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Abstract 

 This chapter is concerned with how computational ideas can be used as the basis for 
understanding biological systems, not by simulating such systems, but by taking a 
computational stance towards the way such systems work. A number of issues are 
addressed. Firstly the question of what kinds of computer science are needed to help 
understand computational processes which happen outside of conventional computing 
machines. The second issue addressed places computational constraints on how the world 
can act into Dennett's framework of grades of possibility. The final main section considers 
the issue of changes in the world, and when it is meaningful to regard such changes as 
carrying out computations. 
1.  Introduction 
In recent years the idea of using computational concepts as a way of understanding 
biological systems has become of increasing importance; this conceptual use of 
computational ideas should be contrasted with the equally valuable activity of using 
computers as tools for interpreting biological data and simulating biological systems.  This 
computational attitude towards biological systems has been valuable in computer science 
itself, too; by observing how biological systems solve problems, new algorithms for 
problem-solving on computers can be developed.   

The aim of this chapter is to tease out some details of how ideas from computing can be 
used to inform thinking about biological questions, and vice versa. In keeping with the 
theme of the book an attempt is made to use ideas from cellular and tissue-level biology. 
The following questions indicate the main issues addressed:   
• What kind of computer science is needed to answer biological questions?   
• What does computational complexity mean when computing is grounded in the physical 

world?   
• Does computation place limits on what sort of thing is possible in the world, and how 

does this fit in with other ways of assessing possibility?   
• What does the ability of computers to simulate or not be able to simulate a system say 

about those systems?   
• What kinds of transformations in the world can be regarded as being computations; and 

which transformations can be thought of as not being computations?   
 



2.  Computer science or computer science?  
“Who could believe an ant in theory?  
  a giraffe in blueprint?  
  Ten thousand doctors of what’s possible  
  could reason half the jungle out of being.” 

    —John Ciardi [Cia97] 

It is a tired cliché of popular psychology that we only use 10% of our brains.  It is unlikely 
that this is true, but it is interesting to consider how a statement like this might be 
interpreted.  Is this a physical statement?  Could we cut out the 90% that isn’t being used, 
throw it away, and still function normally? Is this a biological question, meaning that we are 
only using 10% of the available neuronal pathways or only activating 10% of the signals 
that we could?  This is perhaps closer, but still not ideal.  Does it mean that we could store 
10 times as much “stuff” if we were working at full capacity?  Think 10 times as quickly?  
These are still fairly ill-defined questions, but they conform to the intuitions which people 
have about the brain, and they are at heart computational questions.  They are questions 
about the capacity of an entity for the storage of information and its ability to process that 
information.   

The point of this story is to illustrate that we already think about biological processes in 
terms of computational ideas, even if in an informal way.  It is not surprising to find that we 
think about the brain in this way, given both the popular view of brains as being essentially 
computers and the view dating back to the early days of computing of computers as 
“electronic brains”. However it is only a short step from this to start thinking about other 
parts of the body (whether at the tissue level or the cellular level) in computational terms.   

Many cellular systems have an information processing aspect.  The immune system is 
well studied from this perspective [FH00,PW97], and there is potential to view the signal 
transduction system in this way. What kinds of computer science are needed to help 
understand these kinds of system?  
 
2.1  Complexity of natural computation. 
One example of a piece of computer science theory that could provide a tool for the 
understanding of natural computation is a theory of complexity.  If we consider computation 
to be something that is grounded in the world, then how does that influence our view of 
computational complexity?  What kinds of complexity in nature arise out of the presence of 
computations in natural systems?  Clearly we can always define certain formal systems as 
being what we mean by the term computation, and then derive/define certain measures of 
complexity with respect to this definition.  However if we want to apply computational 
ideas in the context of analysing transformations of the world then we might want to not 
ground these in particular axiomatisations of computation, as we might not be able to show 
that the physical system conforms to that axiomatisation. 

