
Mapping EDOC to Web Services using YATL

Octavian Patrascoiu
Computing Laboratory, University of Kent, UK

O.Patrascoiu@kent.ac.uk

Abstract

Modeling is a technique used extensively in industry
to define software systems, the UML being the most
prominent example. With the increased use of
modeling techniques has come the desire to use model
transformations. The current paper presents the
mapping from EDOC profiles to Web Services using a
transformation language called YATL (Yet Another
Transformation Language). This transformation
language has been defined to perform transformations
within the OMG’s Model Driven Architecture (MDA)
framework. After having presented YATL, we present
an experiment to show how YATL can be used to map
from EDOC to Web Services. YATL is still evolving
since it is supposed to match the forthcoming OMG’s
Query/ Views/ Transformations (QVT) standard.

1. Introduction

The OMG’s MDA is a new approach to develop
large software systems. The core technologies of MDA
are the Unified Modeling Language (UML), Meta-
Object Facility (MOF), XML Meta-Data Interchange
(XMI) and Common Warehouse Metamodel (CWM).
These standards are used to facilitate the design,
description, exchange, and storage of models. MDA
also introduces other important concepts: Platform-
Independent Model (PIM), Platform-Specific Model
(PSM), transformation language, and transformation
engine. The basic MDA pattern allows the same PIM,
which specifies business system or application
functionally and behavior, to be mapped automatically
to one or more PSMs. While the current OMG
standards such as UML and MOF provide a well-
established foundation for defining PIMs and PSMs,
no such well-established foundation exists for
transforming PIMs to PSMs. The current paper
presents YATL and the mapping from EDOC profiles
to Web Services using YATL. YATL has been defined

to perform transformations within the OMG’s MDA
framework.

2. About KMF and YATL

The Kent Modeling Framework (KMF) [13] is
being developed to provide a set of tools to support
model driven software development. At the core of
KMF are KMF-Studio and YATL-Studio. KMF-
Studio is a tool that generates modeling tools from the
definition of languages expressed as models. KMF-
Studio is supported by OCL4Common and
OCL4KMF, two Java libraries that allows dynamic
evaluation of OCL2 constraints; and XMI, a Java
implementation of the XMI standards. YATL-Studio is
a tool that supports the development of transformations
written in YATL, using the code generated by KMF-
Studio. They use a Java library that supports reading
and writing of models in XMI format.

The relations and interactions between MDA
concepts in KMF are depicted in Figure 1. In our
approach, the source and target models are described
using the MOF language, which in this case acts like a
metalanguage. The transformation language, in our
case YATL, is described using two metalanguages:
BNF and MOF. BNF is used to describe the concrete
syntax, while MOF is used to describe the abstract
syntax. The transformation engine performs the
mapping from a source model instance to a target
model instance, executing a YATL program, which is
an instance of the YATL transformation language.

The entire transformation process is performed in
KMF following the steps:
• The source and target models are defined using a

MOF editor (e.g. Rational Rose or Poseidon)
• KMF-Studio is used to generate Java

implementations of the source and target models.
• The source model instance is created using either

Java hand-written code or the GUI provided by
the modeling tool generated by KMF-Studio.

instance
of

described
by

YATL
Transformation

Engine

YATL
Transformation

Language

MOF

Source
Model

Target
Model

Source Model
Instance

Target Model
Instance

instance
of

source

target

execute

described
by

described
by

YATL
Program

instance
of

target

source

BNF

described
by

Figure 1 Transformation Environment

• YATL-Studio is used to create a YATL project

and perform the requested transformation.

2.1 A brief description of YATL

This subsection presents the current version of
YATL (Yet Another Transformation Language), which
is evolving in order to support all the features provided
by [14] and the future QVT standard.

YATL is a hybrid language (a mix of declarative
and imperative constructions) designed to answer the
Query/Views/Transformations Request For Proposals
[14] issued by OMG and to express model
transformations as required by the MDA [18]
approach.

YATL formulates queries to interrogate the model
using constructions from the OCL 2.0 standard. A
YATL query is a syntactic construct that wraps inside
the description of the request in terms of OCL 2.0 [20].
The YATL processor invokes the OCL processor to
process the query and supply the results of
interrogation.

A YATL transformation describes a mapping
between a source MOF metamodel S, and a target
MOF metamodel T. The transformation engine uses
the mapping to generate a target model instance

conforming to T from a source model instance
conforming to S. The source and the target metamodels
may be the same metamodel. Navigation over models
is specified using OCL.

