ordering during the sweep phase,

which adds blocks in address order for each range of pages). The allocation policy for

20bjects are actually only two words minimum, since they are constrained by size of their header,
and so there is some waste in the old generation. However, few objects with no fields get allocated, and
so this waste tends to be negligible.
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these bins is best-fit if the bin is the first one checked during allocation (as the size will
match exactly), but it is nearest-fit if the block manager must try an exact bin holding
blocks that are larger than the requested size. Medium bins begin from the maximum
exact bin size and span a range of sizes up to half a logical page. Each bin holds a
number of blocks sorted by size, smallest first. Allocation is by a simple linear search of
the bin for the first block of sufficient size. This is nearest-fit, as the bin being searched
holds only those blocks that are close to the requested size. A final large bin holds all
blocks bigger than the largest medium bin. Blocks in this bin are also sorted by size,
again given nearest-fit. Each bin has a hint, which points to the next bin in the block
manager that is most likely to fulfil an allocation request that the current bin cannot.
This hint is initially set to the large block bin, since this is the one that is populated
first.

To allocate a block the block manager first finds the bin that best matches the
requested size. If the bin is exact then it tries to get a block from the head of the
list; for the medium and large bins, it must search the bin for a block of sufficient
size. Because allocation is nearest-fit the block that is found may be larger than the
requested size. The block manager must split such blocks into the requested size plus
some remainder, but only if the latter is at least the minimum block size. The block of
the requested size is then returned while the remainder is added to the appropriate bin.
If the bin is empty, or a block that fits is not found in the bin, then it tries to use the
bin specified in the hint. If not found in the hint bin, the block manager must resort
to searching all bins from the original (not hint) bin onwards, including the large bin.
This can be slow, as there are at least 42 bins to search in the worst case (the default
configuration is 31 exact bins, 10 medium and 1 large), but can be improved by using
a bitmap to represent populated and empty bins [Cla03]. If a block is still not found
after checking all the bins the allocation fails, forcing the mark-sweeper to expand or
trigger a collection.

The alternative to searching all bins is to skip directly to the large bin, which should
contain a block large enough to fulfil the request, but this leaves smaller blocks in lower
bins unused, adding to fragmentation. It also carves the the large blocks into smaller
ones (the remainders), creating yet more blocks that have to be added to lower bins,

and further worsening fragmentation.
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An alternative for allocation from exact bins is to split a large block into a number
of blocks of the same size, thereby populating the bin [GBCWO00]. The idea is that
allocations of the same size are often made together — if the bin is already populated
then there is no need to search the other bins, and so the allocation is considerably
faster. Allocation traces of many benchmarks clearly validate the claim of similarly-
sized allocations, and implementations of this technique have proven fast, but it has
some subtle drawbacks that make it unsuitable here. It uses up large blocks more
quickly, even with some threshold below which they are not split. It also wastes space,
as not all blocks in the now populated bin are used, thereby worsening fragmentation.
This has the added consequence of making more work for the garbage collector during
the sweep phase, as it must traverse many little blocks instead of the original large
block. It should be noted that Gu’s implementation uses bitwise sweep, and so the
effects are somewhat lessened, but this collector does not yet have such a sweep, and so
this alternative approach has been left as a future optimisation.

The block manager can drop the blocks of all bins in preparation for a sweep.
Dropping the blocks simply removes them from the bins but does not clear their headers,
as the sweeper will need the nearclass bits and the size of the blocks to traverse them.
Dead objects and free blocks will be coalesced and returned to the block manager, which
does none of its own coalescing; doing so would require blocks in medium and large bins
to be sorted in address order so that their adjacent blocks can quickly be found. Blocks
are thus returned to medium and large bins ordered by size, while for exact bin blocks

they are returned to the tail of the list.

9.3.3 Remembered Sets

Card marking is typically used to track inter-generational references. Remembered
sets are used here instead, with one such set per heaplet. References from logically-
local objects in the shared heap must also be tracked, and this is handled by a
second remembered set for each heaplet. This separation allows the two to be scanned
independently, without having to filter the references during a collection. It is, therefore,
possible to scan the old-to-young remembered set for minor (young generation only)
collections, regardless of whether the collection is local or shared, and to scan the

shared references for local collections only, regardless of generation. Note that there is



CHAPTER 9. GC IMPLEMENTATION 155

no need for the shared heap to track any shared references, other than those that cross
generations.

An alternative would be to use sequential store buffers (§ 2.3.1 on page 17). Each
heaplet is given a buffer to which references are appended, and at collection time the
references are sorted into remembered sets. This gives a cheap barrier, since no filtering
is done, but sorting the buffer can be expensive. This approach, however, has not been
implemented, and so for now plain remembered sets are used. The barrier filters out
unwanted references, for example those that are not from the old generation into the
young, which makes it more expensive than that of the sequential store buffer, but it
keeps the sets small and lowers the cost at collection time.

Each remembered set is a hashtable with two keys: the object being stored to and
the address of the field in the object. The former is used to prune dead objects from the
set after a collection, references from which are not considered as roots, while the latter
is used as a root into the young generation. A hash is computed using both keys and
is then used to find an index into the table. The hashtable is open, meaning it is a flat
array, and it is possible that the slot at a computed index already contains a value pair.
Such an occurrence is known as a collision, and the index must be recomputed using
an offset until an empty slot is found, at which point the pair of keys can be inserted.
As the table fills up the number of collisions increases, until eventually the slots are
exhausted and the table must be expanded. To reduce contention for slots, and thus
the number of collisions, the table is expanded preemptively once some percentage of
slots have been used. The threshold is 75% by default, and the capacity of the table
is doubled for each expansion. Pairs must be rehashed and inserted when this occurs.
There are no triggers in the current implementation for performing a collection when
an expansion occurs [Jon02], but remembered sets can be pruned to keep them small3.

An alternative to the open hashtable is to use chaining, where each slot in the table
contains a number of value pairs chained together into a list. When a collision occurs
the new pair is appended to the list, and so the insertion ends immediately with no
recomputation of the index. The primary drawback of this approach, however, is that

a new list node must be allocated to hold the pair. Performing such an allocation for

3 Although the entries are removed the table does not contract, as this would require further rehashing
and insertion.
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every reference store is undesirable as it makes the barrier more expensive. It is also a
potential source of lock contention, since the allocation must be made from the system
heap that is shared by many threads.

Caching is used to speed up insertion into the remembered set. The field being
written-to is stored in a single entry cache on insertion into the hashtable, and on the
next insertion the new field is checked against the cache. If it matches then a pair
containing it has already been inserted, and so the hashing and indexing are avoided.
Note that the cache only works for the field and not the object that holds the field, as
there could be stores to different fields in the same object. Storing only the latter would
incorrectly ignore any other stores to the object.

One issue so far not addressed is concurrency, where several threads might write
to the same object at (logically) the same time. This is not possible in local heaplets,
since only their owning thread can write to the objects contained therein, even when the
write originates in the shared heap (§ 5.2.3 on page 71). For the shared heap, however,
this is problematic, and could lead to races during hashtable insertion and expansion.
To guard against this, a lock is used on the old-to-young remembered set of the shared
heap. The lock is held for all operations on the set, including insertion, lookup and
traversal.

A possible optimisation to this scheme is to use per-thread sequential store buffers.
When a store occurs of an old-to-young reference, a pair is appended to the buffer of
the thread performing the write. No lock is needed for this, since the buffer is invisible
to other threads. Then, when collecting the shared heap, the buffers of all threads are
merged into the heap’s old-to-young remembered set. All threads have already been

suspended by the GC Interface, and so this is safe to do without a lock.

9.3.4 Old Generation

A simple mark-sweep algorithm is used for the old generation. An explicit mark-stack
holds objects scheduled for scanning, while a block manager instance is responsible
for free space. As well as holding promoted objects that have survived a number of
collections, the old generation also handles allocation requests that are too large for
the young generation. This is possible because the old generation is composed of page

ranges, which allow an object to span several pages (the young generation uses only
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single pages). These ranges can be added and removed as necessary, thereby allowing
the generation to expand and contract on demand. The use of page ranges is lazy,
meaning the generation is initially empty; this prevents wastage for generations in which
no allocation occurs. The mark-stack, too, is initially unallocated.

