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Abstract. This paper describes ongoing work on a project to simulate the behaviour of epidermal growth factor receptors. These
are structures which can be found on the surface of cellsin the body, which receive and process chemical signals concerned with
cell growth. The implementation of a program which simulates the stimulation and clustering behaviour of these structures is
described, then the paper discusses how the simulation can be scaled up so that a whole cell can be simulated on a tractable
timescale. Finally some some early results are given which show the effect of changing parameters in the system, and discuss

1. Biological background

In order for the body to function, cells need to com-
municate with each other. One important mechanism
for thisisthediffusion of chemical signalling molecules
(knownasligands) intissues, whichareinturnreceived
by receptors on the surface of cells[20,28]. Oncethese
signalling molecules have bound to the receptors, they
trigger a set of eventsinside the cell (Fig. 1).

A particular example of a system of this type is
the epidermal growth factors (EGFs) and their recep-
tors[48]. This consists of four different receptors (one
of which can exist in four different forms) which can
be bound to by at least ten different ligand types. Once
the receptors have bound ligand, they form clusters
which stimulatewithin-cell signalling eventsconcerned
with cell growth. Thusthe cell can communicate with
the extracellular environment without molecules being
passed through the cell membrane.

Thissystemis of medical importance, becauseit can
go wrong in anumber of ways leading to the formation
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ongoing work on calibrating the simulation against results from experiments.

of cancers. Three mechanismsare knownto cause such
problems. Firstly a mutation can cause the cell to gen-
erate its own growth factor, thus generating unchecked
cell growth. Secondly mutations in the genes speci-
fying the receptor can cause it to be in a constantly
activated state regardless of the presence or absence of
ligand. A third problem occurs when too many recep-
tors are created because of e.g. a problem with the
expression of the receptor genes, meaning that the cell
exhibits excessive growth for small amounts of signal.

We would like to understand the dynamics of this
clustering process better and to understand what causes
theclusterstoformin aparticular way and how they de-
velopwithtime. Thecluster formation can be observed
by tagging the receptors with a fluorescent protein and
filming the motion under an optical microscope [18].
At first the fluorescence is distributed evenly around
the cell, but five minutes after ligand molecules have
beenintroduced clusters can clearly be seen (Fig. 2(a)).
Using image processing software clusters can be iden-
tified (Fig. 2(b)) and the number of clusters of various
sizes counted (Fig. 2(c)). Nonetheless this data pro-
vides little direct insight into the processes which are
causing thiscluster formation. To understand thisbetter
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will allow usto try out different hypothesesfor the be-
haviour underlying this experimental data, for example
by simulating different conjectured mechanismswhich
giverise to the clustering and adjusting the parameters
within those mechanisms.

2. Related work

The most traditional use of computer simulation in
cellular biology has been in modelling the stoichio-
metrics of reactions within the cell [15]. Such ap-
proaches have used both programs specifically written
to carry out these calculations, such as Gepasi [30,31]
and SCAMP/Jarnac [41,42], aswell as general mathe-
matical programs such as Matlab [38] and Maple [21]
and numerical DE-solvers. Other work (e.g. [1-3]) has
modelled the devel opmental processin the early life of
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Fig. 1. How cells receive signals using receptors.

Such modelling techniques cannot be used to under-
stand phenomenawhich depend on the spatial distribu-
tion of individual molecules, where the complete mix-
ing assumption which underliesthe above projects can-
not be applied. Instead we need to take an approach to
simulation which is based on creating interacting mod-
els of individual components in the simulation; such
models have along history of successin ecological re-
search [13,29] but have seen fewer applications at the
cellular level.

Nonethel ess there have been some successful appli-
cations of this type of modelling to the analysis of sys-
tems such as cell-signalling networks [9,10], the G-
protein cascade [26,25] and the microphysiology of
synaptic transmission [6].

