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This paper describes a computational model of the Attentional Blink constructed using 
the dual-stage model proposed by [1] and also incorporating a token based account of 
working memory [2].  This model reproduces data from a number of blink paradigms and 
makes predictions that lag-1 sparing is temporal and not sequential in origin.  A further 
prediction is that enhancing the distinctiveness of T2 can impair T1 performance and also 
provoke order inversions of T1 and T2.  Experiments from our lab examined the validity 
of these predictions.  Implications and results are discussed. 

1. Introduction 
Many studies of temporal attention have employed Rapid Serial Visual 
Presentation (RSVP), in which stimuli are presented one after the other at the 
same spatial location. At presentation rates of 10 items per second, targets in the 
stream are frequently missed. The Attentional Blink (AB) [3,1] paradigm uses 
such an RSVP stream, with two targets (denoted T1 and T2). The basic finding, 
depicted in figure 2b, is that there is a period of approximately 500 msec during 
which processing of T1 seems to impair the ability to detect and report T2.  This 
suggests that the deployment of attention to processing T1 has a temporal 
window of a little over half a second. This interpretation is complicated by lag 1 
sparing, which is the robust finding of almost unimpaired performance on T2 
when it immediately follows T1. Lag 1 sparing raises the central question of 
why attentional resources are too limited to process both T1 and T2 at lags of 
100-600 ms, but are sufficient if T2 is at shorter intervals, providing a clear 
challenge to computational modelling of the AB. 

This paper responds to these issues by proposing a computationally detailed 
model that reproduces a spectrum of experimental data on what can be argued to 
be a canonical AB task, in which the subject must report the two letter targets 
that appear in a stream of digit distractors [1]. Specifically, in the context of this 
task, our model reproduces a core set of findings, that is (1) a basic blink effect 
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with lag 1 sparing; (2) an impairment in T1 performance at lag 1; (3) an increase 
in temporal order confusion at lag 1, and to a lesser extent at lag 2; and (4) 
effects of unmasking T1 and T2, i.e. attenuation of the blink if one or more 
blanks are inserted after T1 and / or T2 in the RSVP stream. 

Two key principles underlie the model. Firstly, in accordance with [4] and 
[5], we subscribe to the position that a major source of competition between 
RSVP items is at the level of visual features. Thus, items in the stream are 
backward masked by the items that immediately follow them. This position is 
supported by the attenuation of the blink when targets are unmasked, i.e. are 
followed by blanks. In our model, masking determines the strength of the 
activation trace of a target. Thus, weak traces arise from masked targets (e.g. as 
occur in the basic blink condition), while strong traces arise when targets are 
unmasked (e.g. when they are followed by blanks). Critically, in our model, 
“bottom-up” activation strength generated by a stimulus determines how easily 
the representation of that stimulus can be consolidated into working memory 
and also, the length of time that attentional resources are occupied with this 
process. As a result, the severity of the blink bottleneck is regulated by bottom-
up trace strength, which is in turn determined by the level of masking to which a 
target is subjected.   

The second key principle that underlies our model is the types – tokens 
distinction [2]. Types in our model are detailed representations of the identity of 
an item, including semantic and perceptual features. However, types are 
impoverished in their representation of how and when an item occurred. 
Consequently, it is also necessary to represent token information, which records 
instance specific details of the occurrence of an item. In particular, in our model, 
tokens are compact working memory encodings, which record both how and 
when the item occurred (e.g. its temporal position relative to other items) and 
which enable type information to be regenerated during retrieval.  Our 
implementation of this model encapsulates this token binding system into a 
dual-stage model as described by [1,6,7]. 

An earlier version of this model was presented in the proceedings of the 
2003 NCPW conference [8].  This model improves on that work through the 
implementation of a transient attentional resource that creates a temporal 
window of enhanced salience, which allows it to address other types of data.  
Also, we now separate semantic and task-related processing into different layers 
with different time courses of activation, an essential step in allowing targets 
and distractors to prime one another.   
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We begin this paper by outlining the technical details that underlie our 
model in section 2. Then in section 3 we compare human data with the results of 
our simulations. Finally, in section 4 we discuss the implications of our work, 
and compare the model’s predictions with experimental work in our lab. 
 

2.  Methods 

2.1. Overview 
This model implements a representation of the processing of an RSVP stream 
containing 16 distractors and 2 targets presented at a simulated rate of 100 msec 
per item (Stimulus Onset Asynchrony: SOA).  Targets are separated by 0-6 
distractors.  The model simulates the neural dynamics associated with the 
encoding of the targets into tokens that support later retrieval.   

