
A Fast Analysis for Thread-Local Garbage Collection with Dynamic Class Loading

Richard Jones
University of Kent, Canterbury U.K.

R.E.Jones@kent.ac.uk

Andy C. King ∗
Microsoft Corporation, Redmond, U.S.A.

andy.c.king@gmail.com

Abstract

Long-running, heavily multi-threaded, Java server appli-
cations make stringent demands of garbage collector (GC)
performance. Synchronisation of all application threads
before garbage collection is a significant bottleneck for
JVMs that use native threads. We present a new static
analysis and a novel GC framework designed to address
this issue by allowing independent collection of thread-
local heaps. In contrast to previous work, our solution
safely classifies objects even in the presence of dynamic
class loading, requires neither write-barriers that may do
unbounded work, nor synchronisation, nor locks during
thread-local collections; our analysis is sufficiently fast to
permit its integration into a high-performance, production-
quality virtual machine.

1. Motivation

Server applications running on multiprocessors are typ-
ically long-running, heavily multi-threaded, require very
large heaps and load classes dynamically. Stringent de-
mands are placed on the garbage collector [19] for good
throughput and low pause times. Although pause times can
be reduced through parallel (GC work divided among many
threads) or concurrent (GC threads running alongside mu-
tator1 threads) techniques, most GC techniques require a
‘stop the world’ phase during which the state of mutator
threads is captured by scanning their stacks for references
to heap objects. Unless the stack is scanned conservatively
[7], the virtual machine must provide stack maps that indi-
cate which stack frame slots hold heap references. Stack
maps are typically updated only at certain GC points (allo-
cation sites, method calls, backward branches and so forth)
in order to reduce storage overheads; it is only safe to col-
lect at these points.

In a multi-threaded environment, all threads must be at
GC safe points before a GC can start. Virtual machines

∗This work was done at the University of Kent.
1Mutator is the term used in the memory management literature for the

application program.

that manage their own threads [3], use custom architectures
[10], or make every instruction a GC point [31], ensure that
thread switching only occurs at GC safepoints; here, it is
only necessary to synchronise a few processors rather than
many mutator threads. However, for efficiency, most com-
mercial Java virtual machines map Java threads to native
threads, which can be switched at any instruction. Here,
each thread must be rolled forward to a safe point (by ei-
ther polling or code patching [1]).

The cost of this synchronisation for heavily multi-
threaded programs is considerable and proportional to the
number of mutator threads running (rather than the num-
ber of processors). For example, thread suspension in the
VolanoMark client [32] incurs up to 23% of total GC time
spent. Table 1 shows the average and total time to suspend
threads for GC (columns 2, 3), the average and total GC
time (4, 5), the total elapsed time (6) and suspension as a
fraction of GC and elapsed time (7, 8). However, many ob-
jects are accessed by only a single thread [8, 9, 33, 25, 2, 6].
Table 2 shows the number and volume of shared objects
and all objects (2–5), and hence the fraction that are never
accessed outside their allocating thread (6, 7).

Suspend time GC time Runtime Suspend as %
Threads avg total avg total total GC Run

1024 6 1351 30 7389 15384 18.28 8.78
2048 13 4198 57 17992 35596 23.33 11.79
4096 30 12200 136 56124 81746 21.74 14.92

Table 1: Thread-suspension and GC time vs. total runtime
for the VolanoMark client (times in milliseconds).

The insight behind our work is that, if objects that do not
escape their allocating thread are kept in a thread-specific
region of the heap, that region can be collected indepen-
dently of the activity of other mutator threads: no global
rendezvous is required. Further, independent collection of
threads may also allow better scheduling. Given appropri-
ate allocation of heap resources between threads, it is no
longer necessary to suspend all mutator threads because a
single thread has run out of memory.

The contributions of this work are a new compile-time
escape analysis and GC framework for Java. The output

Global Total % Local
Threads objects MB objects MB objects MB

1024 761669 36 1460156 80 48 55
2048 1627826 77 3062130 164 47 54
4096 3669666 168 6623630 345 45 52

Table 2: Fraction of objects that remain local throughout
their entire life in the VolanoMark client.

of the analysis drives a bytecode to bytecode transforma-
tion in which methods are specialised to allocate objects
into thread-specific heaplets or the shared heap as appro-
priate; these methods are then JIT-compiled on demand in
the usual way.

• The analysis can classify objects even if parts of the
program are unavailable (in contrast to [25, 30]).

• The system is safe in the presence of dynamic class
loading; for our benchmarks, it is effective.

• It requires neither synchronisation nor locks for local
collections (in contrast to [30]).

• It does not require a write-barrier that may do an un-
bounded work (in contrast to [14]).

• It uses less time and space than other analyses that
accommodate dynamic class loading [18]. It is suf-
ficiently fast to make incorporation into a production
JVM (Sun’s ExactVM for Solaris) realistic.

Most analyses that act on partial programs generate worst-
case solutions for unavailable fragments. In contrast, our
system generates best-case, yet still safe, solutions. Only if
and when a class is loaded that invalidates a solution does
our system retreat to the synchronisation status quo, and
then only for threads that might use this class. In practice,
such badly-behaved classes are rare: hence we claim it is
effective.

Our goal is a compile-time heap partitioning that al-
lows a region (not necessarily contiguous) of the heap as-
sociated with a user-level thread to be collected without
suspending, or otherwise synchronising with, other user-
level threads. We require (a) a heap structure that permits
independent collection of regions, (b) a bytecode escape
analysis that classifies object allocation sites according to
whether those objects are shared between threads, and (c) a
bytecode transformation to specialise and rewrite methods
appropriately. We discuss each below.