Other systems have been devel oped which attempt
to simulate the “whole cell”. Examples of this are E-
Cell [47] and the Virtual Cell [43]. These are very

teeell. - exciting and ambitious projects; however to use such
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Fig. 2. Image analysis of EGFR clustering in amouse fibroblast cell micro-injected with a GFP-tagged EGFR cDNA. (a) Original image obtained
5 minutes after addition of 500 nm EGF. (b) Image after analysis using SimplePCl software, with objects of interest highlighted. (c) Data on

cluster area generated using the SimplePCl software.

a system requires much of knowledge about the par-
ticular type of cell in question, in particular detailed
sequence- and structure- data about the proteinsin the
cell. In problems such as the one studied in this pa-
per, there are limited amounts of data. Nonethelessthe
questionswe would like to answer are correspondingly
limited, and we have created a focused tool which al-
lows us to exploit what data is available and actively
apply the simulation system to discovering conjectures
for parameters in the real system. This “middlebrow
modelling” approach allows investigations of focused
problemswhich fall between broad qualitative“models
of ideas’ [40] and models which aim to reproduce the
entire cell in silico.

3. Simulation aims and design

We have created a simulation of this clustering be-

model of the cell surface. Object-oriented (OO) mod-
elling is a powerful technique for modelling complex
systems[8,22,32]. Designing asingle algorithmwhich
defines the outcome of a simulation of a system such
as the above would be very difficult, if not impossible.
Instead, objectsare used to represent real-world entities
which are components of the system. Objects encapsu-
late the state and behaviour of real-world entities. This
behaviour can include interactions with other objects,
which in turn may influence the state and behaviour of
these objects. The complexity of the system emerges
from these interactions.

This object-oriented approach provides an approach
to modelling systems which can be carried through
from the analysis phase of studying the system to be
put on the computer, through the design of the com-
puter program, through to the final implementation
through the use of object-oriented programming lan-



Galley Proof 24/07/2003; 15:07

File: spr139.tex; BOKCTP/Hainap. 4

4 J.P. Goldman et al. / Individual-based simulation of the clustering behaviour of epidermal growth factor receptors

can be readily combined with parallel computing ap-
proaches — the two approaches are not mutually exclu-
sive choices, and indeed the OO structure can suggest
ways of naturally parallelizing the problem [36,37].

The primary classes of objects used in modelling
growth factor receptor aggregation are the receptor
moleculesthemselves. In order to create objects which
represent molecules, it was necessary to decide which
characteristics of molecules are important in the con-
text of thesimulation. In reality, cell surface molecules
exist somewherein the cell membrane and they exhibit
Brownian motion (except when there are interactions
between the receptors) [24]. Growth factor receptors
(represented by abl ecul e classin the system) have
a certain affinity for other receptors of the same family
to form dimers, which is greatly increased by the addi-
tion of ligand. These dimersthen form larger clusters.

The Mbl ecul e class was written to contain infor-
mation about individual receptor monomersinthesim-
ulation. The state of a Mol ecul e abject can be rep-
resented by its position in the cell membrane, the di-
rection and speed with which it diffuses in the cell
membrane, its size and whether or not it has ligand
bound. Thus, the attributes representing the state of a
Mol ecul e object include x- and y- floating-point co-
ordinates, to indicatelocation, and valuesfor dx and dy
toindicate changesto x and y caused by moving (i.e. to
define the direction of its next move). A Mol ecul e’s
sizeis represented by a diameter which is proportional
to the number of subunitsit contains. A Mol ecul e’s
type contai nsinformation about the number of subunits
and whether or not it has ligand bound. The behaviour
of Mbl ecul e objectsincludes, for example, the abil-
ity to move, to bind ligand, and to form aggregateswith
other Mbl ecul es.

Dimers and higher-order oligomers (clusters of re-
ceptors) have many of the same characteristics as re-
ceptor monomers and behave much the same way on
the cell surface. They have alocation, size, they move,
collide and bind to each other. One powerful feature of
object-oriented design is the use of inheritance, which
allows a subclassto inherit the attributes and behaviour
of another while alowing added functionality not in-
cludedinthesuperclass. TheMul t i mer classisasub-
class of Mol ecul e to represent aggregates of one or
more receptor monomers. It inheritsmost the function-
ality of Mol ecul e, but hasan additional collection at-
tributeto keep referencesto theindividua Mol ecul es
of which it is composed. In this way, a Mul ti mer

is both a Mol ecul e and acollection of Mbl ecul es
(F|g 3). Italsohastheabllltytod|$OC|ate abehaviour

Multimer

"is acollection of"

"specializes|to"

Molecule

Fig. 3. Modelling the multimer class as ssmultaneously a collection
of and specia case of the molecule class.

