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Abstract 

 
Diagrammatic notations, such as the Unified 

Modeling Language (UML), are in common use in 
software development. They allow many aspects of 
software systems to be described diagrammatically, 
but typically they rely on textual notations for logical 
constraints. In contrast, spider diagrams provide a 
visual notation for expressing a natural class of set-
theoretic statements in a diagrammatic form. In this 
paper we present a tableau system for spider 
diagrams, and describe an implementation of the 
system. In a software development context, the system 
allows users to explore the implications of design 
choices, and thus to validate specifications; beyond 
this, the tableau algorithm and system are of general 
interest to visual reasoners.  
 
1. Introduction 
 

Tableaux provide an intuitive mechanism for 
exploring the models and counter-models of logical 
formulas, and in particular they give mechanisms for 
deciding satisfaction and validity for a wide class of 
logics. To users, tableaux are of value not only as 
decision procedures but also by providing a 
mechanism by which a user can explore the 
consequences of a statement or set of statements. 

This is particularly important when a statement is 
used as the specification of or a constraint on a 
software system. In software development, it is a well-
known problem that specifications can suffer from 
incompleteness, inconsistency, or inappropriateness to 
the problem domain. It is therefore crucial that 
specification writers have the chance to engage and 
interact with their specifications in as many different 
ways as possible.  

Obviously specifications should be checked for 
syntactic and type correctness, and this can be done in 

a routine way. In order to understand the semantics of 
the formulas, other mechanisms are needed. A decision 
procedure will allow a user to find out whether a 
specification is satisfiable, but this does not answer the 
question of whether the intention of the specifier has 
been realized. To achieve this it is necessary to tease 
out the significance of the formula, and specifically 

• to investigate the possible models of the 
formula, and 

• to explore the consequences of the formula: in 
other words, to discover its ‘implications’. 

Tableaux can provide both of these for the language 
of spider diagrams. A spider diagram gives a 
diagrammatic representation of a statement about a 
finite number of sets, their membership and their 
interrelationships. For instance, in the context of 
specification such diagrams can be used to describe the 
relations between objects and classes. 

The language of spider diagrams is equivalent to 
monadic predicate logic with equality [18]. It would 
therefore be possible to turn diagrammatic 
representations into textual statements and to apply 
decision procedures or tableau methods to the 
translations of diagrams. This would be perfectly 
adequate in the case of a decision procedure, but where 
feedback to the user is necessary – about the form of 
models, or the consequences of a formula, say – then it 
is crucial to work with a visual representation in order 
to provide recognizable visual feedback. Hence the 
system developed in this paper. 

The paper begins in Section 2 with an overview of 
diagrammatic reasoning, tableaux and spider diagrams 
and their reasoning rules. Section 3 presents the central 
tableau algorithm for spider diagrams, illustrates it by a 
number of examples, discusses heuristics and 
optimizations and concludes by evaluating the system 
The conclusion reviews the work presented in the 
paper, and explores prospects for future work. 

 



2. Spider Diagrams 
 
The motivation for spider diagrams comes from the 

belief that visual representations of logical statements 
can aid understanding of the underlying meaning, and 
are more acceptable to people who are unfamiliar with 
standard textual mathematical notations. A further 
reason is that many essentially visual systems have to 
resort to textual notation for indicating logical 
expressions over visual diagrams. An example is the 
Unified Modeling Language (UML) [19], which is 
used for describing the design of object-oriented 
systems. UML is entirely diagrammatic, except for the 
language used to describe complex constraints on 
collections of objects: this is the Object Constraint 
Language (OCL) [12]. Researchers in diagrammatic 
reasoning are developing candidates for replacing OCL 
with a visual notation; spider diagrams are one such 
example. 

 
2.1. Background 
 

The work described here is performed as part of the 
Reasoning with Diagrams project [15], which engaged 
in developing spider diagrams and similar 
diagrammatic reasoning methods. Spider diagrams are 
an extension to work of Shin [16]. Shin presented 
formal systems of Venn-Peirce diagrams: Venn 
diagrams extended with annotations to indicate empty 
and non-empty sets. Venn-Peirce diagrams admit 
purely diagrammatic reasoning and Shin proved that 
they could be equipped with sets of logical rules that 
are both sound and complete.  