2. Related Work

A GC can only determine a thread’s roots when it is
in a consistent state. If systems that use their own non-
preemptive threads [3] switch thread contexts only at GC
points, no synchronisation between threads running on a
single processor is needed for GC. Custom architectures
that allow native threads to switch only at certain machine

instructions (which are GC points) [10] similarly require no
intra-processor synchronisation. In both cases, synchroni-
sation is needed only between processors. In contrast, for
an on-the-fly reference-counting collector, Paz et al. show
how threads’ state may be gathered one at a time [24].

However, most JVMs use native threads, which must
all be stopped at GC points. Ageson [1] compares polling
and code patching techniques for rolling threads forward to
such GC points. Stichnoth et al. [31] suggests that stack
maps can be compressed sufficiently to allow any instruc-
tion to be a GC point, but this does not address the other
advantages of being able to collect thread-local heaps inde-
pendently.

Several authors have proposed thread-local heap organ-
isations. Doliguez et al. [13, 12] describe a heap archi-
tecture that takes advantage of ML’s distinction of muta-
ble from immutable objects. The latter are placed in local,
young generation heaps while the former and those refer-
enced by global variables are placed in the shared, old gen-
eration heap: there are no references between local heaps.
Local, young generation collections are performed inde-
pendently. ML does not support dynamic code loading.

Steensgaard [30] divides the heap into a shared
old-generation and separate thread-specific, young-
generations. His escape analysis segregates object
allocation sites according to whether the objects that they
allocate may become reachable both from some global
variable and by more than one thread. He does not support
dynamic class loading. Unfortunately, because all static
fields are considered as roots for a local region, collection
of thread-specific heaps requires a global rendezvous,
only after which may each thread complete independent
collection of its own region. In contrast, our system re-
quires neither locks nor global rendezvous for thread-local
collection.

A run-time alternative is to use a write barrier to trap
pointers to objects in local regions as they are written into
objects in the shared heap, and to mark as global, or copy
to a shared region, the target and its transitive closure
[14]. When a thread triggers an independent collection,
the mark-phase traverses and the sweeper reclaims only
the thread’s local objects. The primary drawback to this
approach is the unbounded work performed by the write-
barrier to traverse structures (although this need only be
performed once for any object, since global objects cannot
revert back to local).

Hirzel et al. [18] describe a Anderson [4] pointer anal-
ysis that supports all Java features including dynamic class
loading. The memory and runtime costs of their analysis
are significantly larger than ours, although comparisons be-
tween our JVMs are hard to draw.

3. Heap structure

We partition the heap into a single shared heaplet and
many thread-local heaplets. Other heap organisations may
be laid over the heaplets layer (e.g. a heaplet may hold sev-
eral generations, or the older generation may be held in the
shared heaplet): we do not discuss this here. Our require-
ment for independent local collection of heaplets means
that threads should scan only their local roots: global vari-
ables are prohibited from referencing objects in a thread-
local region. Note this definition is more conservative than
that of [30] since all objects reachable from static fields
now escape. However, it concurs with those of [9, 33], both
of which obtain good results for typical Java programs.

If dynamic class loading is forbidden, objects can be
proven either local, along all execution paths, from their
creation until their death, or potentially shared by more
than one thread. As all methods are available at analysis
time, complete type information is available; hence the set
of all possible types of a receiver object and the set of its
invocable methods may be calculated. However, Java per-
mits new classes to be loaded at run-time, so it is impossi-
ble to determine precisely the type of the receiver nor the
set of method targets for a given invocation. Consequently,
objects passed as parameters to methods of ambiguous re-
ceivers cannot be proved to be strictly local for all (future)
paths of execution, yet the conservative solution [9, 33] of
treating as global all actual parameters of yet to be loaded
methods is undesirable.

Instead, our partial-world analysis takes a snapshot of
the system at some point in the program’s execution. This
captures all classes so far loaded and resolved by the vir-
tual machine. Objects are classified as strictly local (L),
optimistically local (OL) or global (G).

• Strictly local objects are provably local, for all execu-
tion paths, regardless of which classes may be loaded
in the future. They are placed in per-thread local
heaplets.

• Optimistically local objects are determined to be local
at the time of the snapshot but may escape if passed
a method of a class loaded in the future. They are
allocated into per-thread optimistically local heaplets.

• Global objects are (potentially) shared in the current
snapshot. They are allocated in the shared heap.

To ensure that a heaplet is dependent only on its owning
thread for collection, and never on another thread or any
roots in the shared heap, references are prohibited from OL
to L heaplets, from one thread’s heaplets to those of another
thread, and from shared objects to L or OL ones (Figure 1).
Let T be a thread instance, with TL and TOL its L and OL
heaplets, TS its stack and G the shared heap, x and y storage
locations, where a location may be in either a heaplet or

G

OL

L

Figure 1: Legal inter-heaplet ‘points-to’ relationships

the shared heap, and let −→ be a reference between two
locations; consider TS ⊂ TL. The following invariants must
be preserved:

Inv. 1. ∀y ∈ TL · i f x −→ y then x ∈ TLor x = T .

Inv. 2. ∀y ∈ TOL · i f x −→ y then x ∈ TOL ∪TL or x = T .

Inv. 3. ∀y ∈ G · i f x −→ y then x ∈ G∪TOL ∪TL.

3.1. Dynamic class loading

After the analysis, an OL object is treated as if it were
local until a new class is loaded that potentially causes it to
become shared. A thread’s local collection will collect both
its OL and L heaplets but G objects will neither be traversed
nor reclaimed. Hence, despite only partial knowledge of
the program, a best-case solution to the independent col-
lection of objects is provided.