Each transformation contains one or more
transformation rules. A transformation rule consists of
two parts: a left-hand side (LHS) and a right-hand side
(RHS). The LHS of a YATL transformation is
specified using a filtering expression written either in
OCL or native code such as Java, C#, and scripts. This
approach allows filter expressions to include both
modeling information (e.g. navigational expressions,
properties values, collections) and platform dependent
properties (e.g. special conversion functions), which
makes them extremely powerful. A compound
statement specifies the effect of the RHS. The LHS
and RHS for the YATL transformation are described in
the same syntactical construction, called
transformation rule. A rule is invoked explicitly using
its name and with parameters. The body of rule R is
applied over every source model element for which the
filter attached to rule R is true. The abstract syntax of
YATL namespaces, translation units, queries, views,
transformations, and transformations rules is described
in Figure 2.

Figure 2 YATL’s Abstract Syntax

The declarative features come mainly from OCL
expressions and the description of the LHS of
transformation rules. YATL acts in a similar way to a
database system that uses SQL to interrogate the
database and the imperative host language to process
the results of the query. We choose OCL to describe
the matching part of YATL rules because it is a well-
defined language for querying the UML models it
provides a standard library with an acceptable
computational expressiveness, it is a declarative
language, and it is a part of the OMG’s standards.

YATL supports several kinds of imperative
features, used in the RHS of transformation rules,
which are presented later in this chapter. This features
were selected so that YATL can provide lifecycle
operations like creation and deletion, operations to
change the value of properties, declarations, decisions,
and iteration statements, native statements to interact to
the host machine, and build statements to ease the
construction of target model instance. Compound
statements contain a sequence of instructions, which
are to be executed in the given order. These syntactic
constructions make use of OCL expressions to specify
basic operations such as adding two integer values.
YATL uses the same type system as OCL 2.0 [20].

YATL is described by an abstract syntax (a MOF
metamodel) and a textual concrete syntax. It does not

yet have a graphical concrete syntax as QVT RFP
suggested. A transformation model in YATL is
expressed as a set of transformation rules.
Transformations from Platform Independent Models
(PIMs) to Platform Specific Models (PSMs) can be
written in YATL to implement the MDA.

A YATL transformation is unidirectional. We
believe that a model transformation language should be
unidirectional, otherwise it cannot be used for large
scale models. The main difficulty with a bidirectional
transformation language is that it needs some
reasoning to perform the transformation that makes the
implementation slow. For example, DSTC’s proposal
[15] uses mechanisms similar to Prolog-unification to
perform a bidirectional mapping. The reverse
transformation can be described as any other
transformation using YATL.

For a real model-to-model transformation,
traceability is absolutely necessary to make the
approach workable. To trace the mapping between
source and target model instances, YATL comprises an
operator called track. Track expressions are, from the
concrete syntax point of view, similar to DSTC’s track
constructions [15]. The main difference is that YATL’s
tracks are defined using concepts like relation name,
domain, and imagine, and not Prolog-like concepts

(e.g. unification). This approach makes the traceability
system of YATL suitable for large-scale systems.

A YATL program consists of one or more
translation units, each contained in a separate source
file. When a YATL program is processed, all of the
translation units are processed together. Thus,
translation units can depend on each other, possibly in
a circular fashion. A translation unit consists of zero or
more import directives followed by zero or more
declarations of namespace members: queries, views, or
transformations.

The concept of namespace was introduced to allow
YATL programs to solve the problem of names
collision that is a vital issue for large-scale
transformation systems. Namespaces are used both as
an “internal” organization system for a program, and as
an “external” organization system - a way of
presenting program elements that are exposed to other
programs. A YATL program can reuse a
transformation by importing the corresponding
namespaces and invoking the appropriate rules.

A YATL query is an OCL expression, which is
evaluated into a given context such as a package,
classifier, property or operation. The returned value
can be a primitive type, model elements, collections or
tuples. Queries are used to navigate across model
elements and to interrogate the population stored in a
given repository. YATL uses the OCL implementation
that was initially developed under KMF and then under
Eclipse as an open source project [21].

