
Proposal for a Model Driven Approach to Creating a Tool to Support the
RM-ODP

D.H.Akehurst
University of Kent

D.H.Akehurst@kent.ac.uk

Abstract
The potential for revising the RM-ODP standards is an

excellent opportunity to move the given specifications into
a form that is more amenable to the provision of tools that
support the standard. Adoption of the approach
advocated by the RM-ODP would be greatly increased if
tools to support the approach were more readily
available. This paper proposes an approach to generating
such tools, directly, from a model based approach to
specifying the RM-ODP viewpoint languages and
correspondences. In particular this paper highlights
certain requirements that the specification approach
would need to meet if the production of such tools were to
be achievable.

1. Introduction
The Reference Model for Open Distributed Processing

(RM-ODP) [11] belonging to the International Standards
Organisation (ISO) was published about ten years ago.
Although originally developed with respect to the
telecommunications industry, as we move into a situation
where more and more software systems are essentially
distributed, this reference model becomes similarly more
and more relevant to software development.

Over the last few years there has been more focus on
supporting distribution and an increase in the number of
different technologies to support distributed software
systems; originally CORBA, COM, DCOM and lately
Web Service based approaches such as .NET and J2EE.

Even though these distribution technologies have been
proposed, the take up and use of the RM-ODP has not
been as common place as its relevance and potential
usefulness would lead us to expect. Contrast this with the
outputs from the OMG, such as the UML and latterly their
MDA approach, which appear to be widely used and are
certainly commonly discussed.

There could be a number of reasons for this, marketing
and publicity being one possible candidate. However,
another reason is the accessibility of the OMG outputs
which are nearly always supported by tools (even if they
are not considered to be the best possible tools), these

give practitioners a tangible artefact by which to evaluate
and try out the proposed technologies.

Where are the easy to use graphical language based
tools to support the RM-ODP? Perhaps such a tool cannot
be created and at the same time be technically sound.
However, it would be useful to have one that provides the
easy accessibility offered by the numerous UML tools,
which, it could be argued, are not always so technically
sound but do provide an easy way into the world of
OMG-Oriented Modelling.

Development of a simple graphical tool based on the
RM-ODP is not quite as straight forward as it is for
languages such as UML. Firstly, the RM-ODP proposes a
five viewpoints approach to system design involving at
least as many separate but related sets of concepts but
specifically does not prescribe any particular language
with which to write design specifications. Secondly, the
concepts recommended for each viewpoint are described
using English text (as opposed to the OMG’s approach of
modelling the language concepts – known as
metamodelling).

Thus, before we can build a tool that supports the
design of systems using the RM-ODP approach, we need
to address these two issues. This position paper proposes
using the OMG’s approach to solving the second issue, by
forming metamodels that define the concepts described in
the ODP Standard documents, as has been done for some
of the viewpoints already [2, 9, 10] The first issue, that of
viewpoints and languages, we can address by firstly
defining notations that map to the metamodel concepts
and secondly by specifying the inter viewpoint
relationships as relations between metamodel concepts.
Both of these (inter viewpoint correspondences, and
notations) can be defined using the relation based
transformation specification technique taken from the
MDA initiative [8].

In the following sections we first discus the five
viewpoint language concepts and their corresponding
metamodels; secondly we propose a technique for
defining notations for each viewpoint; thirdly we illustrate
an approach for specifying inter-viewpoint consistency
relationships. The paper ends with a discussion about the

is
fo

2

d
E
C
a

m
‘F
la
F
co
m

C
F

in
to
E
M
re
su

3

re

appropriate notations (or concrete syntax). The ODP ISO

Foundations

Computational Enterprise

Information Engineering Technology

Figure 1 Viewpoint Metamodels
sues and problems to be addressed and a future direction
r the work.

. Viewpoint Metamodels
A number of papers have proposed metamodels for

ifferent RM-ODP viewpoints; [10] proposes an
nterprise Viewpoint metamodel; [9] and [2] discus
omputational Viewpoint metamodels; and [7] describes
metamodel for the RM-ODP Foundation concepts.
A RM-ODP tool could be based on a set of five such

etamodels, with the addition of (at least) a common
oundations’ metamodel. Using an OMG MOF like
nguage we can illustrate the approach as shown in
igures 1-3. Fi shows an overview of six packages
ntaining the metamodels for the five viewpoints and a
etamodel for the common Foundations. F and

 show example segments of possible
omputational and Engineering Viewpoint metamodels.

gure 1

igure 2
igure 3

gure 5
The specification of viewpoint (or language) concepts

 this manner makes it very easy to generate core parts of
ols that support the viewpoints. Tools such as the
clipse Modelling Framework (EMF) [5] and Kent
odelling Frameworks (KMF) [6] easily generate basic
positories that can form the core of a design tool from
ch models of a language.