Classes loaded after the snapshot analysis has completed
are analysed as they are loaded. The analysis must process
the methods of the new class and determine which exist-
ing call-sites may call methods of the new class (virtual
dispatch). If the analysis indicates that a previously OL
parameter is passed to a new method that causes it to be-
come shared, then the new class is termed non-conforming.
As it is not practical to track changes in escapement at the
level of individual objects, such changes are tracked at the
heaplet level. Loading a non-conforming class causes the
OL heaplet of any thread that might use the class to be
treated as global. Note that L objects of such a ‘compro-
mised’ thread can never become shared: L heaplets can al-
ways be collected independently. On the other hand, in the
absence of repeating the complete analysis, this OL heaplet
can henceforth be collected only alongside the shared heap.

3.2. Technical details

How should objects allocated before the shapshot be
handled? They would have been placed in the shared heap,
regardless of their escapement. If actually L or OL, these
objects may later be updated to refer to objects in an L or
OL heaplet but this does not break Inv. 1 or 2. Although
allocated physically in the shared heap, a logically local
object cannot be reached by any thread other than its own
(which is blocked) so it is safe for the local GC to update its

fields or to move the object into the local heaplet to which
it holds a reference. On the other hand, any logically lo-
cal object in the shared heap which holds a reference into
a heaplet must be treated as a root of that heaplet. Such
references are trapped and recorded by write barrier (as for
generational collectors).

Thread objects themselves need special care. It would
be unsound to allocate a Thread within its own heaplet
since the method creating the thread would then hold a
cross-heaplet reference. Instead, we place the Thread
physically in the shared heap and associate it with its
heaplet. It is treated specially as a root for a local collec-
tion (x = T in Inv. 1 and 2) but is neither moved nor are any
of its shared fields updated by thread-local GCs, thereby
avoiding any races.

4. Escape Analysis

Our analysis is a Steensgard [29], flow-insensitive,
context-sensitive, partial program, compositional, escape
analysis. Steensgaard analyses merge both sides of assign-
ments, giving equal solutions, in contrast to Anderson anal-
yses [4]. The latter pass values from the right- to the left-
hand side of assignments and so offer greater precision, but
their time and space cost is significantly greater [17, 16].
The improvement of flow-sensitive analyses has been found
to be small in practice despite a two-fold increase in anal-
ysis time [17]. Flow-insensitive analyses perform well, de-
spite reduced precision for local variables, because the so-
lution for a method depends strongly on the calling context.

An alias is a storage location (global or local variable,
parameter. . .) that refers to a second location, typically an
object on the heap. The goal of alias analysis is to deter-
mine an approximation of the aliases of a given location
[17]; precise points-to analyses is undecidable [21]. The
results of an alias analysis are typically points-to graphs or
alias sets. Escape analysis is an application of alias analy-
sis. By determining the aliases (at all points in a program’s
execution) of an object, and hence computing the meth-
ods and threads to which those aliases are visible, escape
analysis determines those objects that cannot escape their
allocating method or thread.

Our analysis is a development of Ruf and Steensgaard
[25, 30]. We group potentially aliased expressions into
equivalence classes and construct polymorphic method
summaries that can be reused at different call sites. The
algorithm is thus context-sensitive and flow-insensitive: it
does not require iteration to a fixed point. Although, in
the worst-case, time and space complexity are exponential,
these analyses are fast in practice.

Unlike Ruf-Steensgaard, our algorithm is composi-
tional: any class loaded after a partial analysis of a snap-
shot of the program is also analysed (both to check confor-

mance, i.e. that no execution of any method of this class
could infringe the pointer-direction invariants, and for spe-
cialisation opportunities) and incorporated into the system.
Support for dynamic class loading is achieved by presum-
ing fields and method parameters to be OL rather than L,
unless proven otherwise. Our analysis deems only those
objects that do not escape their allocating method to be L.

4.1. Terminology

Over the execution of a program, a variable may hold
references to many storage locations: its alias set AS mod-
els this set of locations. In addition, AS contains a fieldMap
from the names of the fields of objects referenced by the
variable to their alias sets. All elements of an array are
represented by a single value called ELT . Alias sets also
contain a sharing attribute (L � OL � G), indicating their
escapement. Alias sets for two variables may be merged
(Figure 2).

Merge(a, b)
a.sharing := lub(a.sharing, b,sharing)
a.fieldMap := a.fieldMap ∪ b.fieldMap
∀〈 f ,ai〉 ∈ a.fieldMap, ∀〈g,bi〉 ∈ b.fieldMap

if (f = g) Merge(ai,bi)
Delete(b)
b := a

Figure 2: Alias set merger. lub is the least upper bound of
the sharing attributes.

Method arguments are modelled by alias contexts, a tu-
ple of the alias sets of the method receiver o, the parameters
pi, the return value r and an exception value e.

〈o, p1 . . . pn,r,e〉
Site contexts hold the actual parameters at a call-site, while
method contexts hold the formal parameters of a method.

4.2. The Snapshot phase

The algorithm operates in 4 major phases: Snapshot,
Post-snapshot, Stop-the-world and On-demand. Once the
snapshot and post-snapshot phases are complete, bytecode
for specialised versions of methods is generated. To avoid
races between specialisation routines and the ordinary exe-
cution of the JVM, the concurrent snapshot phases are fol-
lowed by a once-only stop-the-world phase in which spe-
cialisation and code patching is completed.