 

2.2. Neural Elements 
This model uses neural elements designed to broadly capture the generalized 
excitatory and inhibitory dynamics of cortical areas.  Activation functions are a 
combination of bias, excitation, inhibition and leak currents.  Connections 
between elements are excitatory or inhibitory and are not modifiable, with the 
exception of binding links described below.  Outputs from each neural element 
are derived from thresholds combined with a sigmoid-like function.  There are 
no synaptic delays.  The activation function for the membrane potential of all 
neural elements is show in equation 1, 
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where is the membrane potential for neuron i of layer j at time t, 

affected by Bias, Excite, Inhib and Leak with a time constant DT_VM.  EE, EI 
and EL represent reversal potentials. This membrane potential is used in the 
following output function which simulates a sigmoid function that bounds a 
neuron’s output to the range [0,1), where θ  and  γ represent threshold and scaling 
parameters.  
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Apart from the recall and binding link mechanisms, described in more detail 
below, all elements of this model are created entirely through a network of these 
elements.  An exhaustive description of the parameter values is beyond the 
scope of this paper, but will be available online at, 

 http://www.cs.kent.ac.uk/projects/cncs/online/bw5/ncpw2004/blink/. 

This paper focuses on describing and analyzing the functional characteristics of 
this architecture, which can be obtained over a broad range of parameter values.   
 

2.3. Structure 
The structure of this model can be viewed as a two-stage architecture similar to 
that described in [1] in which the first stage is capable of operating in parallel, 
while the second is serial in nature.   The second stage implements a 
tokenization process that binds tokens to types in a similar manner to that 
described in [2].   

The first stage comprises the bottom 4 layers depicted in Figure 1.  Lateral 
and feedforward inhibition in the first two layers creates a masking effect that 
reduces the duration and amplitude of masked relative to unmasked items.  
Traces also differ systematically in strength based on variance applied at the 
input layer, to simulate varying degrees of featural masking by digit/letter 
combinations.    Representations are localist, with one neuron per item in each 
layer of the first stage.  The representations in this masking layer are passed 
directly to both of the next two layers (3 and 4), which are intended to represent 
items at semantic/categorical levels. The first of these layers maintains 
activation traces for several hundred milliseconds, intended to represent 
extended semantic processing that is immune to conditions of task demand.  

The second of these layers (the Task Selection Layer: TSL) invokes a 
representation at which cognitive control can select a specific category of items 
for further processing.  Task demand input, representative of such strategic 
cognitive control, selectively excites neurons corresponding to targets while 
suppressing neurons corresponding to distractors. The TSL neurons are weakly 
self-excitatory, but share weak mutually inhibitory connections, providing a 
measure of interference between co-active representations.  A further means by 
which TSL representations interfere with one another is provided indirectly 
through the unavailability of an excitatory recurrent mechanism that provides a 
50 msec pulse of excitation to all items in the TSL and semantic layers when 
any neuron in the TSL is activated.  The contribution of this enhancement is 
critical in strengthening weak traces to a level at which they can activate a token 
and be encoded.  Justification for the inclusion of this excitatory recurrent pulse 
is provided in the discussion.  
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This excitatory mechanism is strongly suppressed during a token binding 
process (as described below).  These two methods of interference (lateral 
inhibition in the TSL and suppression of the excitatory pulse) make it difficult 
for weak items to become activated in the TSL while an existing representation 
is active.   
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Figure 1.  The structure of the model, note that connection patterns between 
layers are only depicted for some neurons, but apply for the entire layer. 
 

The TSL is also connected in a 1 to 1 fashion with a shutoff layer that 
contains neurons capable of selectively inhibiting each task selection neuron 
after a sufficient amount of activity.  This mechanism is critical in preventing 
strong traces with long durations from erroneously encoding multiple tokens, 
but can also cause repetition blindness for repeated elements [2].  The second 
stage of this model implements a process of binding working memory tokens to 
the item “types” in the TSL.  During the presentation of the stream, a token may 
be activated by items in the TSL, which are above threshold. The activation of a 
token initiates the construction of binding links between that token and any 
items that are currently active.  The processes of activating the token and 
building these links take significant time (hundreds of msec), and occur faster 
with stronger traces than weaker ones.  Tokenization is implemented through a 
dual-layer system consisting of gate and trace neurons, arranged in a series of 
pairs.  Together one gate neuron and one trace neuron comprise a token.  The 
gate neurons receive a small bias and are mutually inhibitory such that only one 
of them is active at any time, ensuring that only one token is available.  The 
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trace neurons are strongly self excitatory and thus are designed to switch on 
once given sufficient input, after which time they self-sustain and inhibit their 
respective gate neuron, making the bound token unavailable for further binding, 
and releasing the remaining tokens from inhibition.   