A YATL transformation is a construct that maps a
source model instance to a target model instance by
matching a pattern in a source model instance and
creating a collection of objects with given properties in
the target model instance. The matching part is
performed using the declarative features of OCL, while
the creation of target instances is done using the
imperative features provided by YATL. YATL
provides also the possibility of interacting with the
underlying machine using native statements. Although
we do not encourage the use of such features, they
were provided to support the modeler when some
operations are not available at the metamodel level
(e.g. the standard library of OCL 2.0 does not provide
a function to convert lowercase letters to uppercase
letters).

More details regarding the syntax and semantics of
YATL can be found in [23][22].

3. Transformation from a subset of EDOC
to Web Services

We experimented YATL on substantial and
representative examples for clarification and validation
purposes (UML class diagrams to Java classes, spider
diagrams [10] to OCL, and EDOC to Business Process
Execution Language (BPEL), Web Service Definition
Language (WSDL), and XML Schema (XSD). In this
paper we present the EDOC to Web Services mapping.

This section provides a mapping of a distributed
system described using a subset of EDOC into an
equivalent system described using Web Services. The
subset contains only distributed systems described by
EDOC’s Model Document and Component
Collaboration Architecture profiles.

As models are manipulated at the abstract syntax
tree level, the transformation rules were designed to
obey the well-known compositional principal of Frege
[11]: “the meaning of a syntactic construct is a
function of the meanings of its constituents”. Each
source syntactic construct is mapped to an equivalent
target syntactic construct considering all its inner
syntactic constructs in a bottom-up process. The source
and target model instances are equivalent if they have
the same black-box behavior.

The first two subsections contain a brief description
of EDOC and Web Services. The subsequent sections
describe the system and the transformation that
performs the mapping. The entire transformation
from Model Document to XML Schema is described in
Appendix.

3.1. EDOC: the UML profile for Enterprise
Distributed Object Computing specification

The EDOC profile of UML was adopted by the
OMG in November of 2001 as the modeling
framework for Internet computing, integrating web
services, messaging, ebXML, .NET and other
technologies under a common technology-independent
model. It comprises a set of profiles, which define the
Enterprise Collaboration Architecture (ECA), the
Patterns, and the Technology Specific Models and
Technology Mappings.

To map from EDOC to WS we must consider the
following five UML profiles:

• The Component Collaboration Architecture
(CCA) uses UML classes, collaborations, and
activity graphs to model the structure and
behavior of components that are part of a
system.

• The Entity profile describes a set of UML
extensions that may be used to model entity
objects.

• The Events profile describes a set of UML
extensions that may be used to model event
driven systems.

• The Business Process profile specializes the
CCA and comprises a set of UML extensions
that can be used to model business processes.

• The Relationship profile contains extensions of
the UML core to rigorously specify
relationships.

• The Patterns profile defines a standard means,
Business Function Object Patterns that can be
used to describe object models using the UML
package notation.

• The Technology Specific Models and the
Technology Specific Mappings take into
account the mapping from ECA specification to
technology specific models. It defines and
EDOC profile for Enterprise Java Beans (EJB)
and another for Flow Composition Model
(FCM).

 3.2 Web Service

The purpose of web services is to enable a

distributed environment in which any number of
applications, or application components, can
communicate in a platform-independent, language-
independent fashion. A web service is a piece of
software application, located on the Internet that is
accessible through standard-based Internet protocols
such as HTTP or SMTP.

Given this definition, several technologies used in
recent years could have been classified as web service
technologies, but were not. These technologies include
win32 technologies, J2EE, CORBA, and CGI
scripting. These technologies are not web services
technologies mainly because are based on a proprietary
binary standard, which is not supported globally by
most major technologies firms. The core of the web
services technologies is made of eXtensible Markup
Language (XML), Simple Object Access Protocol
(SOAP), Web Service Description Language (WSDL),
and Universal Description, Discovery and Integration
(UDDI).

XML is a widely used standard from the World
Wide Web Consortium (W3C) that facilitates the
interchange of data between computer applications.
XML uses markup codes (tags) to describe data, just
like the HyperText Markup Language (HTML) that is
used to describe Web pages,. Computer programs can
automatically extract data from an XML document,
using its associated DTD as a guide.

SOAP provides a standard packaging structure for
exchanging XML documents over a variety of Internet
protocols, including HTTP, SMTP, and FTP. The
existence of a standard transport mechanism allows
heterogeneous clients and servers to communicate. For
example, .NET clients can invoke EJBs and Java
clients can invoke .NET Components through SOAP.

 WSDL is an XML technology that provides a
standard description of web services. WSDL can be
used to describe the representation of input and output
parameters of an invocation, the function’s structure,
the nature of the invocation, and the protocol used for
transport.

