
Lazy Assertions

Olaf Chitil, Dan McNeill and Colin Runciman

Department of Computer Science, The University of York, UK

Abstract. Assertions test expected properties of run-time values with-
out disrupting the normal working of a program. So in a lazy functional
language assertions should be lazy — not forcing evaluation, but only
examining what is evaluated by other parts of the program. We explore
the subtle semantics of lazy assertions and describe sequential and con-
current variants of a method for checking lazy assertions. All variants
are implemented in Haskell.

1 Introduction

A programmer writing a section of code often has in mind certain assumptions
or intentions about the values involved. Some of these assumptions or intentions
are expressed in a way that can be verified by a compiler, for example as part of
a type system. Those beyond the expressive power of static types could perhaps
be proved separately as theorems, but such a demanding approach is rarely
taken. Instead of leaving key properties unexpressed and unchecked, a useful
and comparatively simple option is to express them as assertions — boolean-
valued expressions that the programmer assumes or intends will always be true.
Assertions are checked at run-time as they are encountered, and any failures are
reported. If no assertion fails, the program runs just as it would normally, apart
from the extra time and space needed for checking.

The usefulness of assertions in conventional state-based programming has
long been recognised, and many imperative programming systems include some
support for them. In these systems, each assertion is attached to a program point;
whenever control reaches that point the corresponding assertion is immediately
evaluated to a boolean result. Important special cases of program points with
assertions include points of entry to, or return from, a procedure.

In a functional language, the basic units of programs are expressions rather
than commands. The commonest form of expression is a function application. So
our first thought might be that an assertion in a functional language can simply
be attached to an expression: an assertion about arguments (or ‘inputs’) alone
can be checked before the expression is evaluated and an assertion involving
the result (or ‘output’) can be checked afterwards. But in a lazy language this
view is at odds with the need to preserve normal semantics. Arguments may
be unevaluated when the expression is entered, and may remain unevaluated or
only partially evaluated even after the expression has been reduced to a result.
The result itself may only be evaluated to weak head-normal form. So neither

arguments nor result can safely be the subjects of an arbitrary boolean assertion
that could demand their evaluation in full.

How can assertions be introduced in a lazy functional language? How can we
satisfy our eagerness to evaluate assertions, so that failures can be caught as soon
as possible, without compromising the lazy evaluation order of the underlying
program to which assertions have been added? We aim to support assertions
by a small but sufficient library defined in the programming language itself.
This approach avoids the need to modify compilers or run-time systems and
gives the programmer a straightforward and familiar way of using a new facility.
Specifically, we shall be programming in Haskell[3].

The rest of the paper is organised as follows. Section 2 uses two examples
to illustrate the problem with eager assertions in a lazy language. Section 3
outlines and illustrates the contrasting nature of lazy assertions. Section 4 first
outlines an implementation of lazy assertions that postpones their evaluation
until the underlying program is finished; it then goes on to describe alternative
implementations in which each assertion is evaluated by a concurrent thread.
Section 5 uncovers a residual problem of sequential demand within assertions.
Section 6 gives a brief account of our early experience using lazy assertions in
application programs. Section 7 discusses related work. Section 8 concludes and
suggests future work.

2 Eager Assertions Must be True

A library provided with the Glasgow Haskell compiler1 already includes a func-
tion assert :: Bool -> a -> a. It is so defined that assert True x = x but
an application of assert False causes execution to halt with a suitable error
message. An application of assert always expresses an eager assertion because
it is a strict function: evaluation is driven by the need to reduce the boolean ar-
gument, and no other computation takes place until the value True is obtained.

Example: sets as ordered trees

Consider the following datatype.

data Ord a => Set a = Empty

| Union (Set a) a (Set a)

Functions defined over sets include with and elem, where s ‘with‘ x represents
s ∪ {x} and x ‘elem‘ s represents the membership test x ∈ s.