Thisproperty of Mul t i mer s, wherethey are both a
type of Mol ecul e in their own right and a collection
of Mbl ecul es demonstrates a pattern which might
well be found in other scientific models. It would be
worthwhile to study a number of models and attempt
to see what similar features emerge. Are there design
patternswhich are science-specific which could helpin
the design of simulations, in the way in which general
design patterns[17] have helped in programming more
generally?

An object of the Cel | Sur f ace class acts as the
simulation engine. This object correlates to a rect-
angular portion of a cell membrane, in which the
Mol ecul es move and interact. The area it coversis
represented by an attribute which is a two dimensional
Cartesian plane with the location of objects within that
plane given by floating-point coordinates, so that thelo-
cation of the Mol ecul escan be determined precisely.
The cell surface is clearly not a strictly planar struc-
ture as it is highly dynamic forming structures such
as filopodia and lammelapodia. However our model
however only simulates a small, typical, patch of the
cell surface and thus this can be considered as essen-
tially flat. Althoughacell isathreedimensional entity,
cell surface molecules are embedded in or attached to
the cell membrane, which is essentially a planar sur-
face, particularly over small areas. The motion of these
moleculesis therefore constrained to two dimensions,
and can be modelled in this way. Mbl ecul es move
on the Cel | Sur f ace in atoroida fashion. As a
Mol ecul e leavestheconfinesof theCel | Sur f ace,
its position is reset such that it re-enters on the oppo-
site side. This provides an easy way to represent a
typical area of cell surface where the incoming flux of
Mol ecul esinto that areais the same as the outgoing.

Each Cel | Sur f ace object is associated with an
Af finityTabl e object. Thisprovidesatwo dimen-
sional array of values for association probabilities, the
indices of which correspond to the Mol ecul e types.
Thus, when two Mol ecul escollide, their affinity can




Galley Proof 24/07/2003; 15:07

J.P. Goldman et al. / Individual-based simulation of the clustering behaviour of epidermal growth factor receptors

() Formation of unliganded dimers (
(E} Formation of clusters (odd # subunits, % )

A ®

:[].'U'EKE'

(anexampleisgiveninFig.4). TheAf fi ni t yTabl e
also has an array for dissociation probabilitiesin which
the indices correspond to molecul e type.

ThedesignissummarizedinaUML [16,46] diagram
inFig. 5.

The simulation begins with the initialisation of the
cell surface. Thisinvolves creatingaCel | Sur f ace
object and populating it with unliganded monomers
distributed randomly about the surface with respect to
auniformdistribution. Thisiscertainly trueat thelevel
of resolution of the light microscope (see for instance
Fig. 3(a) at http://www.cs.ukc.ac.uk/peopl e/staff/cgj/
research/receptors.html). Some evidence has been re-
ported of very small structures called lipid rafts [11]
in which it has been suggested that some proteins (in-
cluding grovvvth factor receptors) may be concentrated
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Fig. 4. An example of transition probabilities between various states.

well established as afirst approximation we have cho-
sen to give the monomers a random distribution at the
initial state of the model.

The program then runs as a loop (representing the
passage of time) in which the Mbl ecul esare moved
in a manner which simulates Brownian motion. This
simulatesthe collision of the molecules of interest with
the ambient molecules in the cell which have no prob-
ability of binding to them, i.e. the vast majority of col-
lisions which happen during the lifetime of the recep-
tor. At the beginning of any cyclethrough thisloop the
user can chooseto simulate the addition of ligand to the
Cel | Sur f ace, which initiates the aggregation pro-
cess. Theuser can vary the quantity of ligand added by
determining the percentage of the exrstl ng unllganded
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] | CeliGUI AffinityTable
creates
setUpButtons() double[][] kATable
createLegend() double[] kDTable

double pctLigand
Vector dataBank
Vector monomers
Vector dimers

Vector highMultimers

addReceptorData(Vector receptors
retrieve AllReceptors(int index)
retrieveMonomers(int index)
retrieveDimers(int index)
retrieveMultimers(int index)
save(String filename)

All these liganding events occur at the beginning of the
current cycle through the time-loop.