UDDI provides a worldwide registry of web
services for description, discovery, and integration
purposes. Analysts and technologist use UDDI to
discover available web services by searching for
categories, names or identifiers.

3.3 Mapping from Document Model to XML
Schema

Both EDOC and WS models describe business
processes. A business process manipulates and
exchange information with other business processes.
To describe the information that is manipulated or
exchanged during a business process, both EDOC and
WS have dedicated components: Model Document and
XML Schema respectively.

The first step in the mapping from EDOC to WS is
to map the models that are used to describe the
information that is manipulated. This section contains
the description of the mapping process from Model
Document to XML Schema.

The Document Model package from the EDOC
profile defines the information that can be manipulated
by EDOC ProcessComponents. The document model
is based in data elements that can be either primitive
data types or composite data. A CompositeData
contains several attributes. An attribute has a specific
type, an initial value and can be marked as required or
as many to indicate the cardinality. An enumeration
defines a type with a fixed set of values. The document
model is described in Figure 3. The XML Schema [27]
describes the information that can be manipulated by
web services. It contains types that can be simple, such
as string or decimal, or complex. A ComplexType
contains a sequence of attributes. An Attribute has a
name and a given type. A partial model of XML
Schema is given in Figure 4.

It is obvious that mapping from Model Document to
XML Schema means mapping from DataElement,
DataType and CompositeData to Type, SimpleType

and ComplexType respectively. The transformation
process and the rules that perform the mapping are

described briefly in Table 1.

Figure 3 Document Model profile

Figure 4 XML Schema

Table 1 Mapping Document Model to XML Schema

Rule name Rule description
dt2st Creates a XML Schema SimpleType for each Document

Model DataType and stores the mapping using the track
mechanism.

cd2ct Creates a XML Schema ComplexType for each
Document Model CompositeData and stores the mapping
using the track mechanism.

at2at Creates a XML Schema Attribute for each Document
Model Attribute and stores the mapping using the track
mechanism.

Rule name Rule description
linkAttribute2Type Sets the correct value for type property for each XML

Schema Attribute.
linkComplexType2Attribute Sets the correct value for sequence property for each

XML Schema CompositeType
documentModel2xsd Invokes the above rules in the following order:

 apply dt2st();
 apply cd2ct();
 apply at2at();
 apply linkAttribute2Type();
 apply linkComplexType2Attribute();

3.4 Mapping from CCA to WSDL

The CCA profile details how the UML concepts of
classes and collaboration graphs can be used to model
the structure and the behavior of the components that
comprise a system. In CCA process components
interact with other process components using a set of
ports. A ProcessComponent describes the contract for
a component that performs actions. A Port defines a
point of interaction between process components. Ports
can be classified according to the complexity of the
interaction in FlowPorts, ProtocolPorts,
OperationPorts, and MultiPorts. A FlowPort is a port
capable to produce and consume a single data type.
ProtocolPorts describe more complex interactions
based on Protocols. A Protocol is a method by which
two components can communicate. An OperationPort
is a port that realizes a typical request/response
operation. A MultiPort is a group of ports whose
actions are tied together. The specification of a
ProcessComponent may include a Choreography to
specify the sequence of interactions performed through
ports. In WSDL the Definition element acts as a
container for the service description. The Import
element serves a purpose similar to the #include

directive in the C/C++ programming language. It lets
the modeler separate the elements of a service
definition into separate documents and include them in
the main document. The Type element acts as a
container for the definition of datatypes that are used
in the Message elements. The Message element is used
to model the data exchanged in a web service. A
message is made of several parts, each part having a
name and a type. The PortType element specifies a
subset of operations supported for an endpoint of a
web service. The Operation element models an
operation. A WSDL operation can have input, output,
and fault messages as part of its action. The Binding
element specifies the protocol and data format of a
PortType element. The bindings can be standard -
HTTP, SOAP, or MIME – or can be created by the
user. The Service element typically appears at the end
of a WSDL document and identifies a web service.
The primary purpose of a WSDL document is to
describe the abstract interface. A Service element is
used only to describe the actual endpoint of a service.
Figure 5 contains the WSDL model.

The transformation process and transformation
rules are described in Table 2.