Tokens in this model have four states, (1) available, (2) unavailable, (3) 
binding and (4) bound.  An available token (1) has a minimally active gate 
neuron and an inactive trace neuron.  While one token is available, others are 
unavailable (2) due to lateral inhibition between the gates.  A token in the 
process of binding (3) has a highly active gate neuron, being driven from one or 
more items in the first stage, and a trace neuron with a steadily accruing level of 
activation.  A token that has already been bound (4) has an inactive gate neuron 
receiving continuous inhibition from its active trace neuron.   While a token is 
being bound, binding links are incrementally created from gate neurons to 
individual items in the TSL. The rate of increase of these links is proportional to 
the strength of the individual traces in the TSL, when the gate is sufficiently 
active.  The sustained activation of the trace neurons are used later to determine 
which tokens were bound.  Binding links from the gate neurons to the TSL 
determine what item or items were encoded by those tokens.   These binding 
links have no effect on the dynamics of the model during presentation and 
encoding of the RSVP stream. 

This token system has a number of important properties.  First, multiple 
tokens may point to the same type.  This feature allows the system to represent 
multiple instances of the same item.  Although not a factor in AB studies that 
forbid repetition of targets, this feature provides an important facility to a 
working memory implementation.   Second, a single token may point to multiple 
items.  This is a case that may occur when items are presented in close temporal 
proximity (< 150 msec).     Third, the tokens are made available sequentially 
during encoding, which implicitly encodes order information.  Gate neurons 
compete to become available at the beginning of a trial and also when the 
current token has been bound.  The winner is determined by an ordered pattern 
of bias currents applied to the gate neurons, which effectively determines which 
token is first, which is second and so on. In this way, the model preserves the 
order of item encoding when items are presented slowly enough that a second 
token is available to encode the second item (ie at 300 msec lag).   Fourth, there 
are a limited number of tokens available, in the case of this model, 2 are 
sufficient, but 3-4 may exist.   

At the conclusion of an RSVP stream, the model simulates a recall phase to 
disambiguate the erroneous bindings caused by a presentation rate that is too 
rapid for the token system to accommodate.  This simulation is not performed 
explicitly within the network, as it is only our intent to model encoding 
processes.  For successful recall of a target at the end of a trial, a binding link of 
sufficient strength must exist from any token to that target, and that token must 
have an active trace neuron    If both targets were successfully bound to either 
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one or two tokens, the recall phase probabilistically determines in which order 
they were perceived by comparing the relative strength of binding links from 
each token to each of the two targets.   In determining order, we are assuming 
that a retrieval process makes reasonably efficient use of all available 
information, including bindings that are below threshold, and tokens with 
inactive trace neurons. The sum of the token binding links indicating that T1 
and T2 are in the correct, or inverted order are compared to determine a 
probability that an inversion occurred on a given trial.  This probability is then 
compared with a randomly generated number in the range [0,1] to determine 
whether an inversion occurred on a given trial.  This approach simulates a 
robust disambiguation process that makes sense of “sloppy” token bindings.   
 

3. Results 
Figure 2 displays model data alongside human data.  This model is able to 
successfully reproduce all of the qualitative features of the standard blink, T1 + 
1 Blank, and T2 at the end of the stream conditions, and also creates some 
predictions for data that have not yet been collected.    

The mechanism by which the model generates a blink is largely a result of 
suppression of the recurrent excitatory enhancement in layer 4 that occurs 
during tokenization, as well as lateral inhibition within the TSL.  The 
combination of these effects prevents a T2 from reaching a level of activation 
sufficient for tokenization.  The binding of T1 can take long enough that a weak 
T2 trace in layer 3 has decayed before it can be bound into a second token.   

Lag-1 sparing results from the T2 being close enough in time to T1 to take 
advantage of the excitatory pulse, allowing it to be encoded alongside T1 into 
the first token.  Via lateral inhibition this dual-encoding of T2 and T1 comes at 
the partial expense of the T1 binding strength, which is evident in the loss of T1 
performance at lag 1.  Furthermore, that T1 and T2 are bound to the same token, 
with only partial information spilling over to a second token, causes a massive 
increase in order inversions at lag 1 (Figure 2c).   

Blanks in the T1+1 slot attenuate the blink by producing a much stronger 
T1 trace.  T1 is then bound rapidly.  Consequently, it is easier for strong T2’s to 
persist in the semantic layer long enough to be bound.  When the T2 is 
unmasked by being the last item it has a particularly strong T2 trace, which can 
break through or outlast the window of inhibition caused by the T1 token 
binding.   