When the positions of two Mol ecul es indicate
that a collision between the two has occurred the
Cel | Sur f ace uses the Af fi ni tyTabl e to look
up values for binding and dissociation constants. The
sequence is as follows: a Mbl ecul e moves and its
positionischecked with regard to other Mbl ecul esin
the simulation. If thereisany overlap between the area

1 \ displays

checkAffinity(int typel, int type2)

displays checkDissoc(int type)
1 1
| CellSurface
GaraphReseptorData boolean ligandAdded A
drawTypeCurves() double pctLigand looks up
drawReceptorComposition() Dimension d constants in
drawXAxis() Vector receptors 1
drawY Axis() 1 4 boolean equilibrium
boolean running
1 run()
timeStep()
storgs addLigand(double pct)
provides data i setRunning(boolean b)
data for ‘ ' 1
\contains
1 1..*
CellDataBank Molecule

double x,y, dx, dy
boolean hasBounced

int type
double diameter

N
%

calculateDirection(double speedSqrd)
move()

bounce()

bindLigand()

collidesWith(Molecule m)
bindsTo(Molecule m)

Multimer

int noOfMol 1
Vector subunits

is a collection of

move()
dissociate()

Fig. 5. A UML diagram to summarize the design of the simulation.

acollision is deemed to have taken place. A random
probability is chosen, and if this is below the affinity
thresholdfromthe Af f i ni t yTabl eaMul ti mer is
formed whose subunits consist of the monomers from
thecolliding Mol ecul es. If, however, the probability
is above the affinity threshold, the moving Mol ecul e
stops at the point in its trgjectory just outside the area
of the other Mbl ecul e. Thus, Mol ecul es cannot
move through each other, and notwo Mol ecul escan
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The graphical display of the Cel | Sur f ace draws
each Mol ecul e asacirclewhoseareais proportional
to the number of subunits it contains. This can be
used to generate a computergraphical animation of the
changing state of the cell surface (Figs6, 7 and 8). The
program can al so generate statistics about the changing
state of the cell with time.

4. Speeding up the simulation

The cell surfaceis represented as atwo dimensional
rectangle on which the various components are repre-
sented via a pair of floating-point coordinates. This
space represents a part of the surface of the cell, and
toroidal coordinates are used (a component leaving the
top of the rectangle returns at the base of the cell, one
leaving the right hand side returns on the left, and vice
versa) as a simple way of ensuring that the number
of moleculesin the area is conserved. Thisisasim-

Fig. 6. A snapshot from the animation of a portion of the cell surface. The cell surface shortly after ligand addition.

the surface the inward flux of material is equal to the
outward flux.

Thisuse of floating-point positionscontrastswith the
common use of lattice modelsinindividual -based mod-
eling (eg. [27]). In lattice models each component
is placed at a pair of integer coordinates on a lattice,
which can lead to artifacts which do not represent the
real world; an example would be that (given a simple
move up-down-left-right model of motion) there is a
biastoward motioninthegrid directionswhich doesnot
reflect the uniformity of thereal world. It also contrasts
with continuum models based upon density gradients
of molecules (e.g. [35,12,5]). In summary the objects
which are discrete in the real world (i.e. the individual
molecules) are represented by discrete computational
objects, whilst the parts of the system which are contin-
uous (i.e. the ambient medium in which the molecules
move) are represented by a continuum of valuesin the
compulter.

One reason why lattice models are ty

ividual based spatial modelling i

picaly usedin
impli he

0 SMpP
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problem of collision detection between particlesin the
system. However in our model we have introduced a
technique which allows fast collision detection whilst
retaining the idea of each object’s position being rep-
resented by floating-point coordinates.