The generation is also checked on allocation to see if a collection is necessary. There
must be at least enough space in the heap to hold the requested size, the copy reserve
for corresponding young generation (so that it can be collected if necessary), and a
small reserve that gives it some leeway. If a collection is necessary then the allocation
fails, forcing the GC Interface to initiate one. Otherwise, a request is made to the block
manager for a free-block of the given size. If this request then fails an expansion is
attempted. This involves adding a new range of at least the required size, rounded
up to the nearest page or some set minimum, the default for which is 4 pages or 64
Kbytes. Note that it is possible for this expansion to fail despite the test for a collection
indicating that one is unnecessary, since space in the heap may be fragmented and no
contiguous ranges may be available. It is further possible that another thread performed
a small burst of allocation immediately after the check but before the expansion. If the
expansion fails then the allocation, too, is abandoned, and a collection is triggered. If
it succeeds then the new range is added to the block manager and split to fulfil the
request.

When a major collection is initiated the roots are passed to the old generation by
the GC Interface. These roots are added to the mark-stack, which is then immediately
drained to constrain its size. The objects on the stack are scanned and any references
found are followed and added to the stack, but the stack is not drained until the next
root is added. The stack is a simple array that grows exponentially, doubling in size
to accommodate new references. A better solution would be to use per-class overflow
queues, where, when the stack is full, new object references are added to a queue in
their owning farclass structure [FDSZ01]. The references are appended to the queue
without extra allocation for nodes by writing the next pointer over the nearclass field
of the object’s header. When the stack is drained, the queues are traversed and the
references scanned. The nearclass field of each object’s header is fixed by writing-back
the one stored in the farclass structure. Regrettably, this technique is not feasible

here. The mark-stack has to be per-heaplet, or per-thread, but the class structures
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are shared amongst all threads; per-heaplet class structures or queues would thus be
needed to accomplish this. For the purposes of this research, the simple expansion
policy is sufficient, but it will not scale when used with very large heaps in a production
environment.

Objects that are promoted into the old generation must also be treated as roots
for collections of the young generation. The old generation tracks these by linking the
original objects (those in the young generation) into a promoted list. The list is created
without any additional allocation for nodes by using the multi-use word field in object
headers. This field is overwritten with a pointer to the next object in the list, while the
near class field is overwritten with a forwarding pointer to the promoted object. The list
is traversed at collection time and the near-class field of each object header is followed
to retrieve the new object in the old generation. The new object is then scanned. There
is nothing to do for the old object here, since it has already been copied and its space
in the young generation can be reclaimed.

References from the old generation to the young must also be accounted for by
scanning those held in the old-to-young remembered set. This may result in more
references into the old generation, which will then be added to the mark-stack and
scanned. Once the mark-stack has been completely drained, and there are no promoted
objects left to scan or old-to-young references to follow, the remembered set can be
pruned. This is done by removing those entries in the set whose objects are not marked
as live, that is, they are unreachable and will be reclaimed during this collection cycle.
There is, therefore, no reason to keep these objects and track any references from
them into the young generation, and so they are removed from the remembered set.
Note that the set does not contract when entries are removed; this is left for a future
implementation.

A sweep is now performed. All blocks are dropped from the block manager, as
they will be rebuilt during the sweep. Note that dropping them simply removes them
from their respective bin but does not affect their header, the nearclass field of which
is necessary for treating them as objects. To aid coalescing of free areas, two pointers
are maintained that demarcate the free region: the start-pointer and end-pointer.

The pages in each range belonging to the generation are scanned linearly. It is

assumed that there is a valid object or free-block at the start of the first page in the
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range. The lower two bits of the word on the page at what would be the object’s
nearclass are then examined: 01 indicates a marked, live object; 00 a zero dead object;
and 10 a free-block. If the object is alive then it is unmarked in preparation for the
next collection cycle and it is skipped. If it is dead then it is added to the current free
region by shifting the end-pointer past the object. The free region is similarly extended
if it is a free-block.

Note that a live object indicates the end of a free region, if any. Free regions extend
from the end of the last live object to the start of the next one, and comprise all dead
objects and free-blocks in between. Free regions can be added back to the block manager
as a single, contiguous free-block, but this holds onto all free space in the old generation
and prevents the heaplet from contracting. Instead, large free regions that span several
pages can be split and their pages returned to the page manager. Any part of a large
free region that begins and ends on a page boundary can be returned as a range of
free pages, while the parts on either side of the boundaries can be added to the block
manager as free-blocks. This shrinks the old generation and allows the young generation
or even other heaplets to reuse these pages, thereby ensuring that they do not starve.
This works well for tight heaps, but it does mean that if the old generation performs an
allocation immediately after a collection it may have to expand and request those new
pages from the page manager. Returning pages from large free regions is thus left as a

compile-time option (on by default), thereby allowing future experimentation.

9.3.5 Young Generation

A simple semi-space copying algorithm is used by the young generation. This typically
involves dividing a region into two semi-spaces, with allocation in one and collection of
survivors in the other. With heaplets, however, there is no fixed region to be divided,
and so it must be possible to allocate within one space and expand it to some maximum
size while ensuring that there is enough space left in the heap for the copy reserve, which
will be the used for the other space at collection time.

The young generation thus comprises two semi-spaces, where each is composed of
single pages linked together into a list. This allows it to grow one page at a time and

to contract if necessary, but prevents objects from spanning pages. Allocations in the
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young generation are thus limited to objects smaller than a page*. The semi-spaces
start with no pages, thereby ensuring that space is not wasted if the owning thread does
no allocation.

Each semi-space maintains a list of used pages, free pages, and a current allocation
page, across which it allocates objects linearly using a free marker as do local allocation
buffers (§ 1.2 on page 4). Before attempting an allocation it must check if a collection of
the owning heaplet is necessary. There must be sufficient space in the heap for the copy
reserve of this semi-space, and the semi-space must not be bigger than some maximum
size (currently 1 Mbyte). If a collection is necessary then the heaplet either collects
itself (if it is local) or aborts the allocation, which will force the GC Interface to trigger
a global collection. If no collection is necessary then a check is made to ensure that
there is sufficient space on the the current allocation page to handle the request, and
if so the free marker is shifted and the new object is returned. If the check fails then
a slow allocation path is taken that tries to initialise a new allocation page from the
list of free pages. Should the list be empty the generation will attempt an expansion
by adding new pages from the page manager (currently two Single pages at a time).
The new pages are added to the free list and the first of them initialised as the current
allocation page. The fast allocation path is then retried and is guaranteed to succeed.
If new pages cannot be added then the allocation fails and a collection is forced.

In preparation for a collection the semi-space currently being used for allocation is set
to be Fromspace, while the other will be used as Tospace. The roots into the generation
are then handed to it by the GC Interface via the heap, which filters them as appropriate.
Objects immediately reachable from the roots are marked and then, depending on their
age, copied from Fromspace into Tospace or promoted into the old generation. Copying
uses the same fast and slow allocation paths as before, but if the slow-path fails there
is no way to continue — either the copy reserve was calculated incorrectly or the free
space in the heap is badly fragmented across several generations or heaplets and there
are no pages left to use for expansion. In either case, the collector has two options:
it can simply promote the object to the old generation in the hope that it will have
sufficient free space, or it can abort the collection with an OutOfMemory exception. If

the allocation in Tospace succeeds then the object is copied and the nearclass field of

“In practice they are limited to less than half a page, which wastes less space.
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its header is updated with a forwarding pointer to the new object. If the object is
sufficiently old then it is promoted into the old generation, where a free-block must be
found by the block manager; should it fail to find such a block then the collection simply
aborts. The object is then copied into the block and linked into the promoted list of
the old generation so that it can be scanned. For both copying and promotion the field
holding the reference to the object is updated with its new location.

Once the roots have been copied into Tospace they must be themselves be scanned
for references. The objects on each page in the used list of Tospace are scanned linearly
from the base of the page, with the current allocation page being processed last. As
references are followed and copied into Tospace these too must be scanned, and so the
process is iterative. Objects promoted into the old generation and held in the promoted
list (§ 9.3.4 on page 156) by each iteration must also be scanned, and yet more references
will be discovered and their objects copied into Tospace. This process repeats until both
the used page and promoted object lists are exhausted and all objects on the current
allocation page have been scanned. Collection is then complete, with all live objects
copied into Tospace and those remaining in Fromspace being garbage. These garbage
objects are easily reclaimed by simply dropping all pages in Fromspace and returning
them to the page manager. This ensures that they can be reused by other generations
or heaplets, and so are not wasted should this heaplet’s thread perform no further

allocations.