1 http://www.haskell.org/ghc

with :: Ord a => Set a -> a -> Set a

Empty ‘with‘ x = Union Empty x Empty

(Union s1 y s2) ‘with‘ x = case compare x y of

LT -> Union (s1 ‘with‘ x) y s2

EQ -> Union s1 y s2

GT -> Union s1 y (s2 ‘with‘ x)

elem :: Ord a => a -> Set a -> Bool

x ‘elem‘ Empty = False

x ‘elem‘ (Union s1 y s2) = case compare x y of

LT -> x ‘elem‘ s1

EQ -> True

GT -> x ‘elem‘ s2

The Ord a qualification in the definition of Set and in the signatures for
with and elem only says that comparison operators are defined for the type a.
It does not guarantee that Set a values are strictly ordered trees, which is what
the programmer intends. To assert this property, we could define the following
predicate.

strictlyOrdered :: Ord a => Set a -> Bool

strictlyOrdered = soBetween Nothing Nothing

where

soBetween _ _ Empty = True

soBetween lo hi (Union s1 x s2) = between lo hi x &&

soBetween lo (Just x) s1 &&

soBetween (Just x) hi s2

between lo hi x = maybe True (< x) lo && maybe True (> x) hi

Something else the programmer intends is a connection between with and
elem. It can be expressed by asserting x ‘elem‘ (s ‘with‘ x). Combining this
property with the ordering assertion we might define:

s ‘checkedWith‘ x = assert post s’

where

s’ = assert pre s ‘with‘ x

pre = strictlyOrdered s

post = strictlyOrdered s’ && x ‘elem‘ s’

Observations The eager assertions in checkedWith may ‘run ahead’ of evalu-
ation actually required by the underlying program, forcing fuller evaluation of
tree structures and elements. The strict-ordering test is a conjunction of two
comparisons for every internal node of a tree, forcing the entire tree to be eval-
uated (unless the test fails). Even the check involving elem forces the path from
the root to x.

Does this matter? Surely some extra evaluation is inevitable when non-trivial
assertions are introduced? It does matter. If assertion-checking forces evaluation

0

-2 +2

-6 -1 +1 +6

· · · -4 +4 · · ·

-5 -3 +3 +5

Fig. 1. A tree representation of the infinite set of integers. Each integer i occurs at
a depth no greater than 2log

2
(abs(i) + 1). Differences between adjacent elements on

leftmost and rightmost paths are successive powers of two.

it could degenerate into a pre-emptive, non-terminating and unproductive pro-
cess. What if, for example, a computation involves the set of all integers, rep-
resented as in Figure 1? Functions such as elem and with still produce useful
results. But checkedWith eagerly carries the whole computation away on an
infinite side-track!

Even where eager assertions terminate they may consume time or space out
of proportion with normal computation. Also, assertions are often checked in the
hope of shedding light on a program failure; it could be distracting to report a
failed assertion about values that are irrelevant as they were never needed by
the failing program.

3 Lazy Assertions Must Not Be False

So assertions should only examine those parts of their subject data structures
that are in any case demanded by the underlying program. Lazy assertions should
make a (provisional) assumption of validity about other data not (yet) evaluated.
Computation of the underlying program should proceed not only if an assertion
reduces to True, but also if it cannot (yet) be reduced to a value at all; the only
constraint is that an assertion must never reduce to False.

If we are to guard data structures that are the subjects of assertions from
over-evaluation, we cannot continue to allow arbitrary boolean expressions in-
volving these structures. We need to separate the predicate of the assertion from
the subject to which it is applied. An implementation of assertions should com-
bine the two using only a special evaluation-safe form of application. So the type
of assert becomes

assert :: (a -> Bool) -> a -> a

where assert p acts as a lazy partial identity.

1. main computation 2. assertion computations

• • •

assertion store

Fig. 2. Delayed Assertions in Time

Example revisited

If we had an implementation of this lazy assert, how would it alter the ordered-
tree example? In view of the revised type of assert, the definition of checkedWith
must be altered slightly, making pre and post predicates rather than booleans.

s ‘checkedWith‘ x = assert post (assert pre s ‘with‘ x)

where

pre = strictlyOrdered

post = \s’ -> strictlyOrdered s’ && x ‘elem‘ s’

Now the computation of a checkedWith application proceeds more like a normal
application of with. Even if infinite sets are involved, the corresponding asser-
tions are only partially computed, up to the limits imposed by the finite needed
parts of these sets.

4 Implementation

Having established the benefits of lazy assertions we now turn to the question
of how they can be implemented in Haskell. We develop an assertion library in
steps: we start with a simple version, criticise it, and then refine it to the next
version.

4.1 Delayed Assertions

We have to ensure that the evaluation of the assertions cannot disturb the eval-
uation of the underlying program. A very simple idea for achieving this is to
evaluate all assertions after termination of the main computation.