Table 2 Transformation from CCA to WDSL

Rule name Rule description

flowPort2message Creates a WSDL Message for each CCA FlowPort and stores the
mapping using the track mechanism.

operationPort2operation Creates a WSDL Operation for each CCA OperationPort and
stores the mapping using the track mechanism. The input and
output properties of the WSDL Operation are computed using the
initiator and the responder port from the OperationPort.

protocolPort2portType Creates a WSDL PortType for each CCA ProtocolPort and
stores the mapping using the track mechanism.

processComponent2service Creates a WSDL Service for each CCA ProcessComponent and
stores the mapping using the track mechanism. The definition of the
dervice is instantied by this rule. The values of the properties are
assigned by the other rules.

linkDefinition2X Computes the types, messages, and portTypes properties for
every WSDL Definition. Uses the track mechanism to retrieve the
mapping information stored by previous rules.

cca2wsdl Invokes the above rules in the following order:
 apply flowPort2message();
 apply operationPort2operation();
 apply protocolPort2portType();
 apply processComponent2service();
 apply linkDefinition2X();

Figure 5 WSDL model

3.5 An example

To study and test the mapping from EDOC to WS
using YATL and YATL-Studio we consider the
transformation of the EDOC model of a travel agency
into the equivalent description that uses Web Services
concepts. In general a travel agency provides services
such as: reserves and purchases flights and charters
tickets, reserves hotel rooms, rents cars, books
holidays and cruises, and sells travel insurance. To
provide such services a travel agency needs to
establish business links with companies such as
airlines, hotels, and banks. Due to lack of space we
present only a brief description of the system.

Figure 6 contains the description of a travel agency
community process. The activities in the TravelAgency
Community Process start by the Client initiating the
interactions on its Buy ProtocolPort, according to the
BuySell protocol. The TravelAgency is connected
through the Sell ProtocolPort with the Client and
responds to the BuySell protocol initiated by the
Client. The TravelAgency uses the dedicated ports
BuyFlight, ReserveRoom, RentCar, and Payment to
communicate with the other processes: Airline, Hotel,
CarCompany, and Bank. The TravelAgency initiates
the communication through these ports, according to
Client’s requests.

Client TravelAgency

Buy Sell BuyFlight

ReserveRoom

RentCar

Airline

Flight

Hotel

Room

CarCompany

Car

Bank

Payment

Ship Delivery

Payment

Figure 6 Travel agency community process

a) BuySell choreography b) BuyFlight choreography

Figure 7 BuySell and BuyFlight choreography

Figure 7 contains the description of choreographies

for BuySell and BuyFlight protocols. Similar
choreographies can be derived for ReserveRoom.

The Appendix contains, due to lack of space, a
partial description of the transformation rules that
perform the mapping from EDOC to WS. A detailed
description of the transformation rules is presented in
[24].

The transformation was performed in KMF using
KMF-Studio and YATL-Studio. First KMF-Studio
was used to generate Java code corresponding to
model elements both for source and target model
(EDOC and WS). This code and a textual description
of the transformation rules were used by YATL-Studio
to create a target model instance from a source model

instance. All the transformations were performed at the
syntax tree level.

4. Conclusions and future work

This paper has shown a technique for model

transformations based on a transformation language
called YATL. Model transformation can be described
using a variety of transformation techniques
[1][4][11][25]. The PROgrammed GRaph REplacement
System (PROGRES) [25] contains means not only to
specify transformation rules but also to define the
sequencing of these rules (described using imperative
constructs). This features of PROGRES sets it apart from
many of the other graph transformation approaches.
Unfortunately, PROGRES provides no direct support for
UML. Another graph transformation system for domain-
specific model transformations is the Graph Rewriting and
Transformation Language (GReAT for short) [11].
Similarly to PROGRES, it separates the language for
describing transformation rules from the language for
describing rule ordering. Unfortunately the execution
engine of GReAT is slow, which makes the language
unusable in industrial environment. AGG [1] does not
provide sufficiently rich mechanisms for controlling
the application of transformation rules.

Comparing to these languages YATL is simple, easy to
learn and understand, uses OO and UML concepts, and
has a high descriptive power. To test YATL’s
descriptive power and its expressiveness we performed
several transformations. These experiments [24],
especially the EDOC to WS mapping, forced us to add
new features to YATL and improve the
implementation. They also proved that YATL can be
used to described complex transformations for large
scale systems, it is easy to use, easy to learn and
understand as it is described using OO concepts and a
mix of procedural and non-procedural constructs.