9.3.6 Filters

Filters are used to generalise the scanning of references into heaplets and the generations
within them. The GC Interface passes all references together, but for a per-thread
collection only those into the heaplet being collected are needed. Similarly, only
references into the young generation are necessary for a minor collection. A runtime
filter is thus used through which all references must be passed before they can be
scanned. The filter is able to function by generation, heaplet, or any combination of
these two. Filters are initialised as appropriate at the start of a collection: for local
collections a particular heaplet will be specified, while for minor collections only the
young generation will be allowed. The filter is then passed to the GC Interface, which

will hand discovered references back to the heap manager along with the given filter.
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These references are then passed through the filter, and those that do not match the
criteria will be ignored, while those that do will be handed to their respective heaplet
and generation for further scanning. The filter also holds a count field that is used for

pruning the old-to-young remembered sets.

9.3.7 Heaplets

Each thread maintains two heaplets, one for local objects and a twin for optimistically
local objects. These are constructed on a per-thread basis as new threads are created,
and each is physically tied to its thread’s execution environment. There is also a single
shared heaplet that is constructed when the main application thread is created, and all
access to this heaplet is via the main heap structure. The internal structure of each
heaplet is equivalent, with only a type field to distinguish Local, OptLocal and Shared
heaplets. Each heaplet is also generational, with both a young (semi-spaces) and old
(mark-sweep) generation. Finally, each heaplet maintains three filters that are used for
collection.

There are two allocation paths for heaplets. The first, a fast, inlined path, checks if
the request is for a size that can be handled by the young generation. If so, the request
is forwarded; if not, the slower, out-of-line path is followed that forwards the request
to the old generation. Should either generation fail the allocation then the outcome
is dependent on the type of heaplet. The shared heaplet will abort the allocation
completely, thereby forcing the GC Interface to trigger a global collection. A local
heaplet, however, will try to collect itself, since it is only dependent on its owning
thread, while optimistically-local heaplets must also force a collection of their local twin
(which requires no extra synchronisation, since they are owned by the same thread).
Once the local collection is complete the allocation can be retried.

Heaplets prepare for a collection by initialising their filters. The first is for the young
generation only, the second for the old generation, and the third is empty and may be
used for both. A filter will be chosen depending on the collection task being performed.
For a shared collection, the heap manager will traverse the heaplets request that each
heaplet perform a collection task, which can be one of root scanning, survivor scanning
and completion (flipping of semi-spaces and sweeping, depending on the generation). To

perform a thread-local collection, the heaplet will step through the tasks itself, beginning
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Figure 53: Heaplets, generations and pages

with initialising the three filters so that they ignore external references (that is, those
outside the heaplet) and then asking the GC Interface to hand it all thread-local roots.
These roots include any references in the heaplet’s shared-to-local remembered set. For
old-to-young reference scanning, the heaplet uses its young generation filter, so that
any references back into the old generation are ignored. If the collection is minor, it
will again use the young generation filter to scan for survivors (including any promoted
references), while for a major collection the empty filter will be used to scan both
generations.

The layout of three generational heaplets and their use of pages is shown in Figure 53.
On the far right is the heap as subdivided into pages®, where the lightest pages are local,
grey pages are optimistically-local, and dark pages are shared. The heaplet on the far
left is local, and has six single pages in its young generation and one range (which is
four pages by default) in its old generation®. These pages are scattered about the heap,
the only constraint being that the pages in a range be contiguous, while the single
pages can be anywhere that a free page can be found by the bitmap allocator. Note
that some pages are preceded by free space, which indicates that a collection (of this
or another heaplet) must have occurred after they were allocated. The next heaplet
is optimistically-local and has four single pages and two ranges in its young and old
generations. The ranges are again contiguous, but the single pages are scattered about
the heap. The last heaplet represents the shared heap and maintains six singles and

two ranges.

5The pages are arranged in a grid because of size constraints, and the header table has been omitted.
8Generations have two lists of pages each, one for used and another for free, but these have been
combined into a single list for simplicity.
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9.3.8 Heap Manager

This structure manages heaplets and is responsible for global allocations and collections.
Access to the heap manager is through the GC Interface only, and the internal structure
of the heap is hidden from the rest of the virtual machine. The GC Interface itself must
use a well-abstracted interface over the heap implementation, and so it is theoretically
possible to have a number of heap instances, each with their own heaplets, in the same
application. In practice, however, it holds only a single instance to which all requests
for allocation and collection are forwarded.

The heap similarly can have more than one page manager associated with it,
although in the current implementation a single instance is used to manage the
maximum heap size (as specified when the virtual machine is launched). The heap
manager maintains two lists of heaplets, one for local and the other for optimistically-
local, and a lock is used to prevent concurrent modification. In addition to these lists,
a specially marked heaplet is used to represent the shared part of the heap, which holds
globally-reachable objects. This shared heaplet is physically associated with the main
application thread but is logically dependent on all threads. When used on its own, that
is, when the heap comprises no per-thread heaplets, it gives the illusion of a traditional
two-generation heap.

Allocation of thread-local objects is handled by the heaplet of the allocating thread,
while allocation of shared objects is handled by the shared heaplet via the heap manager.
Should an allocation in the shared heaplet fail, the GC Interface will suspend all threads
and force a collection of the entire heap.

The heap manager’s first task for a collection is to check if a major collection
is necessary, that is, should the old generations be processed. This check involves
a traversal of both heaplet lists, but this is cheap compared to the cost of the
collection itself, and is considerably less expensive than maintaining the status of the
old generations on-the-fly, which would entail updating a needs-collection flag on both
the slow and fast allocation paths. Should the old generation of any heaplet require
such a collection then one is forced for all.

All heaplets are then given an opportunity to initialise their filters accordingly, and

the heap manager initialises its own filter, which will be used for root scanning. The
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Figure 54: Heap manager, heaplets and order of collection

GC Interface is then asked for root references, which it discovers by walking stack and
object maps. The roots are handed to the heap manager and passed through the filter,
which will filter out unwanted references and forward the rest to their owning heaplet.
Once this is complete the heaplets are given a chance to collect any survivors,
which again involves traversing the heaplet lists. The order of traversal must obey
the invariants outlined in Section 5.2.3 on page 71: no references into a local heaplet
other than its own (from its owning thread’s stack) and those that are logically-local, so
the local heaplet list is traversed first; no references into an optimistically-local heaplet
other than its own, those from its twin local heaplet, and those that are logically-local,
so the optimistically-local heaplet list is next; finally, references from anywhere into the
shared heap, which is processed last. Note that as each heaplet finishes the collection
of its survivors it is also free to clean up after itself, since the ordering ensures that it
will not be touched again during this collection. The young generation of each heaplet
thus flips the semi-spaces, while the old generation of each heaplet performs a sweep.
Once the shared heaplet is processed the entire heap has been collected, and so
control returns to the GC Interface, which then restarts the application threads.
Figure 54 shows a heap manager with a number of heaplet lists. The bottom list
holds local heaplets, the middle optimistically local, and the top the single shared heaplet
that represents the shared heap. In order to perform a shared collection the heap
manager must traverse the heaplet lists in a bottom-up fashion so that the invariants
on pointer direction are obeyed. The local heaplets are thus handled first, followed by
the optimistically-local ones and then the single shared heaplet. This order is maintained
for initialisation and collection of survivors. Note that for a minor collection only the
young generation of each heaplet will be collected, while for a major collection the young

generation will be collected first, followed by the old generation.
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9.4 Notes

Weak references are not handled in the current implementation. All such references are
treated as live during a collection and so are not discarded unless they become truly
unreachable. This adds extra pressure on the heap, as these objects are not reclaimed
even when memory is tight, but as the handling of such references is complex it has been
left as future work. There is, furthermore, no collection of unused classes. All classes

are simply treated as live and are never unloaded. This also is left as future work.