 



 8

4. Discussion 
This AB model succeeds in causing the emergence of a blink from the dynamics 
of a neural network that embraces a number of pre-existing theories [1,6].  
Further, the contour of this blink is manipulated by modifications of the RSVP 
stream in a way that is very similar to that shown in human data and makes 
predictions for what might be observed in variations of the AB paradigm.   
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Figure 2a-d:  These 4 graphs demonstrate the model’s performance (a, c) compared to 
human data (b, d).  The T2 performance data (a, b) represents the accuracy in reporting 
T2 on trials in which T1 was reported.  In c and d, T1 accuracy is shown by the lines at 
the top of the graph, while the bars at the bottom indicate the percent chance for the 
reported order of T1 and T2 to be inverted. Human data are from [1] except the T2 end of 
stream data which is from [9].  Horizontal axis represents the number of intervening 
distractors, while the vertical is accuracy.  The simulated results in panel c include data 
not yet found in the literature.   
 

One important aspect of this model is the way in which the recurrent 
excitatory pulse affects all items. This implementation was chosen because it fits 
available data by [10] demonstrating that a distractor in the T1+1 slot has an 
ability to prime a T2, while a distractor in the T1+2 slot does not.  Our 
implementation of an excitatory pulse applied to all items achieves this increase 
in salience restricted to a time slot immediately following a task-relevant item.  
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In a simulation to test the influence of primes in T1+1 and T1+2 slots, the 
former was capable of strongly priming T2 while the latter had little effect (63% 
vs 37% accuracy at lag 3). 

The real heart of this model is in the dynamics of token binding, which 
presupposes that ongoing binding must be protected from interference by 
ensuing items.  This binding process is considered to be promiscuous, in that a 
token will bind indiscriminately to any active traces within the TSL.  If multiple 
tokens could bind simultaneously and without interference, there would be no 
need for a protective mechanism such as the one implemented in this model, but 
the design of such a system would be considerably more complex.   

This theoretical position has the further implication that many of the blink 
effects are temporal in origin, and not the result of the sequential adjacency of 
T1 and T1+1 slots.  Multiple traces can coexist in the TSL, if presented rapidly 
enough to take advantage of the initial excitatory pulse, and it is their mutual 
interference that causes order inversions and T1 impairment at lag 1.  Any T2 
that follows T1 within the appropriate interval (approx 100-150 msec) can join 
into the binding process of the tokenization initiated by T1.  Consequently our 
model makes the further predictions that at SOA’s of 50 msec, items presented 
at lag 2 should exhibit both sparing as well as order inversions.  Preliminary 
data from our lab for RSVP rates of 10 and 20 items/sec (100 and 50 msec 
SOA) demonstrates that this is correct.  A comparison of the fast and slow 
curves reveal that the blink curve is a function of time, and not the sequential 
nature of the presentation.  Strong lag-2 sparing was obtained for the 50msec 
SOA and the maximal depth of the blink was at lag 6.   

Another major prediction of this model is that enhancing the strength of T2 
increases interference with T1 at lag 1.  Through analysis of our existing data 
we have confirmed this prediction for different classes of letters grouped by 
featural difficulty.  A letter-by-letter analysis of single target RSVP streams 
reveals that some have consistently higher accuracy rates, presumably because 
of features that are more easy to recognize through the digit masks.  Easy letters 
were: A H N Y T and L.  Difficult letters were B C E P J and V.  Other letters 
with intermediate difficulties were ignored for this analysis.   

In an AB experiment, 14 subjects saw random pairings of letters, at lags 1-8, 
with 92 msec SOA’s.  Examination of all 8 lags discovered that in the 
comparison of trials which used easy or hard letters for T2, the easy T2’s 
selectively impaired T1 performance only at lag 1, (lag-1 two-tailed T-test, p < 
.006, ns at other lags).   The fact that T2’s with presumably strong feature traces 
interfere with T1 more than T2’s with weak traces, and only at lag-1, constitutes 
empirical validation of our prediction that lag-1 sparing is the result of a single 
combined token being created for targets presented at near 100 msec SOA. 
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5. Conclusion 
This model succeeds in integrating a token-based theory of working memory 
with a dual stage model of the AB, and in doing so exposes important issues that 
need to be explored to further our understanding of this phenomenon.  It is our 
position that much can be learned about the nature of target binding by focusing 
experiments on the 150 msec following the T1 with SOA’s of 50 msec, and also 
to explore further the effect of T2 manipulations on T1 performance.  
Specifically, in this theoretical construct and more generally that of the two-
stage model, the questions most outstanding regarding the interaction of T1 and 
T2 are the following: Can multiple tokens be bound simultaneously or is the 
process serial in nature?  Do T1+1 blanks, as well as other means of attenuating 
the blink cause their effect by reducing the time to bind a token?  Do T2+1 
blanks attenuate the blink in the same manner?  Are T1 and T2 bound together 
into a conglomerated token at Lag 1?  Experiments designed to address these 
issues will not only improve our understanding of the Attentional Blink 
phenomenon, but will also shed light on the temporal resolution of visual 
attention for fleeting objects.   
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