This system exploits the ability of OO systems to
link two pieces of information together so that each of
the two pieces is mutually aware of the other. We use
thisto combinethe advantages of thelatticeand contin-
uum representations. The main representation places
the receptors on the 2-dimensional floating-point con-
tinuum; all motion takes place in this space. However
in addition to this space a grid spans the space.

Each point on this grid “owns’ the rectangle of the
surfacefor which it isthe top left-hand corner. At each
crossing point on the grid there is a list (a variable-
length array type such asa Java Ar r ayLi st) of ref-
erences (C-style pointers) to objects which are of the
class of the items on the surface. This is easily ex-
tended to multiple types of object moving on the sur-

Fig. 7. A snapshot from the animation of a portion of the cell surface. Approximately half way through the simulation (~ 12000 iterations).

facetype, which isimplemented by all of the pointson
the surface.

The simulation begins by iterating through the ob-
jects on the surface, calculating which region(s) they
belong to, and adding a reference from the appropriate
grid point to the object (Fig. 9). The program then
makes a list of references (C-style pointers again, or
just coordinates) back from the object to the grid points
which containthem. Thisability for two objectsto both
know data about each other is a powerful techniquein
object-oriented modelling, and is a powerful way to get
away from an oversimplehierarchical view where each
piece of data contains other data, and not vice versa.

Oncethisdata structure has been established, check-
ing for collisionsis easy. Take the object whichwe are
interested in, and iterate through its list of grid points.
Thisgivesusalist of regionswhich the object occupies.
These grid points are then taken in turn and their list
of objectsiterated through. This givesalist of objects
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check can then be done on each of those objects with
the original object.

If an object moves a single method can be called
which updatesits grid position. Thismethod calcul ates
which regions of the grid the object now interactswith.
Using this list and the previous list, a message could
be sent to each of the grid-points whose regions are
not longer occupied asking that it be removed from
that grid-point’s list of objects. It then removes its
own linksto any regionswhich are no longer occupied,
and sends messages to the grid-points belonging to any
newly occupied region asking for it to be added to its
list. This can be neatly contained in its own method.

There are similarities between this idea and various
other approaches used in fluid mechanics, plasmasim-
ulation, et cetera[39,14,4,44,37]. However one of the
strengths of the approach above is that the code which
keepstrack of the position of the particlesrelativeto the
grid points is self-contained; we do not have to incor-

Fig. 8. A snapshot from the animation of a portion of the cell surface. Simulation complete (~ 24000 iterations).

timewewrite apiece of codewhich can move particles.
A further discussion of thisis givenin [23].

Figures 10, 11 and 12 give results for three experi-
ments with a different number of moleculesin each ex-
periment. Theresultsareclear; using thegrid speedsup
the program immensely, reducing the increase in com-
putational 1oad as we increase the scale of the experi-
ments to almost constant regardless of the size of the
experiment. Thisis beneficial as we want to simulate
arealistic cell with hundreds of thousands of relevant
molecules. In figure 10 areduction in the run time as
the number of moleculesisincreased is observed; this
appears to be an experimental fluctuation rather than a
genuine phenomenon.

Further experiments have been aimed at finding the
optimal size for the grid. If the size of the squaresin
the grid is too large, then the program needs to look
through too many objects each time a collision check
is performed. If the grid becomestoo small, then there
needsto belarge numbersof links, because each object

0 Iples mMuitipiegria-region Nty el nepest §ze
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1000 moves with collision checks

ch represent them.

Number of molecules

would seem to be dightly larger than the typical size
of the object, as this would prevent both of these ex-
tremes — we might characterize this by saying that the
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E Checking all others
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10 | B
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Fig. 10. Comparing the grid-based algorithm with the agorithm which checks all possibilities (1000 moves).

5. Experiments

typical tile should contain one object most of the time.
Thus we expect a U-shaped curve. Results confirming

Development of the smulation is ongoing asisinte-
grating the simulation work with current experimental
work. In this section we present some early experi-
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Fig. 11. Comparing the grid-based algorithm with the algorithm which checks all possibilities (10000 moves).