Summary

The implementation of a new garbage collector was examined in this chapter. The
collector enables the allocation into and collection of per-thread heaplets, and does
so with only minimal synchronisation by employing the results of the custom escape
analysis that was presented in the previous chapter. The requirements of the collector
were stated, modifications to the GC Interface noted, and an in-depth account of its data
structures then given. Problems with the implementation and their possible solutions
were also examined. The next chapter serves to evaluate the effectiveness of the escape

analysis and this new collector.



Chapter 10

Evaluation

The previous two chapters have dealt with the implementation of an escape analysis
and garbage collector that support the novel heap partitioning. This chapter aims to
evaluate the system using a number of benchmark applications. The system is compared
with the existing garbage collector in ExactVM, and the penalties imposed by some of
the trade-offs made in implementation are quantified. The space and time costs of the
analysis are thoroughly examined, including a measure of the bloat incurred through

specialisation. Finally, the results of the escape analysis are presented.

10.1 Platform, Benchmarks and Methodology

All measurements were taken on a lightly loaded Sun Ultra 60, with two 450 MHz
UltraSPARC-II processors sharing 512 Mbytes of memory, running the Solaris 8
operating system. Networking and NFS shares are enabled; however, the virtual

machine, benchmark applications and logs are on local partitions.

10.1.1 Benchmarks

Five benchmarks are used. Two are from the SPECjvm98 [spe98| suite and are small:
201 _compress, which is denoted simply as compress, and _213_javac, denoted as
javac. Both are single-threaded, and are included simply for comparison. The first
is a port of the 129. compress Liv-Zempel compressor from the SPECcpu95 benchmark
suite. It allocates a total of 334 Mbytes in a minimum heap of 20 Mbytes. The second is

the Java compiler from JDK1.02. It allocates a total of 518 Mbytes in a minimum heap
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of 12 Mbytes. Both of these benchmarks perform some computation within a single
thread and then exit; the result is the total execution time. The default input size of
100 was used for both.

MolDyn is a particle modeller from Section 3: Large Applications of the Java Grande
Forum’s benchmark suite. It allocates little memory (1170 Kbytes in the largest
configuration tested) but is included nevertheless for comparison. Three configurations
are used, all of which model 2048 particles: md-1, with one thread; md-2, with two
threads; and md-4, with four threads. A result common to all configurations is denoted
md-X, where the number of threads does not affect the outcome.

VolanoMark [vol04a| is the benchmark first introduced in Section 1.2 on page 5 to
illustrate the cost of application-collector synchronisation. It is based on VolanoChat
[vol04b], which is a client-server architecture for online chat rooms, and is included here
as a good representative of large, long-running applications. The benchmark comprises
a number of dummy clients and a server. A number of chat rooms are created, each of
which is then populated by users who send messages to each other via the server. The
client and server must maintain a socket for each connection, where there is a connection
per user. Sockets are implemented in the Java 2 SDK using two threads, one to send
and another to receive, and as such the benchmark quickly becomes thread-intensive as
the number of users is increased. The benchmark is run in three configurations: vol-16,
which has 16 users, and hence 32 connections or threads; vol-128, with 128 users and
256 threads; and vol-1024, with 1024 users and 2048 threads. Results common to all
three configurations are denoted vol-X.

The final benchmark is SPECjbb2000 [spe00]. This is a multi-threaded, three-
tier transaction system. It is based on the Portable Business Object Benchmark
(pBOB) [BDF00], which is itself based on TPC-C [tpc04]. This benchmark is typical
of sever-side applications in which business logic and object manipulation (the middle
tier) are the main focus. Clients are modelled in the benchmark using driver threads,
while storage is represented by a binary tree of objects; I/O performance is not a
consideration in this benchmark. The benchmark first builds a warehouse of data,
approximately 25 Mbytes. It warms-up by loading some records from the warehouse.
The main benchmark phase is then entered and a two-minute run performed. The result

is the number of transactions per minute (TPM) performed during the timed run. An
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official run of SPECjbb2000 requires at least eight warehouses, each with a single dummy
user or terminal, where a terminal utilises a thread. The results presented here are for
a single warehouse but with two configurations of terminals: jbb-1-1 denotes a single
warehouse and terminal, with one thread, while jbb-1-4 denotes a single warehouse
with four terminals, and hence four threads. A result common to both configurations

is denoted jbb-1-X.

10.1.2 Rules

compress and javac were both given a maximum heap of 32 Mbytes. md-X and vol-X
were given 96 Mbytes, while jbb-X ran in a 64 Mbyte heap, which is more than sufficient
for the 25 Mbytes of live data in the single warehouse. The maximum heap size
is mapped and committed at heap initialisation (§ 9.3.1 on page 148). Six runs are
performed for each test, with the first being used as a warm-up. The best result from

the remaining five is then selected.

10.2 Relative Performance

The first test examines the performance of the system given the trade-offs that were
made during implementation. Recall that inline caches and inlining must be disabled
for correct operation of the patching mechanism (§ 8.5.2 on page 140). This is expected
to have a detrimental effect on performance. Virtual invocations must also be padded
so that there is sufficient space for the patching-in of specialised methods. As a result,
two nop instructions are added to the compiled code for each virtual invocation, and
this too is expected to have a negative effect on performance. The snapshot analysis is
performed within its own background thread (§ 8.1 on page 111). This also will affect
the performance in the presence of multiple application threads.

The effect of these trade-offs are quantified here. Each benchmark is run against a

different configuration of the system. These configurations are as follows:

e FEzact. This is an unmodified ExactVM system, using a two-generation collector
with a semi-space copying algorithm in the young generation and mark-compact

in the old generation.
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e E-NolIC. As for Ezact, but with inline caches disabled.
e FE-NolIL. As for E-NoIC, but with inlining disabled.

e HGC. The Heaplet Garbage Collector (HGC) is the system being implemented in
this research. It supplements the base ExactVM system with the custom escape
analysis and garbage collector documented in the previous chapters. For the
purposes of this test, the heap is configured with only a single shared heaplet;
there is no allocation into or collection of optimistically-local heaplets. Inlining
and inline caches are enabled, and there is no padding of invocation sites. This

configuration is used as the base-line against which the others are compared.
e H-NoIC. As for H-HGC, but with inline caches disabled.
e H-NoIL. As for H-NoIC, but with inlining disabled.
e H-Pad. As for H-NolL, but with padding of virtual invocations.

e H-Analysis. As for H-Pad, but with the analysis running in a background thread.

The results for Exact VM are presented in Table 4. The first column gives the name of
the benchmark application, while the second column indicates the number of application
threads. The next three columns give the results for the various configurations of

ExacVM. The final column shows the total allocation for the benchmark in Mbytes.

Table 4: Benchmark results for different configurations of ExactVM. Results for compress,
javac and md-X are in seconds, those for vol-X in messages per second, and jbb-X in
transactions per minute.

Benchmark H Threads “ Exact | E-NoIC | E-NolL H Allocated

compress 1 26 28 36 105
javac 1 27 27 28 216
md-1 1 29 29 29 0.54
md-2 2 15 15 15 0.79
md-4 4 30 32 36 1.17
vol-16 32 7469 7474 7476 96
vol-128 256 6781 6749 6685 197
vol-1024 2048 4846 4812 4767 227
jbb-1-1 1 1137 1113 1051 794
jbb-1-4 4 1790 1744 1643 .
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Benchmark || Threads

| Exact | HGC | H-NoIC | H-NolL, | H-Pad | H-Analysis ‘

compress 1 26 28 30 39 39 40
javac 1 27 33 33 35 35 35
md-1 1 29 29 29 29 29 29
md-2 2 15 15 16 16 16 16
md-4 4 30 27 27 32 31 33
vol-16 32 7469 | 7471 7574 4771 7456 7121
vol-128 256 6781 | 5945 5949 5876 5894 5895
vol-1024 2048 4846 | 3012 3016 2999 2976 2992
jbb-1-1 1 1149 951 939 809 864 878
jbb-1-4 4 1790 | 1405 1440 1343 1363 1371

Table 5: Benchmark timings and scores for different configurations of HGC. Results for
compress, javac and md-X are in seconds, those for vol-X in messages per second, and jbb-X
in transactions per minute.