The analysis runs in a background thread which sleeps
for a user-specifiable period of time in order to delay anal-
ysis until a reasonable number of classes have been loaded.
By delaying, the analysis is given access to more knowl-
edge of the program, which reduces the chance of a class
loaded in the future being non-conforming. Note that we

expect most classes loaded to conform as it would be un-
usual for a sub-class to allow an object to escape its thread
(for example, by referencing it from a static field) when its
parent did not; a possible scenario might be that a logging
version of a class might be loaded to diagnose why a pro-
gram is performing unexpectedly.

Pass Description Traversal
Merge Merge alias sets Any
Call graph construction Identify potential method targets Top-down
Thread Analysis Find shared fields of threads Any
Unification Unify site and method contexts Bottom-up
Specialisation Specialise by calling context Top-down

Table 3: Order of snapshot analysis passes

The snapshot phase is entered at some arbitrary point
in execution in order to analyse all classes loaded at that
point. After this phase, classes are analysed on-demand
as they are loaded: any classes loaded while processing
the snapshot are treated as post-snapshot. Analysis in both
phases is divided into a sequence of passes (Table 3).

Statement Action
v0 = v1 Merge(AS(v0), AS(v1))
v0 = v1. f Merge(AS(v0), AS(v1).fieldMap(f))
v0 = v1[n] Merge(AS(v0), AS(v1).fieldMap(ELT))
v = new C Merge(AS(v), AS(new C))
v = new C[n] Merge(AS(v), AS(new C[n]))
return v Merge(AS(v), r)
throw v Merge(AS(v), e)
v = p(v0, . . . ,vn−1) none

Figure 3: Rules for the merge pass.

The Merge pass constructs an equality-based, intra-
procedural analysis of each method by merging the alias
sets of all values in a statement, propagating escapement
throughout the method (Figures 2 and 3). As alias sets are
merged (and matching fields merged transitively), the least
upper bound of the sharing attributes of the sets is com-
puted. Following the merger, the data structure for the sec-
ond set can be reclaimed. In order to avoid repeating work,
a red-black tree is used to track pairs of alias sets passed to
Merge. Note that, to preserve context-sensitivity, this pass
does not merge the aliases of site and method contexts (thus
methods may be processed in any order).

Call-graph construction Following the merger of alias
sets, a type analysis is performed on receiver objects to es-
timate the set of potential method targets. Methods are pro-
cessed one at a time, which makes the analysis conserva-
tive. The alternative — propagation of types across method
calls, and consequent changing of types in that graph —
would require expensive iteration to a fixed point.

The imprecision of type information for formal param-
eters (which might be used as receivers for method invoca-
tions whose actual parameters escape) requires that they be
treated conservatively and marked as ambiguous. An am-
biguous statement is one with a receiver of an ambiguous
type, for which the analysis cannot determine exactly the
possible set of method targets. To resolve invocation state-
ments, the analysis examines the kind of the invocation.

If it is static, then the only possible method target is that
specified in the constant pool of the current class [22]. Its
entry in the pool contains the name and signature of the
method and also the name of the exact class in which it
resides. If the invocation is special, there is also only one
target (unless specific conditions are met that make the call
virtual [22]).

For virtual and interface invocations, however, the tar-
get depends on the runtime type of the receiver: poten-
tially each class in the receiver’s alias set could contain a
method target. If the receiver is not a formal parameter
but of a known type, then the set of classes is given by
its aliases (including the superclass, to accommodate dy-
namic dispatch — subclasses need not be considered). The
analysis must simply search each class for methods with
matching names and signatures. Ambiguous invocations,
however, may call methods in existing or future subclasses.
A Rapid Type Analysis similar to [5] is used to prune the
set of potential method targets to only those of classes that
have been instantiated. Targets of static and special invoca-
tions, however, are added unconditionally.

Care is taken with calls to methods that are not yet
loaded, or were loaded during the snapshot — the latter
are listed in a post-snapshot queue — by treating them as
if they could cause objects to escape. The analysis marks
statements as ambiguous when given a method target in a
class outside the snapshot; all non-global aliases in the in-
vocation statement’s site context are marked as OL.

The Thread Analysis pass To simplify later passes, the
analysis rewrites certain invocation statements in a spe-
cialised form. For subclasses of java.lang.Thread,
the analysis must discover the statement holding the start
call. This method will start the thread instance using either
its own run method or that of a java.lang.Runnable in-
stance passed to the thread constructor; in either case, the
real entry-point is run and analysis must start from there.
But start is native, implemented in an external library.
Our solution is to construct a specialised virtual invoca-
tion statement of type RunnableRun, or ThreadRun, and
store within it a reference to the alias representing the new
thread instance. This acts as an explicit call to run and is
inserted immediately after the start call. Note that find-
ing the start method is only possible within the current
method if the analysis is not to have to propagate the type

of the newly created thread outside the method, leading to
the more expensive solution described previously. This po-
tentially restricts the set of programs that can be optimised.

The Thread Analysis pass traverses the call graph, start-
ing from the main method, keeping track of the current
thread (initially the implicit main thread, MT), which is
set as each encountered method’s invoking thread. When a
RunnableRun or ThreadRun statement is encountered, the
alias of the thread instance stored in the statement is used
as the current thread and the call-graph is walked from the
corresponding run method, adding the thread alias to each
method’s set of invoking threads. (Note that we identify a
thread with its Runnable object o and call it the runtime
owner of object o.) An alias set a’s sharing is set to be G
if the traversal reaches a with a current thread different to
that of the runtime owner (for any field in a).