An interesting example of this is protein-folding, where a linear string of proteins can 
form a three-dimensional structure in a very short amount of time [Fra93]. The number of 
possible configurations that this three-dimensional structure could take, and the problem of 
calculating this structure is computationally hard (e.g.  it has been shown to be NP-complete 
[BL98,CGP+98]). How, therefore, does the protein “compute” its configuration on a 



realistic timescale?  This is a well known problem in theoretical biology, known in less 
formal terms as Levinthal’s paradox [Lev69]. It may be the case that there is little to explain 
here; whilst the process happens quickly, it may be that the process is simply doing 
conventional computation very quickly, and if we were to be able to measure the timescales 
on which the folding was happening with accuracy there is sufficient time to do enough 
operations.  However if it is not, we are presented with the interesting question of how the 
system processes the information sufficiently quickly to produce the result.  Is it exploiting 
some property of the world which we do not use in building conventional computers, and 
which we do not therefore incorporate into our conventional models of computing?  Is it 
exploiting computation in some way which means that we cannot on conventional 
computers (e.g.  using some form of high-density parallelism in which small parts of the 
system can be considered as doing local computations from which the global structure 
emerges)?  Or are we wrong to assert in the first place that if something changes in a way 
such that we can measure its computational complexity then it is necessarily doing the 
problem in a computational way.  A similar problem occurs with mathematical models. We 
can demonstrate that a certain complex set of differential equations models the turbulent 
motion of a seed blowing around in the wind.  However a bird moving to catch such a seed 
doesn’t need to solve those equations in order to catch the seed, nor does the seed need to be 
aware of the equations in order to carry out the movement.  Perhaps the problem is simply a 
confusion between a description of the system and the system itself.   
 
 
 
2.2  Simulation of natural systems 
An interesting perspective on the relationship between natural systems and computational 
systems is considering the idea of simulating the system in question on a computer.  One of 
the most interesting results to come out of such a thought is the original work on quantum 
computing by Feynman.  His original idea about quantum computing came from 
considering the idea of simulating quantum physics on computers [Fey82]:   
 

“[...] the full description of the quantum mechanics for a large system [...], because it 
has too many variables, cannot be simulated with a normal computer [...]. And 
therefore, the problem is, how can we simulate the quantum mechanics?  There are two 
ways we can go about it.  We can give up on our rule about what the computer was, we 
can say:  Let the computer itself be built out of quantum mechanical elements which 
obey quantum mechanical laws. [...]”  
 
We can generalize this idea to all natural systems as follows.  Given any system in the 

world and some idea of what we mean by a computer either we can simulate it on the 
computer or not.  There are two variants of this.  In the first we consider what can be 
simulated at all.  For example we cannot accurately simulate most non-discrete systems 
using a computer with a finite memory (we can clearly simulate some such systems, such as 
relationships between two intervals on the real line which can be described by a finitely-
describable function). This is regardless of the amount of time we take; even given any 
finite number of timesteps we cannot even represent the initial state of the system exactly.  



Other systems admit an inefficient simulation.  For example a problem like factoring 
composite integers is hard (in the technical sense) on conventional computers, yet proposed 
quantum computers [WC98] provide a technology on which polynomial-time algorithms for 
the same problem can be executed. 

The consequence of this is that if we cannot simulate the system (efficiently, or at all) on 
the computer then theoretically there is a property of the world which can be used as a 
substrate for computation.  Clearly whether the particular property admits its use for 
computing artificially created problems will vary from case to case.  In particular a 
significant feature is whether the system admits control over its inputs; many computations 
are happening in the natural world which cannot take inputs other than the ones which they 
receive as part of a larger system.  Therefore we cannot say that merely observing the act of 
computation in a natural system provides the core of a practical computation system. 