Note that for compress, javac and md-X, the result is the running time of the
benchmark, in seconds. Results for vol-X are in messages per second, while those
for jbb-X are expressed in transactions per minute.

The results HGC are presented in Table 5. This table follows the format of Table 4,
but with three additional columns: the results from the base ExactVM system are shown
in column 3, while columns 7 and 8 show the results when padding and the analysis are
enabled, respectively.

Figure 55 gives a clearer picture of the results in the form of a bar-chart. The

Figure 55: Relative performance of different configurations for compress, javac and md-X. The
base HGC configuration is given as 100%, with the others relative to that. ExactVM is
included for comparison.

B Exact B HGC © H-NolC O H-NolL H H-Pad O H-Analysis

120%
100%
80%
60%
40%
20%
0%

compress  javac md-1 md-2 md-4



CHAPTER 10. EVALUATION 172

Bl ExactvyMB HGC O H-NolC O H-NolL HM H-Pad [O H-Analysis

160%
140%
120%
100%
80%
60%
40%
20%
0%

vol-1 vol-2 vol-4 jbb-1-1  jbb-1-4

Figure 56: Relative performance of different configurations for vol-X and jbb-X. The base
HGC configuration is given as 100%, with the others relative to that. ExactVM is included for
comparison.

performance of the configurations for each benchmark is shown, with HGC normalised
to 1 and the rest relative to this.

The standard ExactVM system is fast and performs especially well for the multi-
threaded jbb benchmarks. For jbb-1-4 in particular, it is 1.3 times as fast as HGC,
while for vol-4 it is just over 1.6 times as fast. This is not surprising given the extensive
tuning that the ExactVM collector has undergone; it is a mature, scalable system,
whereas HGC is an experimental system that is still under investigation. In this light,
the performance of HGC is quite respectable.

Aside from this, the most notable effect is that of disabling inlining. This has the
greatest impact on the compress benchmark, where performance of the system is almost
halved. An examination of the sources for this benchmarks reveals that a number of
small but final classes are used, each with a number of frequently-called one- or two-
line accessor methods on protected or private fields. The compiler is typically able to
inline these methods, as they are small and cannot be overridden. With inlining disabled
this is not possible, with the possible consequence that the overhead of performing
the invocation outweighs the cost of the method itself. This penalty is not nearly as
pronounced in the other benchmarks.

One curiosity is that padding virtual invocations seems to lessen the effect of no
inlining, especially for the multi-threaded jbb-X benchmarks. The reason for this is

unclear, although one possibility is that the padding is beneficial to the scheduling and
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| Benchmark [| Class | Res. | % || Method | Res. | % | Size | Stmt [| Start |

compress 396 | 257 | 65 3009 | 2204 | 73 91 || 11590 15
javac 573 | 411 | 72 4260 | 3216 | 75 | 173 || 20885 15
[ md-X [ 398[ 263[66[ 2980 [2151 [72] 96 || 10877 [ 10 |
[ vol-X [ 396 [ 26968 2951 [2129 [72] 82 11301 [ 10 |
[jpb-1-X [ 642 ] 471 [ 73] 5365 [ 3776 [ 70 [ 190 [[ 30249 | 30 |

Table 6: Overview of intermediate representation for benchmark applications. Figures are in
number of classes, methods and statements, number of classes and methods resolved,
percentage resolved, size in Kbytes, and time in seconds.

pipelining of modern processors [PH97].

10.3 Space and Time Costs

These tests measure the space and time cost of the analysis. As an introduction to this,
statistics were gathered from the intermediate representation that give some idea of the
size of the benchmarks from the point of the view of the analysis.

Table 6 shows these statistics. These were collected at the end of the stop-the-world
phase, before the background analysis is complete and the on-demand phase is entered.
The first column gives the name of the benchmark. Column two shows the number of
classes encountered. These are named classes, and not necessarily loaded. The next
column shows the number of classes that are actually loaded and resolved. Similarly,
columns 4 and 5 show the number of named and resolved methods, respectively, while
column 6 indicates the size of the bytecode in the resolved methods, expressed in Kbytes.
The next column shows the number of statements created, which includes assignments,
invocations and allocations. The final column shows the point during execution at
which the analysis was started; this is given in seconds from launch. Of note here are
the number of classes and methods resolved. A significant number are already loaded
when the snapshot analysis is performed, and this is promising: it is a good indication
that new classes will not be loaded after this point, thereby minimising the chance
of a non-conforming class that might break a thread and cause its optimistically-local
heaplet to be made shared (§ 8.5.2 on page 143).

Table 7 shows the actual space and time costs of the analysis. The first column

gives the name of the benchmark. jbb-1-1 and jbb-1-4 are shown separately here;
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Benchmark H CH | MH | AC \ St \ Trgt | Set | A | T \ Misc || Total H Time

compress 13 | 232 | 229 | 271 62 | 1241 | 1327 | 1283 | 775 5432 1236
javac 20 | 366 | 418 | 489 | 134 | 2662 | 2859 | 4762 | 1728 || 13438 4210
md-1 13 | 201 | 207 | 254 57 | 602 | 690 | 374 | 244 2642 629
md-2 . . . . . . . . . . 637
md—4 . . . . . . . . . . 1065
vol-16 13 | 216 | 212 | 264 55 | 1157 | 1256 | 1202 | 721 5096 7225
vol-128 . . . . . . . . . - || 22018
vol-1024 . . . - . - - . - - 4453
jbb-1-1 22 | 405 | 531 | 708 | 162 | 7900 | 8191 | 7780 | 5617 | 31316 9546
jbb-1-4 . . . . . . . . . - 17742

Table 7: Space and time costs for the analysis. Figures are in Kbytes, except for the last
column which is in seconds.

the analysis will have the same space cost for both but the extra threads of the latter
may affect the runtime. Figures in the remaining columns bar the last are expressed
in Kbytes, and show the following, respectively: class handles; method handles; alias
contexts, for sites and methods; statements, all types; method targets for invocation
statements; alias sets; aliases; free-standing templates, that is, those not embedded in
alias sets; miscellaneous, which includes field maps, template contexts and the like; and
the total size, in Kbytes, for all analysis structures. The final column shows the time
taken to perform the background analysis in milliseconds.

Of note here is the high space cost of the analysis. Analysis structures are allocated
using the system allocator (malloc() and equivalent) in the heap of the process, and
so any memory used is above that already utilised by the garbage collected heap. For
compress, the analysis uses an additional 6 Mbytes on top of the heap, while for javac
this is an additional 13 Mbytes. The latter is half the heap, which is a substantial
increase in the space required by the virtual machine. For jbb-X, the space overhead
is 31 Mbytes; this too is an additional overhead of half the garbage collected heap.
Note, however, that for these benchmarks the space cost is constant as further threads
and warehouses are used. The overhead is thus justifiable as the size of the benchmark
increases. This research focuses on large server applications, and so this space cost is
likely to be acceptable.

The timings for the analysis are encouraging, especially when considered against the

overall timings given in Table 5. compress and javac are small benchmarks and the
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| Benchmark || Specs || Bytecode | Bloat | +% || Compiled | Bloat | +% [| Total |

compress 708 91 29 | +31% 318 311 | +97% 340
javac 1601 173 61 | +35% 1356 | 766 | +56% || 827
[ md—X [ 249 ] 96 | 7] +7% | 367] 75 4+20% [ 82]
[ vol-X [ 506 82 17 ] +20% | 382 [ 240 [ +62% || 257 |
[ job-1-X [ 1129 | 190 | 56 | +29% || 1274 | 729 | +57% || 785 |

Table 8: Specialisations and bloat incurred for bytecode and compiled code. Figures are in
number of methods, Kbytes and as a percentage of original size.

analysis runs very quickly. The analysis also benefits here from the benchmarks being
singly-threaded, which means they occupy only one of the machines two processors; the
analysis is thus free to run on the second processor, which will be idle. This is also true
for jbb-1-1, which is also singly-threaded. This benchmark, however, is considerably
bigger than the others in terms of the number of alias sets and templates generated, and
the analysis takes almost twice as long to complete as javac. For jbb-1-4, the time
cost is even greater. Here, the analysis thread is competing with four terminal threads
for two processors, and it suffers as a result. This is likely to worse as the number of
threads increases.