Figure 2 illustrates the idea. The main computation only evaluates the un-
derlying program and collects all assertions in a global store. After termination
of the main computation assertions are taken from the store and evaluated one
after the other.

We are certain that lazy assertions cannot be implemented within pure
Haskell 98. In particular we need the function unsafePerformIO :: IO a -> a

to perform actions of the IO monad without giving assert a monadic type.
We aim to minimise the use of language extensions and restrict ourselves to
extensions supported by most Haskell systems. Our implementation is far more
concise and potentially portable than any modification of a compiler or run-time
system could be.

Which extensions do we need for delayed assertions? Extended exceptions
enable a program to catch all erroneous behaviour of a subcomputation. They
ensure that all assertions are evaluated, even if the main computation or any
other assertion evaluated earlier fails. A mutable variable of type IORef im-
plements the global assertion store. Finally unsafePerformIO :: IO a -> a

enables us to implement assert using exceptions and mutable variables [7].

Properties of the Implementation. This simple implementation does not prevent
an assertion from evaluating a test argument further than the main computation
did. Because assertion checking is delayed, over-evaluation cannot disturb the
main computation, but it can cause run-time errors or non-termination in the
evaluation of an assertion (see Section 2).

4.2 Avoiding Over-Evaluating

To avoid over-evaluation do we need any non-portable “function” for testing if an
expression is evaluated? No, exceptions and the function unsafePerformIO are
enough. We can borrow and extend a technique from the Haskell Object Obser-
vation Debugger (HOOD) [4]. We arrange that as evaluation of the underlying
program demands the value of an expression wrapped with an assertion, the
main computation makes a copy of the value. Thus the copy comprises exactly
those parts of the value that were demanded by the evaluation of the underlying
program.

We introduce two new functions, demand and listen. The function demand

is wrapped around the value that is consumed by the main computation. The
function returns that value and, whenever a part of the value is demanded, the
function also adds the demanded part to the copy. The assertion uses the result
of the function listen. The function listen simply returns the copy; because
listen is only evaluated after the main computation has terminated, listen
returns those parts of the value that were demanded by the main computation.
If the result of listen is evaluated further, then it raises an exception. For
every part of a value there is a demand/listen pair that communicates via an
IORef. The value of the IORef is Unblocked v to pass a value v (weak head
normal form) or Blocked to indicate that the value was not (yet) demanded.
The implementation of demand is specific for every type. Hence we introduce a
class Assert and the type of assert becomes Assert a => String -> (a ->

Bool) -> a -> a. Appendix A gives the details of the implementation.

main
computation

assertion
computations

8>>>>>><>>>>>>:

• • •

Fig. 3. Concurrent Assertions in Time

Properties of the Implementation. An assertion can use exactly those parts of
values that are evaluated by the main computation, no less, no more. However, if
an assertion fails, the programmer is informed rather late; because of the problem
actually detected by the assertion, the main computation may have run into a
run-time error or worse a loop. The computation is then also likely to produce a
long, fortunately ordered, list of failed assertions. A programmer wants to know
about a failed assertion before the main computation uses the faulty value!

4.3 Concurrent Assertions

How can we evaluate assertions as eagerly as possible yet still only using data that
is demanded by the main computation? Rather than delaying assertion checking
to the end, we can evaluate each assertion in a separate thread concurrently to
the main computation. We require a further extension of Haskell 98: Concurrent
Haskell [7].

Figure 3 illustrates the idea. Each evaluation of assert in the main com-
putation starts a new thread for evaluating the assertion itself. As before, the
value tested by an assertion is copied as it is demanded by the main compu-
tation and the copy is used by the assertion. Replacing the IOVar shared by
a demand/listen pair by an MVar synchronises the assertion thread with the
demand of the main computation. The assertion thread has to wait when it tries
to evaluate parts of the copy that do not (yet) exist.

Properties of the Implementation. Concurrency ensures that even if the main
computation runs into an infinite loop, a failed assertion will be reported. In
general failed assertions may be reported earlier. However, there is no guarantee,
because the scheduler is free to evaluate assertions at any time. They may — and
in practice often are — evaluated after the main computation has terminated.