Statement Action
v = p(v0, . . . ,vn−1) sc := 〈AS(v0), . . ., AS(vn−1), AS(v), e〉

∀pi ∈ TARGETS(p, v0)
mc := MC(pi)

if (SCC(Mcur) 	= SCC(pi))
∀〈ai,bi〉 ∈ zip(sc, mc)

Unify(ai,bi)
else

∀〈ai,bi〉 ∈ zip(sc, mc)
Merge(ai,bi)

Figure 4: Unification rules. TARGET S(p,v) is the set of
possible method targets, MC(p) is the method context of
p, SCC(p) is the strongly connected component of the call-
graph containing p, Mcur is the current method, zip pairs
corresponding elements of two lists.

Unify(a, b)
a.sharing := lub(a.sharing, b.sharing)
missing := b.fieldMap \ a.fieldMap
∀〈f, bi〉 ∈ missing

a.fieldMap := a.fieldMap ∪ 〈f, Clone(bi)〉
∀〈f, ai〉 ∈ a.fieldMap, ∀〈g, bi〉 ∈ b.fieldMap

if (f = g)
Merge(ai, bi)

Figure 5: Unification functions

The Unification pass is inter-procedural, traversing the
call-graph in bottom-up topological order, propagating es-
capement. At each call-site, sharing attributes are pulled
from the formal parameters of each method context to the
actual parameters in the site context; details are given in
Figures 4 and 5. Unify takes the alias sets of the actual
and the formal parameter and stores the least upper bound
of their sharing attributes in the former. Unlike the merge
pass, any fields of the formal parameter that are not fields of
the actual parameter are cloned on the fly and added to the
latter’s field-map, in order to propagate escapement (rather

than join alias sets across method calls which would lose
context-sensitivity). To make the analysis iterative (rather
than using fixed-point methods), the contexts of recursive
calls are merged rather than unified, as per [25].

Statement Action
v = p(v0, . . . ,vn−1) sc := 〈AS(v0), . . ., AS(vn−1), AS(v), e〉

∀pi ∈ TARGETS(p, v0)
mc := MC(pi)
if (CompareAliasContexts(sc, mc) = Worse)

CreateSpec(pi, sc)

v = new C case AS(v).sharing of
OL: AddAllocPatch(Mcur, PCcur, OL)
L: AddAllocPatch(Mcur, PCcur, L)

Figure 6: Specialisation rules (snapshot phase)

The Specialisation pass is a top-down pass which in-
troduces context sensitivity, specialising methods accord-
ing to calling context. Sharing attributes cannot be simply
pushed across calls into method contexts (for this would
lose context-sensitivity) but the site and method context of
each target must be compared (see Figure 6). If they match,
the target is walked as-is. Otherwise, the site context has
worse escapement than the method and so, unless an ap-
propriate specialisation already exists, the target method is
specialised and this specialisation is added to the method’s
list of specialisations. Note that, in the snapshot phase, es-
capement at site contexts is guaranteed to be no better than
that of the method contexts.

Finally in the snapshot phase, the analysis may en-
counter unresolved targets for which it cannot compare
contexts. These invocations are flagged as ambiguous and
any non-G alias sets in the site context are marked as OL.
If the class is later loaded, the analysis can examine its
methods starting from their callers and determine whether
method contexts differ from those in each site context. If
the escapement is worse, OL objects have become shared
and the analysis must fix the OL heaplets. If it is better, the
analysis can specialise the method and patch the speciali-
sation call into the caller.

On completion of the snapshot phase, all classes in the
snapshot have been processed, and the interpreter and JIT-
compiler are in a position to create specialised methods that
allocate into appropriate heaplets.

4.3. Post-snapshot phase

So far the analysis has known only of those classes in
the snapshot queue. It has treated others, even if loaded
and resolved while the snapshot analysis was running, con-
servatively. These classes are now processed one at a time,
applying the complete analysis to each before considering
the next.

Call-graph traversal graph differs from that of the snap-
shot phase. The call-graph may be large, so the post-
snapshot analysis walks methods of new classes only from
their callers (which were recorded during the snapshot
phase). Note that the list of classes to be processed must
include superclasses and any interfaces implemented. If a
new method may override one in the snapshot, callers of
the overridden method are added to the new method’s set
of potential callers. Using this set, the analysis can walk
methods starting from all their potential callers and thus
avoid a potentially costly walk of the entire call-graph.

When walking from callers, we have no implicit MT
starting thread and so must rely on all threads that could
possibly invoke a method (recorded during thread analy-
sis phase). Thus, given a caller method, the analysis must
walk the subgraph once for each thread by which it can
be invoked, passing the appropriate thread along the graph
each time. The analysis must also add the new methods as
targets of invocation statements of their callers. Note that
previously omitted methods that override those in already
analysed superclasses can now be added as virtual invoca-
tion targets: the call-graph is made more accurate with each
class processed.

Unification proceeds similarly to that of the snapshot
phase but stops short of unifying the site contexts from
whence the walk started (as this would change their es-
capement and hence that of their caller, and so on; their
specialisations have already been created). Instead, we rely
on the next pass to compare contexts and specialise or com-
promise threads as necessary.

Statement Action
v = p(v0, . . . ,vn−1) sc := 〈AS(v0), . . ., AS(vn−1), AS(v), e〉

∀pi ∈ TARGETS(p, v0)
mc := MC(pi)
escaping := {}
case CompareAliasContextsPS(sc, mc, escaping) of

Worse:
CreateSpec(pi, sc)

Better:
∀ai ∈ escaping

∀vi ∈ VALUES(ai)
FIX := FIX ∪ {ALLOCATOR(vi)}

Figure 7: Specialisation rules for method invocation (post-
snapshot). escaping is the set of escaping alias sets, it is
incremented by CompareAliasContextsPS; VALUES(a) is
the set of all values in alias set a; FIX is the set of threads
whose OL heaplets are compromised.