100000 moves with collision checks
1le+07 T T
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Using grid
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Number of molecules

Fig. 12. Comparing the grid-based algorithm with the algorithm which checks all possibilities (100000 moves).

using Javal.3 on a standard desktop PC (a Pentium 111 is that individual components of the system can be

with 256 MB of RAM). programmed“inthesmall” and let theglobal properties

of the system emerge. Animportant part of confirming

that the system is working correctly is checking that

certain standard behaviours emerge.

Earlier on in the paper it was suggested that one of Oneexampleof thisisconfirmingthat theunderlying
i ject-oriented programming i i i B ia i Berqg [7]

5.1. Confirming that Brownian motion is being
accurately simulated
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shows that the relationship between the mean square
distance of diffusing particles from the origin (r2), the
diffusion coefficient D andtimet isof theform (r2) =
4Dt. Therefore given that the diffusion coefficient in
our systemisconstant, wewould expect (r?) toincrease
linearly withtimein our system. A first experiment was
carried out in which only the implicit collisions were
carried out, i.e. those changes in molecule direction
which occurred at the end of a timestep because of a
collision with a molecule not explicitly represented in
the system.

These experiments had the following characteristics.
A valuefor D waschosenas b x 10~9cm? /s, whichis
an estimate for the diffusion coefficient for asmall pro-
teinin alipid bilayer [7]. However the precise value of
this coefficient is not significant with respect to deter-
mining whether the relationship is linear, however it is
useful for estimating how much real timeisrepresented
by each timestep of the simulation. The simulations
were carried out with 10000 molecules.

The results from this are shown in Figs 14(a) and
(b). Therelationship is clearly linear, and the gradient
of theincrease varies according to molecular weight as
expected.

A second experiment was carried out which included
the explicit collisions, i.e. the collisions between two
MOl ecules WNICN are exp

epresented In tne S\

20 22 24 26 28 30 32 34

tile dimension (*diameter)

Fig. 13. Results: Best grid size.

tem. The probability of aggregation was set to zero;
therefore al changes of direction represent either an
explicit or implicit collision. Theresults of this experi-
ment are givenin Fig. 15. Againthereis aclear match
between predicted and experimental results.

5.2. Parameter sensitivity

Oneway inwhich this system can be used isto probe
the parameter-space of the system to discover which
of the parametersin the system are most significant in
producing the behaviour of interest. Thisisimportant
for a number of reasons. Firstly it provides a way
for experimental scientiststo decide which components
of the system are worth investigating experimentally,
by seeing which parts of the simulated system most
affect that phenomenon of interest. These can then
be prioritised for experimental investigation, whereas
those components which seem to have little effect can
be treated as alower priority.

A second motivationismedical in origin. One of the
aimsof understanding systems such asthisisthedesire
to change the behaviour of the system so as to attack
the underlying causes of illnesses. In order to provide
an effective treatment the treatment agent must affect
some part of the system which causes the phenomenon
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Fig. 14. Tests to confirm that brownian motion is emerging from the basic motions of the particles in the system. (a) gives results for 1-10 mers,
(b) gives results for 20-50 mers.

Thirdly such studiesare of interest becausethey shed rameter settings? Is it an isolated phenomenon which
light on how “generic” a particular phenomenonis. Is can only be found in a small areawithin the parameter
a particular phenomenon the typical result of a sys- space? Are similar phenomena caused by nearby pa-
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tial route through which an evolutionary process could
have reached the current situation?

All experimentswere run threetimes. There are 500
receptors on the cell surface, and the cell surface rep-
resents approximately 2 x 10~'2m?2, which is approx-
imately 1/200th of the area of the cell. The graphs
give the average value for each experiment. In all ex-
perimentsthe following characteristicswere measured:
the mean cluster size, the number of monomers, the
number of clusters, and the number of dimers on the
cell surface at the end of the run when the system has
reached equilibrium (i.e. where the amount of dis-
sociation balances out against association and cluster
formation).