4.4 Priority of Assertions

To solve the problem we need to give assertion threads priority over the main
computation. Unfortunately Concurrent Haskell does not provide threads with

main
computation

assertion
computations

8>>>>>><>>>>>>:

• • •

Fig. 4. Concurrent Assertions with Priority in Time

different priorities. However, coroutining enables us to give priority to assertions.
We explicitly pass control between each assertion thread and the main thread.
When an assertion demands a part of a value that has not yet been demanded
by the main computation, the assertion thread is blocked and control is passed
to the main thread. Whenever the main thread demands another part of the
tested value and an assertion thread is waiting for that value, the main thread
is blocked and control is passed to the assertion thread. Thus the assertion
always gets a new part of the value for testing before it is used by the main
computation. Figure 4 illustrates the idea and Appendix B gives the details of
the implementation which uses semaphores to pass control.

Properties of the Implementation. Coroutining ensures that a failed assertion is
reported before the main computation uses the faulty value. Furthermore, the
implementation does not hold onto all data needed by assertions until the end of
the computation, because assertions are evaluated as early as possible without
over-evaluation. However, assertions that cannot be fully evaluated are still live
until the end of the whole computation.

4.5 Garbage Collecting Stuck Assertions

When a tested value is no longer reachable from the main computation thread,
it will no longer be demanded by the main computation and hence the assertion
thread is permanently stuck. We extend the coroutining implementation with
finalisers [8] that kill an assertion thread when its value is no longer reachable
from the main computation thread.

Properties of the Implementation. This implementation reduces the require-
ments for space and threads.

4.6 Conclusions

During development we identified the following important properties of a lazy
assertion library.

– Evaluation of assertions does not influence the main computation.
– Assertions do not evaluate values further than the main computation does.
– A failed assertion is reported before the main computation uses the faulty

value.
– The requirements for space and threads are minimised.

For each property we developed a new implementation. Unfortunately we find
that the implementations using coroutining violate the first property. Suppose
we define assertFun as follows to assert a relation between the argument and
result of a function.

assertFun :: (Assert a, Assert b)

=> String -> (a->b->Bool) -> (a->b) -> (a->b)

assertFun n p f i = o’

where

(i’,o’) = assert n (uncurry p) (i,f i’)

This cyclic definition works fine with all but the coroutining implementations of
assert. With coroutining a deadlock occurs because the assertion thread waits
for the input i’ of the function which has to be produced by the assertion thread
itself.

We conclude that the concurrent implementation without priorities is the
most useful implementation we have. We have to aim for a concurrent imple-
mentation with priorities and garbage collection of stuck assertions that controls
threads less restrictively than coroutining.

5 Sequential Semantics causes Stuck Assertions

We noted in Section 3 that lazy assertions must not be False. Computation
of the underlying program should proceed not only if an assertion reduces to
True, but also if computation of the assertion is stuck, that is the assertion
cannot (yet) be reduced to a value at all. Consequently our implementations do
not distinguish between assertions that reduce to True and assertions that are
stuck.

Evaluation order can often be disregarded when considering the correctness
of lazy functional programs. Lazy evaluation does, however, specify a mostly
sequential semantics. The semantics of logical connectives such as (&&) are not
symmetric. When the order in which an assertion demands components of a data
structure does not agree with the order in which the main computation demands
the components of that data structure, the assertion can get stuck.

Example revisited again

Consider evaluation of the following expression:

5 ‘elem‘ (assert "ordered" strictlyOrdered

(Union (Union Empty 2 Empty) 3 (Union Empty 1 Empty)))

The given set is not strictly ordered, but no assertion fails! This is because
only the part

Union _ 3 (Union _ 1 Empty)

of the set is ever demanded by the computation (indicates an undemanded
expression). The computation of the function strictlyOrdered traverses the
tree representation of the set in preorder. Hence it gets stuck on the unevaluated
left subtree of the root Union constructor. Consequently it never makes the
comparison 3 < 1 which would immediately make the assertion fail.

Detecting the problem. It would help to list at the end of all computation all
assertions that are stuck. It is easy to extend our implementations to do this.

A solution? We could avoid sequentiality in the assertion by creating a separate
assertion for each atomic test. In the following definition the sequential (&&)s
have been replaced by asserts that do not actually check any property of their
last arguments but start separate assertions. This assertion is as eager as possible,
because each between comparison is separate.

assertStrictlyOrdered :: Ord a => String -> Set a -> Set a

assertStrictlyOrdered n = assert n (soBetween Nothing Nothing)

where

soBetween _ _ Empty = True

soBetween lo hi (Union s1 x s2) =

assert n (const (soBetween lo (Just x) s1)) $

assert n (const (soBetween (Just x) hi s2)) $

between lo hi x

between lo hi x = maybe True (< x) lo && maybe True (> x) hi

These assertions within assertions work with all implementations except for
the coroutining ones. Again coroutining leads to a deadlock.