Specialisation also adds to the overhead of the analysis. FEach specialisation
maintains a copy of its original method’s bytecode, while specialisations that are later
compiled will have their own compiled code container (§ 7.2.3 on page 102).

The cost of these specialisations is shown in Table 8. The name of the benchmark
is given in column 1. Column 2 shows the number of specialisations created (Column
5 in Table 6 shows the original number of resolved methods). Columns 3, 4 and 5
show, respectively, the original bytecode in KBytes, the bloat incurred, in KBytes, and
the bloat as a percentage of the original. The next three columns show these figures
for compiled code, in the same units, but note that the bloat is projected; the virtual
machine will determine if and when they will be compiled, and so the figures assume this
has occured for all methods. The final column lists the total bloat for the benchmarks
in KBytes.

Although in some cases the percentage of bloat is quite significant, the total bloat
in KBytes is relative to the cost of the analysis structures. Furthermore, for a large

application like jbb-X, the size of the heap is likely to overshadow the space occupied by
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| Benchmark [| Local | % || OptLocal | % [| Shared | % [ Total |

compress 16 | 3 148 | 30 314 | 67 478
javac 26 | 2 304 | 32 600 | 66 930
[ md-X I 6] 4] 7749 ] 73 47 156 ]
| vol-X [ 12] 3] 147 [43] 184[54] 343 ]
[ jbb-1-X [ 68] 6 | 549 | 48 || 534 | 46 || 1151 ]

Table 9: Object escapement at allocation sites. Figures are in number of allocation sites and
as a percentage of the total.

method bytecodes and compiled instructions, and so the space overhead of specialisation

is negligible, particularly when compared with the space cost of the analysis.

10.4 Escapement

This test focuses on the result of the analysis, that is, which allocation sites can be
optimised. The benchmarks from before are again run and figures collected for the
number of allocation sites determined to be local, optimistically-local or shared. Only
the latter two need be optimised; shared allocation sites are the default.

Table 9 shows the results. Column 1 lists the name of each benchmark. Columns
2 and 3 show the number of local and optimistically-local allocation sites, respectively.
The total number of optimisable sites is given in column 4. Column 5 then lists the
number of shared allocation sites, while the total number of sites examined is given in
the final column.

Figure 57 better illustrates these results with a stacked bar-chart. There are very few
strictly-local objects. This is a result of the imprecise type analysis (§ 8.4.3 on page 124),
which leads to a conservative, and thus large, call-graph. This has the effect of causing
site contexts to be unified with the contexts of methods that are not called, thereby
unnecessarily worsening the escapement. This is exaggerated when specialisation then
occurs, as the escapement is passed back down the call-graph (although this at least
is context-sensitive). Fortunately, the number of optimistically-local objects is quite
encouraging. However, their escapement can be affected by non-conforming classes,

and it remains to be seen how often this occurs.
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Figure 57: Comparison of object escapement at allocation sites.

10.5 Class loading

The aim of this test is to get a profile of when classes are loaded during an application’s
lifetime: before the analysis, where they are added to the snapshot queue; during the
analysis, where they are added to the post-snapshot queue and processed during the
stop-the-world phase; and after the analysis, where they are processed on-demand. The
latter are of particular interest, as these are potentially non-conforming classes that
could cause escapement of optimistically-local objects.

Only the longest-running configuration of each benchmark is used in this test:
compress, javac, md-4, vol-1024 and jbb-4. The time at which each class is loaded,
measured in words allocated since application launch, is traced and a plot is produced.
Classes are not checked for conformance during this test; this is left for a future test.

Figure 58 shows the plot for the compress benchmark. The x-axis shows application
time, measured in words allocated since launch. Each point on the plot marks the

loading of a new class. The two vertical lines mark the beginning and end of the

Figure 58: Class loading over time (in words allocated) for compress. Each point marks a
class. The beginning and end of the snapshot analysis are marked by the vertical lines.
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Figure 59: Class loading in javac.
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Figure 60: Class loading in md-4.

snapshot analysis. Most classes are loaded well before the snapshot analysis, with
a single class loaded immediately before the analysis commences. Near the end of
the benchmark a small number of classes are loaded. These classes are required for
generating a benchmark report, and are common to all applications in the SPECjvm98
suite. These classes are unlikely to be non-conforming; even if they are, they will have
little effect on performance, since the benchmark timers have already been stopped by
this point.

Figure 59 shows a similar plot for javac. This benchmark loads considerably more
classes, but again these are before the snapshot analysis. A single class is loaded shortly
after the start of the snapshot analysis, forcing it into the post-snapshot queue. A
small number of classes are again loaded near the end of the benchmark. Here too
they are related to the generation of a report, and so are unlikely to have any effect on
performance should they be non-conforming.

The plot for md-4 is shown in Figure 60. The benchmark performs little allocation,
and this is evident from the single line that marks the analysis: the start and the end
are the same. Three classes are loaded immediately after the analysis, and these are
related to the reporting of the benchmark score. Again, these are unlikely to pose a
problem.

Figure 61 shows the plot for vol-1024. Several classes are loaded during the
snapshot analysis, forcing them into the post-snapshot queue. Two classes are
then loaded almost half-way into the benchmark: java/lang/ref/Finalizer$1 and

java/lang/ref/Finalizer$2. Finally, a number of classes related to reporting the
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Figure 61: Class loading in vo1-1024.
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Figure 62: Class loading in jbb-4.

benchmark score are loaded near the end of the run. These include java.lang.Double,
java.lang.Float and java.lang.FloatingDecimal, all of which are likely to have
little effect on the application.

The final benchmark is jbb-4. Its plot is shown in Figure 62. This benchmark
is well-behaved, perhaps unrealistically so: it loads no classes while the timers are in
operation. It is worth noting that a significant number of classes are loaded at the
end of the run. This benchmark’s reporting framework includes a GUI, and so most of
these classes are members of the java.awt package. However, GUIs are unlikely to be
a standard component of long-running server applications, except where they might be

used for administration purposes, and so this is not expected to be a problem.

10.6 Summary

This chapter presented an evaluation of the custom escape analysis and garbage
collector that support the novel heap partitioning. Several benchmark applications
were used to compare the performance of the system against the base virtual machine
implementation. The trade-offs of the implementation were also examined, and a
number of shortcomings highlighted. The space and time costs of the custom escape
analysis were also measured and discussed. The results of this analysis with respect to
escapement of objects at allocation sites were then presented. The next chapter will
draw conclusions from these findings, as well as suggesting improvements that could be

made in a future implementation.



Chapter 11

Conclusions

The aim of this thesis has been to investigate a novel heap partitioning that serves to
eliminate the problem of application-collector and collector-collector synchronisation.
The relevant background information was presented, including garbage collection,
escape analysis, and two existing solutions to the problem. The novel heap partitioning
was then detailed, followed by a formal definition of a new escape analysis that supports
this partitioning. An in-depth account of the implementation of this analysis and an
accompanying garbage collector was then given. Finally, the performance and costs
of the system were examined. This chapter presents the conclusions drawn from this

investigation and then proposes ideas for future work.

11.1 Contribution and Conclusions

This thesis focussed on the problem of application-collector and collector-collector
synchronisation. Threads must be suspended in a consistent state when a garbage
collection is to be performed so that all roots into the heap can be accurately discovered.
This suspension further ensures that application threads cannot interfere with the
garbage collector, should it need to relocate objects and update any references to them.
Synchronisation is also necessary to guard against races by garbage collector threads,
and parallel collector threads must be prevented from relocating the same object. This
synchronisation has proven costly.

Solutions to the problem exist, but they are less than ideal. Domani et al. [DKL102],

for example, impose a runtime overhead using a mechanism that must perform
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unbounded work. Steensgaard [Ste00] solves the problem using a static escape analysis,
but still requires thread synchronisation for a collection, and furthermore disallows the
dynamic loading of classes, which is a prominent feature of the Java language.