 
3.  Grades of possibility 
 
“There seem to be at least four different kinds or grades of possibility:  logical, physical, 
biological, and historical, nested in that order.” Daniel Dennett [Den95] 
 

Does computation have a role to play in explaining what is possible in the world?  It has 
been suggested by Dennett [Den95] that there is a hierarchy of “grades of possibility” of 
things in the world.  He suggests the following as such a hierarchy (with the possibility of 
other grades being added):   

• Logical  
• Physical  
• Biological  
• Historical  

In order for something (a biological something, that is) to actually exist in the world, it 
has to be possible at all levels.  However given a putative object which does not exist in the 
world, that non-existence can be explained at one of the levels.  Some things are not 
logically possible, for example an object which simultaneously exists and doesn’t. In order 
to explain the impossibility of such an object a logical explanation suffices; it is not 
necessary to go further in the hierarchy to explain the impossibility of such an object.  Just 
because a putative object contains characteristics which associate it with a point on the 
hierarchy doesn’t necessarily place it there; 10 metre high ants would be biological objects, 
but it is not necessary to go as far as biological in the hierarchy to explain their absence in 
the world; physics will do that for us.  Therefore for every putative object each of those 
stages can be examined and whether it is possible at that level or not determined.  Broadly 
any object placed at one level must also be possible in the previous level, though there are 
complexities, in particular the “historical” level can contain objects which are physically 
possible but which have no biological aspect, so it is impossible to place them meaningfully 
in or out of the biological category.  There are a number of ways to deal with this 
consistently, e.g.  allowing non-biological objects through the biological layer without being 
classified or branching the hierarchy into “biological” and “non-biological” branches.  The 
final stage in the hierarchy is concerned with what has actually happened; thus it is 



necessary to fix a particular point in time before it is possible to make statements about that 
final point in the hierarchy. 

It is an interesting thought-experiment to take each of the grades in the hierarchy and 
think of some putative object which is impossible because of precisely that reason, i.e. the 
reason "earlier" in the hierarchy admits it, whilst the current reason is sufficient to dismiss it 
without needing to go further into the list. 
 

 
3.1  Computational possibility. 
Might it be reasonable to introduce a new grade into this hierarchy, computational 
possibility?  Such a grade would include items which are possible because they require 
computation to be carried out in order for them to exist, and they require that that 
computation would be feasible given the computational resources available in the system.  
Where would such a grade of possibility go in the hierarchy?  To avoid the complications 
about non-biological objects discussed above, let us restrict ourselves to biological systems 
only.  Firstly let us try to introduce a computational grade between “biological” and 
“historical”. What might be an example of something which is biologically plausible but 
computationally impossible (or effectively impossible). One example might be a type of 
asexually reproducing bacteria (or any other kind of asexually reproducing creature) which 
are genetically identical from generation to generation.  The reason this is implausible is 
because of the imperfection of the information-transmission process from generation to 
generation; as mutations occur and get passed onto future generations, so the initial genomic 
uniformity gets broken down.  Clearly this could be regarded as a biological property; but 
by the same token all the biological properties could be regarded as physical in origin.  
What we are trying to do is to refine the space between the two extremes of the hierarchy. 

Where else might “computational” be placed in the hierarchy?  If computational is 
placed between “physical” and “biological” we are concerned with computational systems 
which can be realized in the physical world yet which cannot be implemented by biological 
systems.  It is hard to think of a nontrivial example.  It might be reasonable to assert that 
biology places constraints on the size of creatures, and therefore on the amount of 
information which they can store; therefore some computer systems could be physically 
created which wouldn’t be capable of biological realization.  This seems to be an 
unsophisticated example, however. As we discover more about the mechanisms by which 
biological systems compute, we may find more things in this category.   

Another possibility would be to place “computational” between “logical” and 
“physical”. This would suggest that there are computational constraints on the laws of 
physics; such an idea has been occasionally explored by theoretical physicists 
[Sch97,Sch00]. Exploration of this idea would take us too far from our main discussion 
here. 

It may be that "computational" can be meaningfully placed at a number of points in the 
hierarchy, and that these different placements give a taxonomy of different kinds of 
computational phenomena. 