Using assertions within assertions is a trick that should not be our final
answer to the problem of stuck sequential assertions. An alternative implemen-
tation might use a new type that replaces Bool and provides a parallel logical
conjunction.

6 Larger Applications

As yet we have only tried out lazy assertions in a few programs of modest size.
We note briefly some of our experience with two of these programs.

Clausify

The clausify program puts propositions represented using the type

data Prop = Sym Char | Neg Prop

| Dis Prop Prop | Con Prop Prop

| Imp Prop Prop | Eqv Prop Prop

into clausal form, by a composition of several stages. We found it convenient to
write assertions using an auxiliary function

propHas :: (Prop -> Bool) -> Prop -> Bool

defined so that propHas t p applies test t both to p itself and to all Props that
p contains. We also find a use for implication lifted to predicate level

implies :: (a -> Bool) -> (a -> Bool) -> (a -> Bool).

After successive stages, the following assertions should hold, cumulatively:

1. propHas (\p -> not (isImp p || isEqv p))

Imp and Eqv are eliminated.
2. propHas (isNeg ‘implies‘ (\(Neg q) -> isSym q))

In addition, Neg (Sym) is the only permitted form of negation.
3. propHas (isDis ‘implies‘ \(Dis p q) -> not (isCon p || isCon q))

Further, no Con occurs within a Dis.

If a fault is introduced into any of these stages, so that it fails to normalise a
proposition as it should, the result is typically a pattern-matching failure in a
later stage. We found that lazy assertion checking often reports the failure in
the earlier stage, but sometimes inconclusively reports the relevant assertion as
stuck. To minimise stuckness one has to think carefully about evaluation order
in assertions.

Pasta

Further issues arose when we introduced lazy assertions in pasta, an interpreter
for a small imperative language with dynamic data structures. Our goal was to
assert a data invariant for a moderately complex data structure representing the
environment and store:

data EnvStore = ES {sig :: Signature,

ops :: [Operation],

scope :: [Name],

stack :: [Value],

heap :: [StructVal]}

To make assertions over EnvStore values would seem to require an Assert in-
stance for EnvStore. But because of the various component types (and their

component types etc.) this would mean a fair bit of work in several different
modules. As the invariant properties relate only the scope, stack and heap, we
avoid much of this work by embedding the invariant assertion in a smart con-
structor like this:

es si o sc st h = ES si o sc’ st’ h’

where

(sc’,st’,h’) = assert "ES invariant" dataInv (sc,st,h)

The details of dataInv are not important here. The most surprising result was
that none of the dataInv assertions was ever fully evaluated! The explanation
is that the interpreter uses EnvStore values in a single-threaded way, and each
state change only involves accessing a small part of the relevant EnvStore. Since
lazy assertions only check the parts actually used by the program, they never
get to check a complete EnvStore structure. The contrast with an eager data
invariant is striking.

7 Related Work

The work reported in this paper started as a BSc project. The second author’s
dissertation [5] describes experiments with an earlier version of concurrent as-
sertions.

In Section 4 we adapted a technique first used in HOOD [4]. HOOD defines a
class of types for which an observe function is defined. Programmers annotate
expressions whose values they wish to observe by applying observe label to them,
where label is a descriptive string. These applicative annotations act as identities
with a useful side-effect: each value to which an annotated expression reduces —
so far as it is demanded by lazy evaluation — is recorded, fragment by fragment
as it is evaluated, under the appropriate label. The similarity of observe and
assert is clear, but an important difference is that whereas observe records
a sequence of labelled fragments for subsequent inspection or separate process-
ing, assert reassembles them for further computation within the same Haskell
program. A HOOD programmer can evaluate by inspection any assumptions or
intentions they may have about recorded values, but this inspection is a laborious
and error-prone alternative to machine evaluation of predicates.