This thesis makes four primary contributions:

1. A novel heap partitioning, which presents a solution to the problem that allows
the dynamic loading of classes, while imposing little runtime overhead. Objects
are divided into three types: those that are always local to their creating thread;
those that always escape their creating thread, and hence are shared; and those
that are local but for which the system has incomplete type information. These
latter objects are termed optimistically-local, meaning that they might escape
should more type information become available. The heap is partitioned into
three regions, each of which supports one of these object types. Local and
optimistically-local heaplets are per-thread regions, while a single shared heap
is used to hold objects that are escaping. No synchronisation is necessary to
collect a thread’s local heaplet; it can be collected independently of other threads
and heaplets. Its optimistically-local heaplet, similarly, is dependent only on its
local heaplet, and can be collected without first synchronising with other threads.
Thread suspension and synchronisation are only required when the shared heap
region is collected. Pointer invariants are enforced that ensure this partitioning.
Should more information become available which suggests that an optimistically-
local object escapes, then the optimistically-local heaplet of the object’s allocating
thread can be made shared. This elegant solution preserves local objects while

ensuring the safety of the system.

2. A new escape analysis that supports this partitioning. The analysis is based on
that of Ruf and Steensgaard, but is extended to operate with incomplete type
information. It runs in two phases: a background phase, where only partial type
information is available; and an on-demand phase, where new types are checked
for conformance, that is, whether they cause optimistically-local objects to escape.
This two-phase analysis enables it to support the dynamic loading of classes.
The snapshot phase operates on all loaded classes, while the on-demand analysis

operates as new classes are loaded and resolved.
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3. An implementation of this analysis that is fast. Its space cost, although high, is

acceptable for large, long-running server applications.

4. The implementation of a new garbage collector, which has been integrated with a
production-quality virtual machine and just-in-time compiler. It has been shown

to give good performance for a first-cut implementation.

The system, however, is far from perfect. Extensive trade-offs were made that limit
the performance of the system, as shown by the evaluation. Disabling inlining, for
example, imposes a significant penalty on performance. Furthermore, the space cost
is an issue. The overhead is not overly severe for large server applications, but it is
persistent, as it must be maintained for the on-demand analysis. Solutions to these and
other problems are presented in Section 11.2.

Of more concern is the conservative typing. The call-graph is too imprecise, and this
leads to a very poor determination of strictly-local objects, which are far outnumbered
by those that are optimistically-local or shared. The only solution to this problem is
to improve the typing using a slower but more precise propagating type analysis. The
results for optimistically-local objects are promising, but these are still dependent on
the number of non-conforming classes that could be loaded.

Integration of the analysis and garbage collector is also incomplete, and so the
system does not yet allocate into the per-thread heaplets; all allocation and collection
is performed within the shared heap. As such, a full evaluation of the system cannot

yet be undertaken.

11.2 Future Work

Ideas for future work are proposed below, organised by the section of the research to

which they relate: Analysis, Garbage Collector and Evaluation.

11.2.1 Analysis

The call-graph analysis is non-propagating and operates within method-scope only
(§ 8.4.3 on page 123). It therefore does not require iteration to a fixed-point solution.

It is fast, processing each method in the program only once, but is is conservative,
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producing a less than ideal call-graph. The size of this graph should be measured and
compared with the known graph for a number of call-sites. It might also be beneficial
to implement and experiment with a depth-limited propagating analysis, for example
0-CFA [GDDC97], which requires only a few iterations to compute a solution for a
method. Alternatively, the hybrid subset/equality-based analysis of Das [Das00] could
be investigated.

A type-propagating analysis would also allow better matching of thread creation sites
with their start () methods. These methods are native and cannot be analysed. The
analysis must therefore insert explicit calls to a thread’s run () method immediately after
start (). This explicit invocation is then treated as the entry-point to the thread and
is used when traversing the call-graph in later passes. The current call-graph analysis
limits this matching to the scope of the method in which the thread is allocated, thereby
missing many potential thread entry-points. Using a better type analysis would allow
this matching to occur beyond the scope of the method.

Virtual method tables are constructed when their owning classes are loaded (§ 7.2.5
on page 104). As such, they can be allocated inline within the nearclass that is associated
with the class block. This locality of reference improves the performance of virtual
invocations, since when the nearclass is retrieved from the receiver the virtual table
will also be cached. Specialised virtual tables, however, are only constructed during
the stop-the-world phase of the analysis, long after the class has been loaded (§ 8.5.2
on page 138). Inlining them alongside the standard tables would thus require that the
nearclass be reallocated and any references to it updated. This was deemed impractical
given the time available, and they are instead allocated out-of-line from the nearclass
structure. The effect of this on the performance of specialised method invocation is
unknown.

In addition to this, the layout of the specialised virtual table introduces an extra
indirection for each invocation. The current layout is logically two-dimensional, where
the first dimension is indexed by method and the second by specialisation. This layout
was chosen for simplicity, as the first-level index of any specialised method is exactly
that of its normal counterpart. It is also more space efficient than a flat layout, since
spec arrays may be shared with the superclass. The effect of this on the performance

of specialised method invocations is unknown. It might be beneficial, for example, to
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flatten the table at the expense of more memory. Specialisations would appended at
the end as necessary, with no correlation between the indices, but this would eliminate
at least one of the indirections.

Inlining of methods is disabled at present. There is currently no way to patch
compiled code in the stop-the-world phase of the analysis when inlining is enabled, as
the compiler does not preserve the mapping from bytecodes to compiled instructions
(§ 8.5.2 on page 138). This has a detrimental effect on the performance of the system,
as shown in Section 10.2 on page 169, and it is imperative that this be fixed in a future
implementation.

Further to this, the analysis is unable to account for inlining when building the
intermediate representation. Methods may not yet have been compiled, and even if they
have the compiler does not preserve the mapping from bytecode to compiled instructions.
The rules of the analysis thus operate on statements formed from the original method
bytecodes. This gives rise to a situation where the code being executed does not match
that which was analysed. Fortunately, this situation is safe: inlining can only make
escapement better, never worse, as allocation sites in callees are being pulled into their
callers; it cannot cause objects determined as local to escape at a later point.

Specialised invocations impose a performance penalty for normal invocations. This
is related to the instruction sequences required, where specialised invocations are two
instructions longer than normal invocations. The latter must therefore be padded so that
they can be patched during the stop-the-world phase. The effect of this was quantified
in Section 10.2, with the surprising result that it improves performance when inlining is
already disabled. Further investigation is required to determine the exact cause of this.

The space cost of the analysis should be addressed. There is considerable overhead
imposed by the analysis structures during the snapshot phase. This cost is justifiable for
server applications, where large heaps are likely to overshadow any additional overheads.
However, these structures must be retained after snapshot analysis so that they can be
reused when the on-demand analysis is performed on a new class; the overhead thus
persists over the lifetime of the application, and it would be beneficial to reclaim it
for use by other parts of the virtual machine. One possible solution is to compress
alias sets and templates after the snapshot analysis. A custom allocator that packs

these structures tightly onto page-sized chunks could be utilised. A fast page-based
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compressor would then compact these chunks after the snapshot [WKS99]. The handle-
based nature of alias sets would make it simple to restore them when they are required
for an on-demand analysis: all access is via a set’s aliases, which would request that the
page on which the set was allocated be decompressed.

Finally, although the analysis handles dynamic class loading, it does not support
reflection (§ 5.2.2 on page 71). This somewhat limits the type of applications that can
be optimised. A possible solution is to have the analysis mark objects passed to the
reflection API as optimistically local. The virtual machine would then track, at runtime,

any calls made to the API, and if necessary force those objects to be shared.

11.2.2 Garbage Collector

When an allocation request is made by the old generation the block manager must
search its bins for a block of the required size (§ 9.3.2 on page 152). If an exact fit
cannot be found then a larger block must be found in the higher bins and split to fulfil
the request; the remainder is then inserted into the appropriate bin. Hints are kept
for each bin that indicate the next highest that might contain a free block. A better
technique is to use a bin bitmap, where each bit represents a bin [Cla03]. A set bit
indicates a bin with free blocks, while a zero bit indicates an empty bin. Finding a bin
thus becomes a series of masks and shifts on the bitmap. This technique has not yet
been investigated due to time limits.

A further optimisation to the block manager is to use linear allocation within a large,
cached block instead of splitting one from the bins. A pointer to the base of the block is
kept. Allocation requests are then fulfilled by returning a new block that begins at the
base and spans the required number of words. The base pointer is shifted up so that
the next allocation will occur immediately after the new block. One potential drawback
to this approach is that smaller blocks that remain in the bins would be overlooked and
thus wasted, leading to increased fragmentation. This optimisation, however, is worth
further investigation.