Specialisation also starts from the call-sites in the caller
methods. It compares site and method contexts: those that
match need no further processing other than to continue the
top-down traversal. Sites with worse escapement than that

of their new targets cause specialisation of the new targets.
However, the third outcome — that the escapement of ac-
tual parameters is better than that of formal parameters —
is now possible since the previous pass did not unify con-
texts. In this case, the new class is non-conforming and
some object has become shared (potentially). The aliases in
the site context are guaranteed to be OL (or G) because the
statement was marked ambiguous in the snapshot phase.
Thus, the thread that allocated the object is now compro-
mised and its OL heaplet must be treated as shared.

4.4. The Stop-The-World phase.

Once the post-snapshot analysis has completed process-
ing all new classes, all threads (including recompilation,
finaliser and garbage collector threads) are suspended in
order to avoid races. Specialisations of the methods of all
classes are completed and, for each, its method block — the
structure within the virtual machine that represents a Java
method — is cloned. Some fields, such as the method sig-
nature, exception table and debug structures can be shared,
while bytecode blocks of methods are copied in their en-
tirety to allow modification of their invocation and alloca-
tion opcodes.

The invocation opcodes are patched to invoke further
specialisations, while the allocation opcodes are patched
to allocate into the appropriate heaplet (L or OL). Note
that, for methods which have already been compiled, we
can also patch the JIT generated code directly in order to
avoid allocating L and OL objects in the shared heap, which
burdens the inter-region remembered sets. Finally, the OL
heaplets of compromised threads are marked as shared, so
that they are precluded from thread local collections.

4.5. On-demand analysis

The virtual machine is now running specialised meth-
ods, and local heaplets have been created and are in use.

Any classes loaded after the the analysis has completed
and methods have been patched are analysed as part of
loading. Here, the analysis runs in the thread loading the
class, after the class and any superclasses have been loaded
but before they are added to the class table (so application
threads are prevented from resolving and using the new
class until the analysis is complete). The analysis of the
class is performed as for those on the post-snapshot queue,
but the comparison of alias sets now also generates a set
of escaping alias sets. As in the Post-snapshot phase, non-
conforming classes, i.e. classes that cause OL objects to
become shared are identified (see Figure 7). These are ac-
tual parameter objects in a method of an existing class that,
when passed into a method of the new class, become reach-
able from outwith their creating thread or from a global

variable. The allocating threads of such objects are com-
promised and so their OL heaplets are set to be collected
alongside the shared heap, rather than independently with
their L heaplet (which can never be compromised).

Note that the requirement to preserve site and method
contexts for this purpose means that many analysis data
structures cannot be discarded as it would be expensive
to reconstruct them. This imposes a considerable mem-
ory overhead as they consume part of the C heap for the
lifetime of the application; the Java heap is unaffected.

5. Analysis Evaluation

For the results given below, we generate all specialisa-
tions required. We discuss options for patching and linking
the specialisations in Section 6. Here, we evaluate our anal-
ysis in terms of its time and space costs, the escapement of
allocation, code ‘bloat’ due to additional, specialised meth-
ods, and the potential for compromised threads. We do not
consider here the effects on thread synchronisation time,
collection time, the overall performance of applications,
nor the usage of the Java heap.

All measurements were taken on a lightly loaded Sun
Ultra 60, with two 450MHz UltraSPARC-II processors
sharing 512MB of memory, the Solaris 8 operating sys-
tem, running Sun’s EVM2. Results for two small single-
threaded SPECjvm98 benchmarks [27] (201 compress
and 213 javac) are included simply for comparison.
VolanoMark [32], a client-server architecture for online chat
rooms, is representative of large, long-running applica-
tions. The benchmark was run in configurations with 32,
256 and 2048 threads. SPEC jbb2000 [28] represents multi-
threaded three-tier transaction systems. Two configurations
were used, both of which operate on a single warehouse
(roughly 25MB of live data) but vary the number of threads:
jbb-1 uses 1 and jbb-4 4 threads. Six runs were performed
for each test, the first being used as a warm-up. The best
result from the remaining five was then selected.

Benchmark Threads EVM EVM+analysis

compress 1 39 s 40 s
javac 1 35 s 35 s
vol-16 32 7456 mps 7121 mps
vol-128 256 5894 mps 5895 mps
vol-1024 2048 2976 mps 2992 mps
jbb-1-1 1 864 tps 878 tps
jbb-1-4 4 1363 tps 1371tps

Table 4: Benchmark timings and scores.

Table 4 shows the baseline performance of the bench-
marks without (column 3) and with (column 4) the analysis
running in a background thread. The analysis has negligi-

2aka Java 2 SDK (1.2.1 05) Production Release for Solaris.

ble effect on overall performance, even when threads are
contending for processors — any variation is dominated by
measurement jitter.

Table 5 shows when the analysis was launched, the
number of methods and the number resolved, the number
and fraction of sites allocating into L, OL and G heaplets,
and the space and time costs of analysis and specialisa-
tion generation. In all cases, over 70% of methods are
already loaded when the snapshot analysis is launched:
this is a good indication that the chance of loading a non-
conforming class is small.

The imprecision of the type analysis, leading to a large
and conservative call-graph, causes site contexts to be
unified with the contexts of methods that are not called,
thereby unnecessarily worsening the escapement. This is
exaggerated when specialisation occurs, as the escapement
is passed back down the call-graph (although this at least
is context-sensitive). The result is that, although few sites
allocate strictly locally, the number of OL sites is never-
theless encouraging. However, their escapement can be af-
fected by non-conforming classes, and it remains to be seen
how often this occurs.