HOOD does not require threads or non-trivial delayed computations. A frag-
ment of a value is recorded just when it is demanded. It would be nice if the
implementation of assertions could be that simple. However, an assertion usually
relates several fragments of a value, for example, it may compare two numbers
in a tree. The assertion can only be checked when the last of the two numbers
becomes available, no matter in which order they are demanded by the main
computation. Additionally, the demands of the assertion predicate can only be
determined by applying it to an argument.

Another well-established Haskell library for checking properties of functional
programs is QuickCheck [1]. Properties are defined as boolean-valued functions,
as in the example:

prop_ElemWith :: Set Int -> Int -> Bool

prop_ElemWith s x = x ‘elem‘ (s ‘with‘ x) == True

Evaluating quickCheck prop ElemWith checks the property using a test suite of
pseudo-randomly generated sets and elements as the values of s and x. The test-
value generators are type-determined and they can be customised by program-
mers. QuickCheck reports statistics of successful tests and details of any failing
case discovered. This sort of testing nicely complements assertions. QuickCheck
properties are not limited to expressions that fit the context of a particular
program point, and a separate testing process imposes no overhead when an
application is run. But assertions have the advantage of testing values that ac-
tually occur in a program of interest, and provide a continuing safeguard against
undetected errors.

Möller [6] offers a different perspective on the role of assertions in a func-
tional language. The motivating context for his work is transformational program
development; assertions carry parts of the specification and are subject to refine-
ment. He assumes strict semantics, however, and does not consider the problem
of assertions in a lazy language.

8 Conclusions and Future Work

Assertions, first used in call-by-value procedural languages, can also be useful in
a call-by-need functional language; but they should be constrained appropriately.
The key requirement is that assertion-checking never forces evaluation beyond
the needs of the underlying program.

We have shown how appropriately lazy assertions can be supported by a high-
level library. Our account has been based on experimental prototypes developed
using the Glasgow Haskell Compiler, and these prototypes do rely on some of
the language extensions this compiler supports. We would prefer to have a more
portable library.

It would be easy to extend the reports from a failed assertion to include the
evaluated part of its subject value. To allow the causes of assertion failures to
be traced, we may eventually support the use of assertions in connection with
Hat [9, 2].

We do need more experience with the use of lazy assertions in larger applica-
tions. So far we have found that expressing assertions in the functional language
itself is a pleasant task, but it might be useful to include a few standard com-
binators in the library, especially for making assertions about functional (and
perhaps monadic) values. Programming lazy assertions to fail as eagerly as pos-
sible can be tricky, and it is not yet clear whether suitable abstractions such as
concurrent logical operators will help. We also need to explore further the effect
of assertions on the time and space performance of a program, particularly as the
copying of values can cause a loss of sharing. Pragmatics are not easily hidden
by abstraction!

Acknowledgements

Thanks to Dean Herington, Claus Reinke and Simon Peyton Jones for their
contributions to a discussion on the Haskell mailing list about how to achieve
data-driven concurrency.

References

1. K. Claessen and R. J. M. Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. In Proc. 5th Intl. ACM Conference on Functional

Programming, pages 268–279. ACM Press, 2000.
2. K. Claessen, C. Runciman, O. Chitil, J. Hughes, and M. Wallace. Testing and

tracing lazy functional programs using QuickCheck and Hat. In Lecture notes of

the 4th Intl. Summer School in Advanced Functional Programming. 40pp, to appear
in Springer LNCS, 2002.

3. S. L. Peyton Jones (Ed.). Haskell 98: a non-strict, purely functional language.
Journal of Functional Programming, 13(1):special issue, 2003.

4. A. Gill. Debugging Haskell by observing intermediate datastructures. Electronic

Notes in Theoretical Computer Science, 41(1), 2001. (Proc. 2000 ACM SIGPLAN
Haskell Workshop).

5. D. McNeill. Concurrent data-driven assertions in a lazy functional language. Tech-
nical report, BSc Project Dissertation, Department of Computer Science, University
of York, 2003.

6. B. Möller. Applicative assertions. In J. L. A. van de Snepscheut, editor, Mathematics

of Program Construction, pages 348–362. Springer LNCS 375, 1989.
7. S. L. Peyton Jones. Tackling the awkward squad: monadic input/output, concur-

rency, exceptions and foreign-language calls in haskell. In C. A. R. Hoare, M. Broy,
and R. Steinbruggen, editors, Engineering theories of software construction, pages
47–96. IOS Press, 2001.