 
 



 
 

4.  Can a change not be a computation?  
“Does a rock compute every finite-state automaton?” David Chalmers [Cha96] 
 
In the above discussion we have been considering the consequences of considering certain 
actions in the natural world to be computations.  In this section the question is reversed. 
Consider the following question:  are there any transformations in the natural world which 
we can not meaningfully regard as being computations?  

By considering some action in the world to be a computation, a number of questions 
about that action and the system in which it occurs:  how is information stored in the 
system?  What is the scope of transformations which can be made to that information?  How 
does the complexity of doing that transformation place constraints on what the system can 
do on a particular timescale?  

If we want to stop thinking of computing as just something which happens in machines 
inside beige boxes containing electrical circuits and consider it to be a property of natural 
systems such as cellular systems then we need to decide where to stop.  There would seem 
to be a danger in using the term “computation” excessively to the point where it just 
becomes synonymous with “change” or “transformation”. Given the set of all possible 
transformations which can happen in the world (or the particular part of the world which we 
are interested in, e.g.  the cellular world), to which of them do we want to ascribe the label 
“computation”. On a trivial level we are free to use this work in any way we want, so 
perhaps we should refine the question somewhat.  A better version might be this:  given the 
set of transformations which can happen in the world, how can they be divided into 
“computations” and “non-computations” in a way which respects the essential properties of 
computation in machines.  The difficulty here is with the word “essential”; given that we are 
attempting to extend a concept away from the domain in which it was originally defined, we 
must let go of some ideas, otherwise there would be no problem.  In the rest of this section I 
would like to consider a number of features which might help to make a useful distinction. 

 
4.1  Observability 
Is the notion of a change in the world being observed essential to the idea of including it in 
the set of computations? This idea can be unpacked in two directions. 

Firstly it doesn’t seem essential that the computation itself be observable, only that the 
inputs and outputs be.  In normal computing, we are happy with the idea that a user of a 
system (whether that user is a human or another computer system making an automated 
enquiry) interacts with the system by specifying input and in turn receives output; they do 
not need to see the states which the machine takes on in between.  Indeed it seems natural to 
extend the idea of computation to those systems where the changing state cannot be 
observed without disturbing the process, as in quantum computing. 

Secondly we can concentrate on the question of what is doing the observing.  It does not 
seem necessary to restrict the observer to being a conscious entity; it would seem reasonable 
to suggest that in a multi-component system, one component can carry out a computation 
and pass its output onto another.  It may be the case that a system can be self-observing.   



The aim of considering observability is to attempt to exclude those parts of the world 
which are changing but not affecting other parts; however this doesn’t seem to be a 
significant part of “computing”. Whilst transformations happen in the world without being 
observed (in the broad sense of passing their data onto another system), it does not seem that 
we should exclude these from what we regard as computations, or that this is a significant 
distinction (it is akin to “when a tree falls in the woods, does it make a sound?”—entirely 
dependent on definition).  

 
4.2  Consistent ascribing of symbols 
An important characteristic of computing is that symbols within the system have a 
consistent interpretation throughout the computation, or at least if they do not there is a 
component of the system which explains how the interpretation of the symbols changes as 
the computation progresses.  That is, any external system which observes and/or initiates a 
computation must declare in advance how it is going to interpret those symbols.  This seems 
to be a key characteristic of computing which can be applied to natural systems. 

If there is not a consistent allocation of symbols then transformations are meaningless.  
In particular if we are completely free to assign any symbol to any meaning at any point in 
the computation then we can say that any transformation is doing any computing (subject to 
certain restrictions on the number of bits being transformed). This is akin to the “can a rock 
implement every finite-state automaton” argument [Put88,Cha96]. If we take a trivial 
“transformation” of a system (i.e.  one in which nothing changes as a result of the 
transformation) and we are free to change the interpretation of the symbols, then we can just 
“relabel” the unchanged symbols in terms of the desired output; we would presumably not 
want to ascribe the property of computation to that trivial non-transformation. 