Remembered sets are used to track old-to-young references as well as references from
logically-shared objects (§ 9.3.3 on page 154). Each heaplet thus has two remembered
sets. Because references stores to objects in local and optimistically-local heaplets

can only be made by a single thread, no lock is needed for their remembered sets.
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Objects in the shared heap, however, may be reachable from any thread, and as such
access to the shared remembered sets must be guarded by locks. These locks can be
a source of contention where many threads are involved, and can quickly become a
bottleneck in performance. This contention should be measured and, if necessary, per-
thread sequential store buffers could be implemented(§ 2.3.1 on page 17). References are
appended to these buffers without locking. They are then sorted into the remembered
sets when a collection of the shared heap occurs. All threads are stopped for such an
operation, and so no locking is required.

Triggers are another feature of remembered sets that have not yet been investigated.
To prevent sets from growing too large, a collection can be triggered when the number
of entries in a set reaches some threshold. The collector will reclaim dead objects,
references to which may exist in the set. These references need no longer be kept and so
can be pruned from the set. This optimisation is especially beneficial when used with
sequential store buffers. References are appended to these buffers with no filtering, and
they can grow exceedingly large. Triggering a collection will force the references to be
sorted into remembered sets, thereby emptying the buffers.

Although dead entries in a remembered set can be pruned, the space occupied by
the set remains the same; there are simply more free entries, which results in fewer
collisions when inserting new references. Contraction would require rehashing of the
existing entries in the set, and increase the chance of a collision on the next insertion.
This too has not yet been implemented, and further investigation into the size of the
remembered sets is necessary to establish the worth of this optimisation.

Remembered sets are currently implemented as open hashtables. These tables are
flat arrays and are indexed by a hash on the reference being stored. If the entry at a
given index is already taken, then a collision occurs and the index must be recomputed.
An alternative to this is to use a chained hashtable. The table is again a flat array,
but each element in the array is a chain of linked entries instead of an individual entry.
This avoids recomputing the index when a collision occurs, as the new entry can be
added as a link in the chain. The shortcoming of this approach is that a link structure
must be allocated on every insertion. The global allocator is protected by a lock from
concurrent access, and this is a possible source of contention. A solution to the problem

is to keep a cache of link-sized blocks for each hashtable, and only make a request to
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the global allocator when the cache is exhausted.

Section 5.1.1 on page 59 introduced the idea of logically-local objects, where each
thread’s associated object is allocated physically in the shared heap but is treated as
local for the purposes of collection. This concept was then extended in Section 5.2.3
on page 72 to include those objects that are allocated before the analysis is run, but
are then determined to be local or optimistically-local. These objects are already in the
shared heap, and must now be treated as roots into their owning thread’s heaplets when
a collection is performed. References from such objects into heaplets must be tracked
using a remembered set, and this incurs a runtime penalty on reference stores. The
number of such stores, and the overhead involved, should be quantified.

The stack in the old generation’s mark-sweep collector is unlikely to scale effectively
with large heaps. It currently doubles in size when full and is only drained during
root scanning (§ 9.3.4 on page 156). Its growth when scanning for survivors is thus
unbounded. This is commonly handled by using overflow queues, where each class
block holds a queue of instances that must be scanned but cannot be pushed onto the
mark-stack because it has grown too large [FDSZ01]. The queues are then traversed in
addition to draining the stack. This technique, however, is impractical where multiple
heap regions are to be collected independently. Each heaplet has its own old generation
mark-sweep collector, and each would thus also need its own overflow queue for each
class. One possible solution is to use a region of free space within the generation to
hold the overflow queues. This has not been investigated. Measurements of the average
and worst-case size of the mark-stack must also be made to validate the claim that the
stack does not scale.

Free regions of at least page size or some multiple thereof are returned to the
page manager during the sweep phase of the old generation collector. This reduces
fragmentation within the old generation and allows these pages to be reused by another
generation or heaplet. A possible drawback of this approach is that the heaplet may
perform an allocation immediately after collection, in which case a new page will have
to be requested from the page manager and added to the block manager. The page
manager is a potential source of contention, as a lock must be taken to guard against
concurrent allocation by multiple heaplets. It might, therefore, be beneficial to retain a

number of page-sized free regions when performing a sweep so that they can be reused
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if necessary. This needs further investigation.

Complexity of the sweep phase is proportional to the number and size of the page
ranges in the old generation. This is in contrast to the mark phase, which has complexity
proportional to the number of live objects. A consequence of this is that the sweep tends
to dominate the collection time. The sweep phase is a linear scan of the page ranges,
skipping live objects, reclaiming those that are dead, and coalescing free regions. The
current implementation scans the objects and free blocks in each range, which does not
scale well when the generation is large. A better approach is to use a bitwise sweep,
where the mark-bits of all objects are held in a bitmap [DAKO00]. The bitmap is then
scanned during the sweep instead of walking the page ranges. This can be made fast by
skipping runs of consecutive set and cleared bits, which indicate live and dead objects,
respectively. Unfortunately, the same problem that prevents overflow queues for the
mark-stack also applies here: there may be multiple threads performing concurrent
collections. Access to the bitmap would have to be atomic to prevent races, unless each
thread were to examine only the part of the bitmap for which it is responsible.

Logically-local objects further pollute shared pages, which then cannot be returned
to the page manager until the objects are reclaimed. The possibility of relocating such
objects to their owning thread’s heaplet was proposed. Logically-local objects could be
copied when a collection of the shared heap is triggered, thereby removing them from
shared pages. This proposal was rejected because the cost of the copying these objects
was assumed to outweigh the benefits. This assumption should be verified, possibly by
measuring the number of shared pages that are trapped.

Weak references are not handled in the current implementation (§ 9.4 on page 166).
These references are distinct from normal references in that they do not guarantee
the liveness of objects reachable from them. Objects that are weakly referenced may
be reclaimed and the reference destroyed. At present, such references are treated as
strong, and any objects reachable therefrom are assumed to be live.

Class unloading is another feature that is lacking in the current implementation
(§ 9.4 on page 166). Java classes loaded by a loader other than the default provided by
the system may be unloaded if they are found to be unreachable. It is not yet clear how
the class marking and unloading mechanism interacts with multiple concurrent collector

threads, and so this has not yet been implemented.
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The initial size of the young and old generations, the number of pages by which to
expand them, and the maximum size of each are compile-time constants. The young
generation is by default initially empty and has two (single) pages, or 16 Kbytes, added
to it on expansion. It has a maximum size of 1 Mbyte. The old generation is also initially
empty but has a page range of size at least four consecutive pages, or 32 Kbytes, added
to it on expansion. There is no upper bound on the size of this generation. There is
much scope for experimenting with these constants, and it may perhaps be beneficial
to make them runtime parameters that can be tuned dynamically.

Heaplets presently have two generations each, with a semi-space copying collector in
the young generation and a mark-sweep collector in the old (§ 9.3.7 on page 162). This
organisation, however, is not fixed. The internal structure of each heaplet is hidden
from the heap manager, thereby opening the possibility of an entirely different heap
configuration. Each heaplet could be given only a single generation. Alternatively,
local and optimistically-local heaplets could have a single generation while the shared
heaplet retains the two-generation collector on the premise that long-lived objects are

more likely to be shared, and vice-versa.

11.2.3 Evaluation

The machine used for benchmarking in the evaluation has only two processors and 512
Mbytes of physical memory (§ 10.1 on page 167). It would be interesting to see the effect
of multiple heaplets when used on a machine with considerably more processors and
memory. The cache behaviour, bus traffic and crosstalk amongst the processors could
be measured to see if the application benefits from the isolation provided by local and
optimistically-local heaplets, where no shared data is accessed by the threads performing
collections on these heaplets. In addition to this, more processors would allow the
benchmarking of more demanding applications using considerably more threads. The
focus of this research, after all, is the performance of long-running, intensively-threaded
server applications. Finally, with more processors available the analysis does not have
to compete with application threads. It might be feasible to use a costlier but more

precise call-graph and escape analysis when this is the case.
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