8. Simon L. Peyton Jones, Simon Marlow, and Conal Elliott. Stretching the storage
manager: Weak pointers and stable names in haskell. In Implementation of Func-

tional Languages, 11th International Workshop, IFL’99, volume 1868 of LNCS 1868,
pages 37–58, 2000.

9. M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-view tracing for
Haskell: a new Hat. In ACM Workshop on Haskell, 2001.

A Sequential Implementation: Delayed Assertions

Avoiding Over-Evaluation

We introduce a global mutable variable finalisers that stores a list of pending
assertions, to be checked at the end of the main computation.

finalisers :: IORef [IO ()]

finalisers = unsafePerformIO $ newIORef []

The function assert simply adds an assertion to the finalisers list. The
function also takes a string as argument to simplify identification when an as-
sertion fails.

assert :: Assert a => String -> (a -> Bool) -> a -> a

assert s p x = unsafePerformIO $ do

r <- newIORef Blocked

fins <- readIORef finalisers

writeIORef finalisers (evalAssertion s p (listen r) : fins)

return (demand r x)

Only evaluation of evalAssertion n p x actually evaluates the assertion of
name n and predicate p with test argument x. The function evalAssertion has
to catch exceptions to ensure that an exception in one assertion does not prevent
the remaining pending assertions from being tested. The function evalAssertion

also has to handle the case that it is blocked to avoid over-evaluation:

evalAssertion :: String -> (a -> Bool) -> a -> IO ()

evalAssertion n p x = do

Control.Exception.catch

(when (not (p x))

(hPutStrLn stderr ("\nAssertion " ++ show n ++ " failed.")))

(\e -> case e of

ErrorCall "blocked" -> return ()

_ -> hPutStrLn stderr ("\nAssertion " ++ show n ++

" raised exception: " ++

show e))

To use assertions we have to wrap the action corresponding to the underlying
program by applying runA to it. To ensure that the assertions are always run at
the end of the computation, the definition of runA has to catch any exception
occurring in the main computation.2

runA :: IO a -> IO ()

runA io = do

Control.Exception.catch io

(const (putStrLn "Exception occurred in main computation" >>

return undefined))

fins <- readIORef finalisers

sequence_ fins

Finally the functions demand and listen implement the demand driven copy-
ing of a tested value by the main computation for the assertion.

data ValState a = Blocked | Unblocked a

class Assert a where

2 The variable finalisers is initialised with the empty list. However, interactive inter-
preters may not reevaluate a CAF such as finalisers every time a new expression
is interactively evaluated. Hence to ensure correct initialisation we have to insert
writeIORef finalisers [] as first line in the do block of runA.

demand :: IORef (ValState a) -> a -> a

instance Assert a => Assert [a] where

demand r [] = unsafePerformIO $ do

writeIORef r (Unblocked [])

return []

demand r (x:xs) = unsafePerformIO $ do

r1 <- newIORef Blocked

r2 <- newIORef Blocked

writeIORef r (Unblocked (listen r1 : listen r2))

return (demand r1 x : demand r2 xs)

listen :: IORef (ValState a) -> a

listen r = unsafePerformIO $ do

val <- readIORef r

case val of

Blocked -> error "blocked"

Unblocked x -> return x

B Concurrent Implementation: Assertions with Priority

To control the running status of a pair of threads we introduce a Switch of two
binary semaphores and associated functions for passing control. The function
waitQSem blocks a thread until a ‘unit’ of a semaphore becomes available, and
signalQSem makes a ‘unit’ available.

data Switch = S QSem QSem

initSwitch :: IO Switch

initSwitch = do mainS <- newQSem (-1)

assertS <- newQSem (-1)

return (S mainS assertS)

continueAssert :: Switch -> IO ()

continueAssert (S mainS assertS) = do signalQSem assertS

waitQSem mainS

continueMain :: Switch -> IO ()

continueMain (S mainS assertS) = do signalQSem mainS

waitQSem assertS

finishAssert :: Switch -> IO ()

finishAssert (S mainS _) = signalQSem mainS

A part of a tested value can be in any of three states: (1) not yet demanded
by either the main or the assertion thread, (2) demanded by the assertion thread

which is hence blocked, and (3) evaluated, because it was demanded by the main
thread:

data ValState a = Untouched | DemandedByAssert | Evaluated a

The basic idea of copying the test value on demand is still the same as
before. As a helper for the function demand we introduce the function copy. It
distinguishes the states DemandedByAssert and Evaluated and passes control
to the assertion thread in the first case. Similarly the function listen passes
control according to the state.