. Viewpoint Notations
In addition to repository functions a useful design tool

quires a mechanism for populating the repository using

standards along with books such as [Blair/Stefani] make
use of notations for describing various viewpoint designs.
However although clearly understandable the notations
are informally defined. If we can define these notations
more formally, then there is scope for auto-generation of
tools to support the viewpoint languages.

In [1] and [4] a modelling approach to defining visual
languages is described. The approach is to define the
concrete syntax of the notation as a model and
subsequently specify a model transformation (via a set of
relations) between the concrete syntax model and the
concepts metamodel.

Using notation from the latest submission to the
OMG’s QVT RFP [8] and the technique defined in [3], an
example for part of a Computational Viewpoint language
specification is illustrated in Figure 4. It shows the
specification of relations between Computational Objects
and Circles, and between Interfaces and Solid rectangles
(or bars); an example of the notation is shown in Fi .

The detail of the relations must be added to the
graphical view of them, defining the domain and range of
the relation and a matching condition expression that
specifies which elements from one side (domain or range)
of the relation are mapped to elements from the other. It is
also necessary to define characteristics of the relation
such as whether it is functional, total, bijective, etc. (The
detail of the relations is shown in an Appendix.)

This approach can be used to define notations for all of
the viewpoint concepts giving us a set of models and

CompObject

Interface
0..*

interface

Primitive
Binding

2

binding

interface

Computational
Configuration

object 0..*

Figure 2 Computational Objects
EngObject

Cluster

0..*

Cluster
Manager

Engineering
Configuration

0..*

BasicEngObject

Figure 3 Engineering Objects
Diagram Computational
Configuration

Circle CompObject

SolidRect Interface

Figure 4 Syntax-CompVP Relations

relations from which it is possible to generate a tool that
facilitates drawing designs in each of the viewpoint
languages, including the necessary features of such a tool
offered by a model repository.

wsers
owser

service

u

display

n

The relations are characterised as ‘inverseFunctional’
(or 1-to-many), each ‘single’ CompObject maps to
‘many’ BasicEngObjects (or Channels), but each
BasicEngObject (or Channel) maps to a single
CompObject. The relations are also defined as ‘onto’ and
‘total’ specifying that every CompObject and
BasicEngObject (or Channel) in the domain and range of
the relations must be part of the relation.

It is not feasible to define a matching condition for
these relations (i.e. an expression that would define which
objects from domain and range are mapped to each other)
because there is no way at the meta-level to determine
which objects should be related. The correspondences
must be set up by the designer on a per design basis;
however, the specification of these relations will enable a
generated tool to indicate whether on not the
correspondences have been set up.

The KMF tool developed at the University of Kent [6]
has been used to generate parts of such tools for visual
languages from this type of specification.

5. Conclusion, Issues and Future Work
The previous sections have given an idea of how

model based specifications of language concepts and
relations between them can be given to define aspects
from the RM-ODP standard. Using code generation
techniques these types of specification can be used to
generate tools that support designing a system from the
different ODP viewpoints.

4. Inter-Viewpoint Consistency
A key part of the RM-ODP is the inter-viewpoint

consistency specifications that tie the information from
the five viewpoints into a consistent design from which an
implementation can be produced.

Similarly to the specifications linking concrete syntax
to metamodel concepts, we can define relations that link
concepts between the different viewpoints. However, for
some of the consistency relationships it is not possible to
define them at the meta-level. It is necessary for the
connections to be made at the design stage, for this we
need another language (or at least a tool mechanism).

This paper has illustrated the ideas using languages
provided by the OMG However, OMG languages are not
essential, any precise approach to defining the languages
and relationships would provide the necessary starting
point for generating tools. In particular the following
specifications should be given:

1. Precise definitions of the viewpoint language
concepts – beyond the textual descriptions currently
given – i.e. metamodels.

Figure 6 shows inter viewpoint consistency relations
between concepts from the Computational Viewpoint and
the Engineering viewpoint. This relations model the
following correspondence:

2. Precise specification of the correspondences
between concepts in each viewpoint, along with
suggested mechanisms for specifying these – i.e. a
Correspondence Specification Viewpoint.

“Each computational object which is not a binding
object corresponds to a set of one or more basic
engineering objects (and any channels which connect
them). All the basic engineering objects in the set
correspond only to that computational object.”

3. Precise specification of example notations for each
viewpoint. Perhaps both graphical and textual.

In addition, a number of full example system designs
should be provided illustrating intended use of the
framework.