The elapsed times for the analysis and specialisation
are good, especially when considered against the overall
timings in Table 4. Note that the analysis of the singly-
threaded benchmarks runs very quickly as the analysis is
able to run on the second processor, which would otherwise
be idle. The analysis for the multi-threaded benchmarks
has to compete for processor with the application threads:
such contention has a significant effect on the time taken
for the analysis to complete (but negligible effect on over-
all run-time). The space cost of the analysis is high; any
memory used is above that already utilised by the garbage
collected heap. Analysis structures are allocated using the
system allocator (malloc) in the heap of the process. How-
ever, the cost is independent of the number of threads and is
likely to be acceptable in the context of server applications
with multi-gigabyte heaps.

Our figures for analysis time and space show a 100x
and a 20x improvement over the only other analysis of
which we are aware that supports dynamic class loading
[18]. However, their results were obtained from a 2.4GHz
Pentium 4 with 2GB memory running Linux, kernel 2.4.
Most significantly, they analysed all the methods of the
JikesRVM virtual machine (itself written in Java), a 4x in-
crease.

The cost of specialisation in terms of code expansion is
shown in Table 6. The number of specialisations created
is shown (in column 2), the volume of original bytecode
and bloat incurred (3, 4), followed by projected worst-case
figures for compiled code (5, 6); note that not all methods
will be compiled. Although the expansion is quite signifi-
cant in some cases, the size of the heap and the space cost

Benchmark Start (s.) Methods Resolved Local % OptLocal % Shared % Total (KB) Time (s)

compress 15 3009 2204 16 3 148 30 314 67 5432 1.236
javac 13 4260 3216 26 2 304 32 600 66 13438 4.210
vol-16 10 2951 2129 12 3 147 43 184 54 5096 7.225
vol-128 22.018
vol-1024 4.453
jbb-1-1 30 5365 3776 68 6 549 48 534 46 31316 9.546
jbb-1-4 17.742

Table 5: Object escapement at allocation sites. Figures are in number of allocation sites and as a percentage of the total.

Benchmark Num. Bytecode Bloat Compiled Bloat
specs (KB) (KB) (KB) (KB)

compress 708 91 29 318 311
javac 1601 173 61 1356 766
vol-X 506 82 17 382 240
jbb-1-X 1129 190 56 1274 729

Table 6: Specialisations and bloat incurred for bytecode
and compiled code.

of the analysis dominates the additional space occupied by
specialised method bytecodes and compiled instructions.

Figure 8 shows plots of when classes are loaded by vol-
1024 and jbb-4; the x-axis shows time, measured as usual in
words allocated since launch. Each X on the plot indicates
a class, while the two vertical bars mark the beginning (10
million words into the application for vol-1024) and end
(roughly 17 million words) of the snapshot analysis.

vol-1024 (Figure 8(a)) loaded several classes during
the snapshot analysis, forcing them into the post-snapshot
queue. It then loaded two classes almost half-way
into the benchmark: java/lang/ref/Finalizer$1 and
java/lang/ref/Finalizer$2. jbb-4 (Figure 8(b))
loaded no classes during the snapshot. In both cases, sev-
eral classes from the SPEC harness’ reporting framework
are loaded toward the end: most of these classes are mem-
bers of the java.awt package. We suggest that this be-
haviour is a somewhat artificial contrivance of these bench-
marking suites rather than a typical behaviour of a server
application, and that our strategy of delaying the analysis
should be generally effective.

00E+00 1.00E+07 2.00E+07 3.00E+07 4.00E+07 5.00E+07 6.00E+07

(a) vol-1024

00E+00 5.00E+07 1.00E+08 1.50E+08 2.00E+08 2.50E+08 3.00E+08

(b) jbb-4

Figure 8: Class loading over time (in words allocated).
Each X marks a class loaded. The beginning and end of the
snapshot analysis are marked by the vertical bars.

6. Further work

Specialisation has consequences for a class’s constant
pool and virtual dispatch table (vtable). To allow efficient
access, both are of a fixed size, determined at class load
time, but our specialisations increase the size of the pool
and add further entries to the vtable. Several solutions are
possible. (a) Methods could be scanned at load time to de-
termine the maximum number of specialisations possible;
but this would cause exponential growth of the constant
pool and vtable. (b) The constant pool and vtable could
be expanded by a smaller, pre-determined factor, possibly
dependent of the number and signature to the classes meth-
ods. Once the vtable was full, further specialisations would
need to use the best existing match. (c) A second, shadow,
constant pool and a separate spec vtable used only by our
specialisations could be provided: this shadow constant
pool is guaranteed to be fully resolved. An unfortunate
consequence of this approach would be the addition of fur-
ther levels of indirection for lookup of specialised methods.
On the other hand, there is evidence to suggest that virtual
method invocations are responsible for a significant num-
ber of data TLB misses [26] because the tables are created
lazily as classes are loaded, and so are scattered sparsely
about the heap. As the new spec vtables would be created
together for all analysed classes, they can be packed tightly
together onto a small number of pages, thereby minimising
the chance of TLB or cache misses and offsetting the per-
formance penalty of the extra invocation instructions. We
intend to explore these options.

We also plan a number of improvements both to the
analysis and to the collector. Methods in dynamically
loaded classes are only assumed to conform if their method
contexts are identical to those of already loaded methods.
Better conformance rules for dynamically loaded classes
are almost certainly possible. Heap resources must be al-
located carefully between threads in order to prevent one
thread’s greed causing all threads to exhaust their heaplets:
we intend to investigate appropriate policies and GC trig-
gers, and how best to lay generations over the heaplet struc-
ture.