In the first experiment the initial ligand concentra-
tion was varied from 10% to 100% and the aforemen-
tioned characteristics measured. The results are given
in Fig. 16. The results demonstrate that the relation-
ship between this and the various parameters is typi-
cally linear. Clearly the number of monomers declines
linearly with increased ligand occupancy, because al-
most all liganded monomers are bound into dimers or
clusters with time. The number of clusters and their
sizeincreases steadily with increased ligand concentra-
tion. Thisisunsurprising; the moreliganded molecules
present the more likely it is that clusters will form in
particular regionsin the cell, and once acluster reaches
a certain size it takes a long time to move close to
another cluster, therefore that cluster will be likely to
grow by accretion of dimers from its local area. The

30000
#iterations (* #Molecules)

40000 50000 60000

Fig. 15. Testing the brownian motion when both explicit and implicit collisions are included in the system.

however the overall numbers are very small compared
to the overall number of molecules in the simulation;
it would require more experiments to see whether the
shape of the curvethereisreally morethan just random
fluctuation.

The second and third experiments varied the rate
respectively of association (Fig. 17) and dissociation
Fig. 18) in the cell. The differenceis marked. Chang-
ing levels of association have a fairly minor effect on
thefinal state of the cell, whilst thereis a sharp change
in behaviour within a very small area on the dissoci-
ation probability axis. One possible explanation for
thisisthat in the long run the number of opportunities
for association is large, so even if the probability of
association is small thelong term behaviour will be the
same. The suddenness of the change in the behaviour
when the dissociation is an interesting phenomenon,
reminiscent of phase-transition behaviour; this would
be an interesting phenomenon to investigate further.

6. Ongoing work

Having developed this basic simulation we are cur-
rently extending it in a number of different directions.
At themost basic level we arelooking at how the simu-
lation can be extended to model the full range of recep-
tors and ligands in the system. At present the system
only deals with one kind of ligand binding to one re-
ceptor type. Thislimits the scope of the model; in par-
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clusters using the current model. In the real system
there are seven receptor types which bind at least ten
ligands with different binding strengths [19,48], and
clusters containing a mixture of receptor types have
been observed [34]. Another factor which might influ-
ence the dynamics of the system are lipid rafts which
concentrate receptorsin parts of the cell [11].

In addition to further development of the model we
are looking to apply the model to a number of scien-
tific questions. The most important of these is obtain-
ing estimates of the values of various parameters in
the system that are inaccessible to direct experimen-
tal observation, for example probabilities of associa-
tion and dissociation. We are pursuing two approaches
to this. The first is a visual approach whereby we
will create computergraphical “films’ of the simula-
tion which can be looked at alongside films of the real
system obtained by microscopy (these can be seen at
http://mwwhbio.ukc.ac.uk/gullick/icrf.ntm). This will
allow expertsfamiliar with the system to adjust param-
eters until the simulation film has similar characteris-
tics to the real film. The second approach involves
carrying out image processing on the real films to ob-
tain statistics such as time series of changesin cluster
size. We will then apply optimization techniques such
as genetic algorithms and tabu search to find parameter
settings which match these statistics in the output from
the ssimulation.

Another use to which the smulation will beputisin
searching for componentsof the system which are most
sensitive to change, as such regions might be suitable
targets for therapeutic intervention. Characteristics of
the system such as association and dissociation proba-
bilities can be affected by binding other molecules onto
the receptors or ligands. An example of the successful
therapeutic application of interventions aimed at dis-
rupting an overexpressed growth factor receptor sys-
temistheanti-cancer drug trastuzumab (Herceptin ™),
which blocks a form of growth factor receptor [45].
To create such treatments in a rational way we need
to search the space of possible intervention sites for
those where small interventions have large effects, and
computational search techniques such as genetic algo-
rithms and active nonlinear tests [33] provide a poten-
tial method for doing this in a tractable way.

A more general ongoing project is examining how
we can create more general object-oriented modelling
techniques for interacting protein systems, and more
generaly still how we need to adapt object-oriented
techmques for the type of programml ng needed for

7. Notes

This work has been funded by the UK Medical Re-
search Council and the University of Kent. The cur-
rent version of the model can be found on the web at
http: //www.cs.ukc.ac.uk/peopl e/staff/cgj/research/re-
ceptors.html.

The authorswould like to thank Dennis Bray for his
comments on the work.
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