It seems that many biological systems to which we want to ascribe the idea of 
computation support this idea.  The output from a computation on a traditional computer 
passes a stream of bits to a screen or printer which are interpreted in a consistent way so as 
to display a particular text or image.  In biological cells the end result of a sequence of 
signal transduction steps on receipt of a particular receptor is a particular protein; in protein 
folding a particular amino acid sequence gives rise to a particular three-dimensional 
structure (or one drawn from a particular probability distribution of structures). It is 
important to make a distinction between consistent and deterministic here; this property 
does not exclude probabilistic actions being included in computations. 

 
4.3  Digital encoding 
Is a digital encoding of information necessary in order to call some transformation a 
computation?  Many discussions of computing assume that digital information is at the heart 
of computing, and the fact that the genetic system is digital is often seen as one of the core 
arguments for evolution and development having computational aspects to them.  It is 
possible, however, to construct computational devices out of non-digital components, and to 
construct algorithms which make use of analogue representations of information; indeed in 
the early development of computing digital and analogue approaches to computation were 
developed alongside each other.  If we are to think of computing as something which occurs 
in a wider variety of systems, it would seem that we shouldn’t take the presence of a digital 
representation of information as a key factor in deciding whether a system is computational 



or not.  Indeed in many cellular systems the structures for representing information digitally 
do not seem to exist.   

 
4.4  Flexibility of inputs 
Another factor which we may want to take into account in developing a distinction between 
computation and non-computation is the flexibility that an external system has to change the 
input.  An important characteristic of computing is that computers act on different data; they 
don’t just do the same action all the time.  Still important, though perhaps less core to the 
idea of computing, is the idea of programmability.  The ability to influence the system by 
adding new information would seem to be a core idea in ascribing an idea of “computing” to 
an action in the world.  Again this is well illustrated by the protein folding problem; one of 
the reasons that we can easily apply computational reasoning to understanding that problem 
is that we can put information into the system as symbol strings, and the range of inputs is 
vast.   

 
4.5  Intention to initiate a change 
A final property we shall consider here is whether the intention to do a computation is a 
significant factor in deciding which natural transformations should be regarded as 
computations.  As with the idea of observability above, intention here need not mean 
conscious intention.  However it seems important when ascribing the notion of computation 
to an action that it be triggered by some other system (or by itself, but in a more 
sophisticated way than just existing in a changing state) with the end result that the output 
from the system will act in the world.  By making this distinction we draw a line between 
those transformations which are part of some system which is acting to effect a deliberate 
change on the world, and those which are just happening because the laws of physics are 
acting on certain pieces of matter. 

 
4.6  Summary. 
Clearly we could consider other properties.  However it seems that we are beginning to tease 
out what we might mean by a “computation”, and what transformations we might ascribe to 
the category “not a computation”. Clearly this is a topic around which much future 
discussion could revolve.  

In particular it is interesting to speculate as to whether it is only a historical 
happenstance that our first encounter with the concept of computation was through the 
synthetic creation of computing devices? Could we instead have come across some of the 
important ideas in computing by an analytic study of biological systems?  If so, which 
concepts would have most easily been discovered through such an analytic study?  What 
systems, and what commonalities between systems, might have suggested these concepts?  
Are there other concepts, now regarded principally as analytic scientific concepts, which 
were originally discovered as synthetic engineering ideas?  If so, how did the transition 
occur from the concept being seen as purely synthetic to it being seen as a scientific concept 
which could be applied in an analytic fashion to understand objects in the natural world?  If 
we believe that this is important, how do we go about encouraging such an enrichment of 
ideas in the context of concepts from computing?  



How can we revisit computational ideas without being overly distracted by the kind of 
computation that we see on computational devices?  What would computer scientists be 
studying if the computer had not been invented? 
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