7. Conclusions

We have presented a novel static analysis and garbage
collector design that allows the heap to be divided into
thread-specific heaplets that can be collected indepen-
dently, thereby removing the need to synchronise all mu-
tator threads for GC. The analysis can classify objects in
presence of incomplete knowledge, and is sufficiently fast
to make incorporation into a production JVM feasible. The
system is safe, and generates best-case solutions, even in
the presence of dynamic class loading; it requires neither
synchronisation nor locks for local collections, nor a run-
time write-barrier that may do an unbounded work.

Acknowledgements This work was supported by the EP-
SRC, grant GR/R42252. We are also grateful to Steve Heller and
Dave Detlefs of the Java Technology Group at Sun Microsystems
Laboratories East for providing ExactVM, and Andy M. King for
his helpful advice. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are the authors’ and do
not necessarily reflect those of the sponsors.

References

[1] O. Agesen. GC points in a threaded environment. Technical
Report SMLI TR-98-70, Sun Microsystems, 1998.

[2] J. Aldrich, E. G. Sirer, C. Chambers, and S. Eggers. Com-
prehensive synchronization elimination for Java. Science of
Computer Programming, Elsevier 2003.

[3] B. Alpern et al. Implementing Jalapeño in Java. In OOPSLA
[23].

[4] L. Anderson. Program Analysis and Specialisation for C
Programming Language. PhD thesis, University of Copen-
hagen, 1994.

[5] D. Bacon and P. Sweeney. Fast static analysis of C++ virtual
function calls. In OOPSLA’97 Object-Oriented Systems,
Languages and Applications, ACM 1996.

[6] B. Blanchet. Escape analysis for Java: theory and prac-
tice. Transactions on Programming Languages and Systems,
25(6), ACM 2003.

[7] H. Boehm and M. Weiser. Garbage collection in an unco-
operative environment. Software Practice and Experience,
18(9), Wiley 1988.

[8] J. Bogda and U. Hölzle. Removing unnecessary synchro-
nization in Java. In OOPSLA [23].

[9] J. Choi et al. Escape analysis for Java. In OOPSLA [23].
[10] C. Click, G. Tene, and M. Wolf. The pauseless GC algo-

rithm. In Virtual Execution Environments (VEE’05), ACM
2005.

[11] M. Das. Unification-based pointer analysis with directional
assignments. In PLDI Programming Language Design and
Implementation, ACM 2000.

[12] D. Doligez and G. Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In POPL Principles
of Programming Languages, ACM 1994.

[13] D. Doligez and X. Leroy. A concurrent generational garbage
collector for a multi-threaded implementation of ML. In
POPL Principles of Programming Languages, ACM 1993.

[14] T. Domani, E. K. Kolodner, E. Lewis, E. Petrank, and
D. Sheinwald Thread-local heaps for Java. In ISMM’02
International Symposium on Memory Management, ACM
2002.

[15] J. Foster, M. Fahndrich, and A. Aiken. Polymorphic versus
monomorphic flow-insensitive points-to analysis for C. In
Static Analysis Symposium, 2000.

[16] N. Heintze and O. Tardieu. Demand-driven pointer analysis.
In PLDI Programming Languages Design and Implementa-
tion, ACM 2001.

[17] M. Hind and A. Pioli. Which pointer analysis should I use?
In International Symposium on Software Testing and Analy-
sis, 2000.

[18] M. Hirzel, A. Diwan, and M. Hertz. Connectivity-based
garbage collection. In OOPSLA’03 Object-Oriented Sys-
tems, Languages and Applications, ACM 2003.

[19] R. Jones. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. July 1996.

[20] A. C. King. Removing Garbage Collector Synchronisation.
PhD thesis, University of Kent, 2004.

[21] W. Landi. Undecidability of static analysis. ACM Letters on
Programming Languages and Systems, 1(4), 1992.

[22] T. Lindholm and F. Yellin. Java Virtual Machine Specifica-
tion. Addison-Wesley Longman, 1999.

[23] OOPSLA’99 Object-Oriented Systems, Languages and Ap-
plications, ACM 1999.

[24] H. Paz et al. An efficient on-the-fly cycle collection. In
CC05 Compiler Construction, 2005. Springer-Verlag.

[25] E. Ruf. Removing synchronization operations from Java.
In PLDI Programming Languages Design and Implementa-
tion, ACM 2000.

[26] Y. Shuf, M. Serrano, M. Gupta, and J. P. Singh Charac-
terizing the memory behavior of Java workloads: A struc-
tured view and opportunities for optimizations. In SIGMET-
RICS’01 International Conference on Measurement & Mod-
eling of Computer Systems, 2001.

[27] Standard Performance Evaluation Corporation. SPECjvm98
Documentation, release 1.03, 1999.

[28] Standard Performance Evaluation Corporation.
SPECjbb2000 (Java Business Benchmark) Documen-
tation, release 1.01, 2001.

[29] B. Steensgaard. Points-to analysis in almost linear time. In
POPL Principles of Programming Languages, ACM 1996.

[30] B. Steensgaard. Thread-specific heaps for multi-threaded
programs. In ISMM 2000 International Symposium on
Memory Management, ACM 2000.

[31] J. Stichnoth, G. Lueh, and M. Cierniak. Support for
garbage collection at every instruction in a Java compiler.
In PLDI Programming Languages Design and Implementa-
tion, ACM 1999.

[32] The Volano report, 2004. www.volano.com/ report.html
(Last Access Sun Feb 1 10:42:56 GMT 2004).

[33] J. Whaley and M. Rinard. Compositional pointer and escape
analysis for Java programs. In OOPSLA [23].

