
Post-industrial-revolution HCI

Colin Johnson
University of Kent

Computing Laboratory
Canterbury, Kent, CT2 7NF

C.G.Johnson@kent.ac.uk

ABSTRACT
This paper argues that computing in its present state is akin to the state of manufacturing prior to the industrial revolution. It is
suggested that eventually an industrial revolution will occur in programming through the use of automated program generation
tools, which will allow the rapid creation of programs on-the-fly from what-needs-doing descriptions rather than the how-to-
do-it descriptions of traditional programming. What would interfaces to computers look like in this context, and how would
they aid users in coping with complexity?

INTRODUCTION
The aim of this paper is to explore what Human-Computer Interaction would look like if computing were to enter what we will
refer to as a post-industrial-revolution phase. In the first main section of the paper it is argued that computing as we presently
understand it is in a state similar to manual industry before the industrial revolution. This concept is defined and explored,
and some notions of what post-industrial-revolution computing might look like are outlined. The core notion is that computer
programming becomes cheap, rapid and above allautomated. That is, most programming will be carried out on-the-fly by
automated programming systems.

The remainder of this paper then explores the consequences of this for HCI and ways in which humans can cope with complex
problems using computer systems. How will the interfaces to computers change is bespoke programs can be created on-the-fly,
and what sort of interfaces will be required to interface with those computing systems? How will this affect our understanding
of the notion of “context” if we can process that context rapidly? How can we exploit micro-models created by such automated
programming methods to put ambient guidance into systems such as data visualisation systems? And might this lead to a world
in which computers are “programmed” by statements of what the computer should do rather than how it is to do it? What might
interfaces to such systems look like? And what would still be difficult or complex?

COMPUTING IS IN A PRE-INDUSTRIAL-REVOLUTION ERA
This paper is predicated on the notion that computing is currently in a state which can be compared with traditional manu-
facturing industry before the industrial revolution. In particular, the production of computing artifacts is still carried out in a
manner reminiscent of craft rather than industry; many individuals bringing their individual skills and semi-informally acquired
knowledge to the careful production of a specialised artifact over many months or years.

WHAT MIGHT POST-INDUSTRIAL-REVOLUTION COMPUTING LOOK LIKE?
The argument that I would like to base the remainder of this paper on is that eventually (it is hard to predict when) computing
is likely to mature to a stage where there is an “industrial revolution” of sorts. The most important feature of this stage in
the development of the discipline will be that programming will become a day-to-day activity, with programs being generated
on-the-fly as needed.

There are a number of reasons why such a change might eventually arise. The first is an increased amount of work in a nascent
field which could be called “automatic programming”. This encompasses many topics which are currently considered to belong
to radically different areas of computing, unified by the aim of developing systems which are able to generate program source
code from descriptions of desired behaviour.

One example of a current discipline which may contribute towards this effort is that ofgenetic programmingand related
techniques. A second discipline, which is currently seen as sitting at an opposite end of computer science, are formal techniques
such as refinement which enable the distillation of specifications into executable programs by gradually replacing more abstract
descriptions with more concrete ones.

A second form of evidence comes from sub-disciplines where this kind of change has already occurred. One example is in the



area of data analysis, data mining and statistical model building. Only a short while ago such activities were in a pre-industrial-
revolution model, with large, complicated models being developed over many months and being treated as delicate things. This
retains a place (e.g. in some areas of economic modelling), but the main mode of working in these areas is now interactive
on-the-fly model-building using tools such asClementineandWeka. These allow and encourage the production of models as
and when needed, using automated model-construction tools such as decision-tree induction and neural network modelling.
Another example comes in the area known as meta-heuristics, where general problem solving techniques for optimization,
classification, et cetera are developed and then specialized to a particular problem. This contrasts with the traditional notion of
programming as building up from nothing.

INTERFACES: FROM “HOW” TO “WHAT”?
One view of the development of computer science is that we are eventually looking to move from a view of computing based
on telling the computerhow to do something to telling itwhat to do. This represents a radical shift in how we interface with
computers.

What-based interfaces
What might an interface to such a system look like? The canonical science-fictional portrayal of a what-based interface is given
by the voice interfaces on TV programmes such asStar Trek. Clearly such an interface would require vast advances in terms
of language processing capabilities as well as in the automated generation of functionality from descriptions.

If we are describe complex problems to the computer in a what-language rather than a how-language, then we need to appreciate
that there are different kinds of problems. For example some problems are naturally defined bydatarather than specifications,
e.g. a pattern recognition problem. The data is not simply some examples of a Platonic ideal form which can be specified;
the datadefinethe problem. It has been noted by Partridge that often attempts are made to force these problems through what
he calls aspecification bottleneck, where an artificial specification is devised to capture what should be left as data. Some
problems are best defined “interactively” e.g. where the computer generates proto-solutions which are chosen by the user then
improved upon. How can we develop interfaces which present the user with a natural way of describing problems in each of
these forms?

Is what-we-want really what we want?
It is typically assumed that such systems would represent a radical improvement on conventional programming approaches. It
is assumed that if we can “just tell the computer what we want” then that represents a vast improvement on having to tell it “all
the little details”. In terms of software engineering frameworks we miss out the middle of many models, leaping straight from
requirements elicitation to deployment (or at least testing; but we hopethat will be automated, too).

However perhaps there are some potential problems that we are blind to because of our experience in interacting with traditional
software:

• Is it really all that easy to come up with a good description of the “what” that we require? Perhaps we only think that this is
easy because we think that how-based approaches are difficult and “anything else” must be better.

• Do we lose something of the “interactivity” that we get with how-based systems? Perhaps we are able to realize complex
systems in how-based programming because a human programmer is drawing on a mixture of ambient background do-
main knowledge, “common sense”, small-scale reasoning about the problem and the requirements for the solution andtacit
knowledgeabout the specific problem and problem solving in general which an automated programming system would not
have. Perhaps the mistakes, trials and prototypes that we produce in programming are part of the essence of producing good
programs?

• How easy is it to be “complete” in the descriptions that we give in how-programming? If we miss out a requirement, will we
notice that in the final program? How can we constrain what kinds of requirements we need to specify (this is essentially the
frame problemfrom classical AI)? Do we find it easier to find missing requirements when we are actively engaged in telling
the computer what to do, compared with merely providing a list of how statements and letting automated programming do
the rest?

It is perhaps sobering to think that at one point the things we now know as (high-level) programming languages were sometimes
referred to using terms like “automated program production systems. The assumption was that such languages would make
computing almost trivial; instead of having to mess around with all the “little details” of machine/assembly code, “all” the
programmer would have to do with these at-the-time new systems was to tell the computer, in some formal approximation
to natural language, how to carry out the task at hand. Easy! Well, not so easy as it has turned out; it seems that we reach a
rapidly-steepening cliff of conceptual complexity as we try to “merely” give a high-level description of what to do. Nonetheless
it is clearly easier than trying to write programs in assembly code.



CONCLUSIONS
Computer programming is presently a clunky, craft-based industry. Eventually automated program-creation tools may give us
tools which can generate bespoke programs on demand. This will engender a radical change in the way in which we interact
with computers, moving from a how-based approach to a what-based approach? How will this impact upon our interfaces with
computers? Will it be the unmixed blessing that it is often assumed?