class Assert a where

demand :: a -> Switch -> IORef (ValState a) -> a

instance Assert a => Assert [a] where

demand [] s = unsafePerformIO $ do

copy s r []

return []

demand (x:xs) s = unsafePerformIO $ do

r1 <- newIORef Untouched

r2 <- newIORef Untouched

copy s r (listen s r1 : listen s r2)

return (demand x s r1 : demand xs s r2)

copy :: Switch -> IORef (ValState a) -> a -> IO ()

copy s r x = do

state <- readIORef r

case state of

Untouched -> writeIORef r (Evaluated x)

DemandedByAssert -> do

writeIORef r (Evaluated x)

continueAssert s

listen :: Switch -> IORef (ValState a) -> a

listen s r = unsafePerformIO $ do

state <- readIORef r

case state of

Untouched -> do

writeIORef r DemandedByAssert

continueMain s

state <- readIORef r

case state of

Evaluated x -> return x

Evaluated x -> return x

Finally we adapt the definitions of the function assert and evalAssertion

to the concurrent setting. The function forkIO starts a new thread.

assert :: Assert a => String -> (a -> Bool) -> a -> a

assert n p x = unsafePerformIO $ do

r <- newIORef Untouched

s <- initSwitch

forkIO (evalAssertion n p (listen s r) >> finishAssert s)

continueAssert s

return (demand x s r)

evalAssertion :: String -> (a -> Bool) -> a -> IO ()

evalAssertion n p x = do

Control.Exception.catch

(when (not (p x))

(hPutStrLn stderr ("\nAssertion " ++ show n ++ " failed.")))

(\e -> hPutStrLn stderr

("\nAssertion " ++ show n ++

" failed with exception: " ++ show e)

This implementation does not need a wrapper function runA.

C The class Assert and its Instances

In both sequential and concurrent implementations there is a class Assert. We
need an instance of Assert for every type of value that we wish to make as-
sertions about. To simplify the writing of new instances we define a family of
demandn functions. For the concurrent implementation they are defined as fol-
lows:

demand0 :: Switch -> IORef (ValState a) -> a -> a

demand0 x s r = unsafePerformIO $ do

copy s r x

return x

demand1 :: (Assert b) => (b -> a) -> b

-> Switch -> IORef (ValState a) -> a

demand1 c x1 s r = unsafePerformIO $ do

r1 <- newIORef Untouched

copy s r (c (listen s r1))

return (c (demand x1 s r1))

demand2 :: (Assert b, Assert c) => (c -> b -> a) -> c -> b

-> Switch -> IORef (ValState a) -> a

demand2 c x1 x2 s r = unsafePerformIO $ do

r1 <- newIORef Untouched

r2 <- newIORef Untouched

copy s r (c (listen s r1) (listen s r2))

return (c (demand x1 s r1) (demand x2 s r2))

Instances thus become short and easy to write:

instance Assert a => Assert [a] where

demand [] = demand0 []

demand (x:xs) = demand2 (:) x xs

instance (Assert a,Assert b) => Assert (a,b) where

demand (x,y) = demand2 (,) x y

instance Assert Char where

demand c = c ‘seq‘ demand0 c

The use of seq is needed in the last case where no pattern matching takes place
to ensure that the value is always evaluated by the main thread, not the assertion
thread.

Although this is an improvement, a tool such as DrIFT 3 is still useful to
derive what may be a large number of instances.

A different problem is that the class context of the function assert restricts
its use in the definition of polymorphic functions. For our running example we
obtain the type

checkedWith :: (Ord a, Assert a) => Set a -> a -> Set a

Users of HOOD seem to be able to live with a similar restriction.
For Hugs there is a special version of HOOD that provides a built-in poly-

morphic function observe. Likewise a built-in polymorphic function assert is
feasible. Even better, since the implementations of observe and assert are
based on the same technique, it is desirable to identify the functionality of a
single built-in polymorphic function in terms of which both observe, assert
and possibly further testing and debugging functions could be defined. A built-
in polymorphic function removes both the annoying need for a large number of
similar instances and the restricting class context.

3 http://repetae.net/john/computer/haskell/DrIFT/