The transformation that we presented in this paper
maps only a subset of EDOC to WS. The intention is
to provide a complete mapping from EDOC to WS. In
the near future we intend to study the mapping of the
dynamic part (choreography) of EDOC models to web
services, to compare the two approaches in terms of
their description power and expressiveness, and to
study the limits of this transformation.

YATL is still evolving because one of our main
goals is to make it complaint to the QVT standard. But
we also hope to add many original features to the
YATL development environment, to integrate it with
KMF-Studio and provide support for transformations
using YATL in IBM’s Eclipse Modeling Framework
(EMF).

5. References

[1] AGG, http://tfs.cs.tu-berlin.de/agg/
[2] Akehurst D. and O. Patrascoiu. OCL 2.0 –

Implementing the Standard for Multiple Metamodels.
In OCL2.0-"Industry standard or scientific
playground?" - Proceedings of the UML'03
workshop, page 19. Electronic Notes in Theoretical
Computer Science, November 2003.

[3] Akehurst D., P. Linington, and O. Patrascoiu.
Technical report, Computer Laboratory, University
of Kent, November 2003.

[4] Akehurst D., S. Kent, O. Patrascoiu. A relational
approach to defining and implementing
transformations between metamodels, SoSym,
volume 2, number 4, December 2003, 215-239.

[5] BPEL4WS Business Process Execution Language for
Web Services http://www.siebel.com/bpel

[6] Czarnecki K., S. Helsen. Classification of Model
Transformation Approaches, OOPSLA 2003
Workshop: Generative techniques in the context of
MDA.

[7] Eclipse Modeling Framework
http://www.eclipse.org/emf.

[8] Frankel D. S. Model Driven Architrecture: Applying
MDA to Enterprise Computing. John Wiley & Sons,
2003.

[9] Gerber A., M. Lawley, K. Raymond, J. Steel, A.
Wood. Transformation: The Missing Link of MDA,
in A. Corradini, H. Ehring, H. J. Kreowsky, G.
Rozenberg (Eds): Graph Transformation: First
International Conference (ICGT 2002)

[10] Gil J., J. Howse, and S. Kent. Formalising Spider
Diagrams, Proc. IEEE Symp on Visual Languages
(VL99), IEEE Press, 130-137. 1999.

[11] GReAT http://aditya.isis.vanderbilt.edu/great.htm
[12] Janssen T. M. V. and van Emde Boas. Some

observations on compositional semantics.
Report 81-11. University of Amsterdam, 1981.

[13] Kent Modeling Framework
http://www.cs.kent.ac.uk/projects/kmf

[14] QVT Query/Views/Transformations RFP, OMG
Document ad/02-04-10, revised on April 24, 202.
http://www.omg.org/cgi-bin/doc?ad/2002-4-10

[15] MOF Query/Views/Transformation, Initial
submission, DSTC and IBM.

[16] MOF Query/Views/Transformation, Initial
submission, QVT Partners.

[17] MOF Query/Views/Transformation, Initial
submission, Alcatel, SoftTeam, Thales, TNI-
Valiosys.

[18] MDA Model Driven Architecture
http://www.omg.org/mda.

[19] MOF Meta Object Facility http://www.omg.org/mof
[20] OCL Object Constraint Language Specification

Revised Submission, Version 1.6, January 6, 2003,
OMG document ad/2003-01-07.

[21] OCL http://www.cs.kent.ac.uk/projects/ocl.

[22] Patrascoiu O. YATL:Yet Another
Transformation Language. In Proc. of First
European Workshop MDA-IA, University of
Twente, the Nederlands, 2004.

[23] Patrascoiu O. YATL:Yet Another
Transformation Language. Reference Manual.
Version 1.0. Technical Report 2-04, University
of Kent, UK, 2004.

[24] Patrascoiu O. Model transformations in YATL.
Studies and Experiments. Technical Report 3-
04, University of Kent, UK, 2004.

[25] Rozenberg G., Handbook of Graph Gramars and
Computing by Graph Transformation, World
Scientific Publishing Co. Pte. Ltd. 1997.

[26] UML Unified Modeling Language
http://www.omg.org/uml.