The approach to generating tools presented in the paper
is an initial idea, a number of issues and problems are
likely to make it difficult. Some of these are discussed
below:
• Metamodelling – What concepts should be used to

define the metamodels? Sections 6 and 7 of Part 2 of
the standard informally define some language
definition concepts, is it possible (or even a good
idea!) to extend these to give a full and sufficient
metamodelling language.
CompObject
(from Computational)

BasicEngObject
(from Engineering)

inverseFunctional and onto and total

Channel
(from Engineering)

inverseFunctional and onto and total

Figure 6 A Comp-Eng Correspondence
bro
: Br

service

manager :
Service

Manager

film1
: VideoStream

videoTrans

vsCtrl

videoRec

film2
: VideoStream

videoTrans

vidWins1

vidWins2

vsCtrl

videoRec

Figure 5 A Computational Configuratio

• Relations – Is the proposed technique for specifying
relations expressive enough for the proposed task.
Some correspondences are not at all easy to define!
How useful or possible is it to define them all as
relations?

• Correspondences - we need a mechanism for a
designer to specify correspondences, i.e. we need a
viewpoint for defining inter-viewpoint
correspondences.

• Technology Viewpoint – the concepts for a
metamodel of this is not obvious, in fact the
concepts currently in the standard are minimal. Is it
necessary to have something more and if so what
should be in it?

Extending the idea of a supporting tool; it would be
very useful to provide MDA like support for generation of
system implementations (or simulation/analysis models)
from the given designs. To facilitate this we certainly
need good definitions of Technology models.

Generating an implementation could be achieved using
an MDA like approach of transforming information drawn
from designs given in the five viewpoints and providing a
set of implementation source code, configuration, and
deployment files.

6. References
[1] Akehurst D. H., "An OO Visual Language Definition

Approach Supporting Multiple Views," in proceedings
VL2000, IEEE Symposium on Visual Languages,
September 2000.

[2] Akehurst D. H., Derrick J., and Waters A. G.,
"Addressing Computational Viewpoint Design," in
proceedings Enterprise Distributed Object Computing
Conference, EDOC 2003, Brisbane, Australia, pp. 147,
September 2003.

[3] Akehurst D. H., Kent S., and Patrascoiu O., "A relational
approach to defining and implementing transformations
between metamodels," Journal on Software and Systems
Modeling, vol. 2, pp. 215, November 2003.

[4] Clark A., Evans A., and Kent S., "Engineering modelling
languages: A precise meta-modelling approach," in
proceedings ETAPS 02 FASE Conference, LNCS,
Springer, April 2002.

[5] IBM, "Eclipse Modeling Framework,"
http://www.eclipse.org/emf/, 2003.

[6] KMF-team, "Kent Modelling Framework (KMF)," 2002,
www.cs.kent.ac.uk/projects/kmf

[7] Naumenko A., Wegmann A., Genilloud G., and Frank
W. F., "Proposal for a formal foundation of RM-ODP
concepts," in proceedings ICEIS 2001, Workshop On
Open Distributed Processing - WOODPECKER`2001,
Setúbal, Portugal, pp. 81-97, July 2001.

[8] OMG, "Request for Proposal: MOF 2.0 Query / Views /
Transformations RFP," Object Management Group,
ad/2002-04-10, April 2002.

[9] Romero R. and Vallecillo A., "Formalizing ODP
Computational Viewpoint Specifications in Maude," in

proceedings EDOC 2004, Monterey, California,
September 2004.

[10] Steen M. and Derrick J., "ODP Enterprise Viewpoint
Specification," Computer Standards and Interfaces, vol.
22, pp. 165-189, September 2000.

[11] X.901-5, "Information Technology - Open Distributed
Processing - Reference Model: All Parts," ITU-T
Recommendation, 1996-99.

Appendix A
The detail of a relation specification needs to define a

matching condition that indicates which elements of
domain and range should be related. In addition the links
between relations should define the contents of the
domain and range sets for the sub relations. The following
specifications indicate the approach for the relations given
in F . Depending on the level of difference there is
between the related components, the complexity of the
expressions in the relation specification will vary.

igure 4

relation {
 domainType : Diagram
 rangeType : ComputationalConfiguration
 matchCond : true
 subRel : { CircleRelCompObj(
 diagram.circles,
 config.objects) }
}

relation {
 domainType : Circle
 rangeType : CompObject
 matchCond : compObj.name = circle.label.text
 subRel : { RectangleRelInterface(
 circle.connections,
 object.interfaces) }
}

http://www.eclipse.org/emf/
http://www.cs.kent.ac.uk/projects/kmf

	Introduction
	Viewpoint Metamodels
	Viewpoint Notations
	Inter-Viewpoint Consistency
	Conclusion, Issues and Future Work
	References
	Appendix A