[27] XML Schema http://www.w3.org/XML/Schema

Appendix

start kmf::edoc2ws::main;

namespace kmf(sd, ocl) {
 transformation edoc2ws {
 -- EDOC.ECA.DocumentModel to WS.XSD
 -- Map an EDOC DataType to an XSD SimpleType
 rule dt2st match edoc::ECA::DocumentModel::DataType () {
 -- Create SimpleType and store mapping
 let st: ws::xsd::SimpleType;
 st := new ws::xsd::SimpleType;
 st.name := self.name;
 track(self, type2type, st);
 }
 -- Map an EDOC CompositeData to an XSD ComplexType
 rule cd2ct match edoc::ECA::DocumentModel::CompositeData () {
 -- Create ComplexType and store mapping
 let ct: ws::xsd::ComplexType;
 ct := new ws::xsd::ComplexType;
 ct.name := self.name;
 track(self, type2type, ct);
 }
 -- Map an EDOC Attribute to an XSD attribute
 rule at2at match edoc::ECA::DocumentModel::Attribute () {
 -- Create Attribute and store mapping
 let at: ws::xsd::Attribute;
 at := new ws::xsd::Attribute;
 at.name := self.name;
 track(self, at2at, at);
 }
 -- Link XSD attributes to XSD types
 rule linkAttribute2Type match edoc::ECA::DocumentModel::Attribute () {
 -- Get the XSD Attribute
 let xsdAttribute: ws::xsd::Attribute;
 xsdAttribute := track(self, at2at, null);
 -- Get the type
 let edocType: edoc::ECA::DocumentModel::DataElement;
 edocType := self.type;
 let xsdType: ws::xsd::Type;
 xsdType := track(edocType, type2type, null);
 xsdAttribute.type := xsdType;
 }
 -- Link XSD ComplexTypes to XSD Attributes
 rule linkComplexType2Attribute match edoc::ECA::DocumentModel::CompositeData () {
 -- Get the XSD ComplexType
 let xsdComplexType: ws::xsd::ComplexType;
 xsdComplexType := track(self, type2type, null);
 -- Add every attribute
 foreach edocAttribute: edoc::ECA::DocumentModel::Attribute in self.features do {
 let xsdAttribute : ws::xsd::Attribute;
 xsdAttribute := track(edocAttribute, at2at, null);
 xsdComplexType.sequence := xsdComplexType.sequence->including(xsdAttribute);

 }
 }
 -- Map concepts from EDOC.ECA.DocumentModel to WS.XSD concepts
 rule documentModel2xsd() {
 -- Create a SimpleType for each DataType
 apply dt2st();
 -- Create a ComplexType for each CompositeData
 apply cd2ct();
 -- Create an XSD Attribute for each EDOC Attribute
 apply at2at();
 -- Link XSD Attributes to XSD Types
 apply linkAttribute2Type();
 -- Link XSD ComplexTypes to XSD Attributes
 apply linkComplexType2Attribute();
 }
 -- Map concepts from EDOC.ECA.CCA to WS:WSDL
 -- Create a WSDL Message for each EDOC FlowPort
 rule flowPort2message match edoc::ECA::CCA::FlowPort () {
 -- Create Message
 -- Create part and add it
 -- Store mapping
 }
 -- Create a WSDL Operation for each EDOC OperationPort
 rule operationPort2operation match edoc::ECA::CCA::OperationPort () {
 -- Get input and output port
 -- Create input
 -- Create outpout
 -- Create Operation
 -- Store mapping
 }
 -- Create a WSDL PortType for each EDOC ProtocolPort
 rule protocolPort2portType match edoc::ECA::CCA::ProtocolPort () {
 -- Create a portType
 -- Add operations
 -- Store mapping
 }
 -- Create a WSDL Definition for each EDOC ProcessComponent
 rule processComponent2service match edoc::ECA::CCA::ProcessComponent () {
 -- Create Definition
 -- Create service
 -- Store mapping
 }
 -- Link Definition to Types
 rule linkDefinition2X match edoc::ECA::CCA::ProcessComponent () {
 -- Get the WSDL Service
 -- Add every portType
 }
 --- Map CCA to WSDL
 rule cca2wsdl() {
 -- Create a WSDL Message for each EDOC FlowPort
 apply flowPort2message();
 -- Map Operation Ports
 apply operationPort2operation();
 -- Map Protocol Ports
 apply protocolPort2portType();
 -- Map ProcessComponent
 apply processComponent2service();
 -- Link Definition to types, messages, and portTypes
 apply linkDefinition2X();
 }
 -- main rule
 rule main () {
 -- Map DocumentModel to XSD
 apply documentModel2xsd();
 -- ECA to WSLD
 apply cca2wsdl();
 }
 }
}