In related work, Hammer [6] presented a sound and 
complete system of Euler diagrams [3]. Sound and 
complete sets of diagrammatic inference rules have 
also been developed for several systems of spider 
diagrams [7]. 

 

 
Figure 1 A spider diagram 
 
Spider diagrams [5] are themselves a subset of the 
constraint diagram notation [8]. Spider diagrams 
represent the interrelationships and membership of a 
finite collection of sets. In Figure 1 diagram d contains 
three sets a, b and c which are represented by contours 
(simple closed plane curves). Regions are given by 

intersection, union and complementation, and a zone is 
a region which properly contains no other regions. 

The figure contains regions corresponding to a∩∩∩∩b, 
a∪∪∪∪b and so forth but not to a∩∩∩∩c, say; a∩∩∩∩b is a zone, 
but a∪∪∪∪b is not, since it properly contains the zone 
representing a∩∩∩∩b (amongst others). The figure 
contains a single spider, which has two feet, and which 
inhabits the region a, with a foot in the zones a∩∩∩∩b and 
a-b. Spiders have a single foot in each of one or more 
zones. 

Applied to UML, relationships between classes and 
states can be expressed as contours. Constraints are 
represented as graphs where nodes appear in 
appropriate set intersections. 

The interpretation of Figure 1 is given by three sets 
a, b and c, which are subsets of a universal set, U, say. 

The absence of a region corresponding to a set-
theoretic combination, such as a∩∩∩∩c, implies that the 
combination must be empty: in this case the sets a and 
c must be disjoint. 

Spiders provide lower bounds on the cardinality of 
sets: the spider that inhabits the region a implies that 
the region contains at least one element.  

Shading is used to provide upper bounds. The 
shading of the zone b∩∩∩∩c implies that b and c are 
disjoint. The shading of the zone a∩∩∩∩b implies that it 
contains at most one element, that potential element 
being given by the spider with one foot in the zone.  

There are no upper bounds on the cardinality of any 
unshaded zone in a spider diagram. In this particular 
case, it is possible for the set b-(a∪∪∪∪c) to contain any 
number of elements (including none). 

The diagram shown in the Figure 1 is unitary; a 
general spider diagram is given by a propositional 
combination – using conjunction, disjunction and 
negation – of unitary diagrams. A full formal 
definition of the syntax and semantics of spider 
diagrams is given in [18]. 
 
2.2 Semantic Tableaux 

 
Semantic tableaux, [1] Section 2.6, provide an 

intuitive and efficient mechanism for deciding 
satisfiability and validity for a variety of logics. A 
semantic tableau for a formula is a tree, labeled at each 
node by a set of formulas: branches of the tree 
represent possible models for the formula.  

The tableau for a propositional formula is built by 
repeatedly applying decomposition rules to any 
compound formula, until only literals and their 
negations (or atoms) remain.  
• A conjunction, such as A∧Β, will be replaced by 

the pair of formulas A, B; this reflects that fact 



that any model of A∧Β will have to make both 
conjuncts true. 

• A disjunction like C∨D, will give rise to a split: 
one branch labeled C and the other D, reflecting 
that to satisfy a disjunction it is sufficient to 
satisfy one of the disjuncts. 

Rules which do not cause a branch are called α–rules 
and branching rules are called β-rules. For each 
connective (e.g. implication, ⇒) there are two rules: 
one that decomposes the formula (X⇒Y) and the other 
decomposing its negation, ¬(X⇒Y).  In this case, we 
have the rules: 

 
Taking a larger example, we next draw the tableau for 
the formula ¬((A⇒C)⇒((A∨B)⇒C)). First we 
decompose the formula itself, giving the two formulas 
¬((A∨B)⇒C) and (A⇒C). Either could be expanded, 
but it is usually sensible to apply α–rules before β–
rules, thus delaying branching; we therefore expand 
¬((A∨B)⇒C). At the next stage, two formulas remain, 
both with β–rules; we expand (A⇒C) and then (A∨B). 

 
The tableau has three branches, and so embodies three 
potential models. Not all give models: consider the 
leftmost branch: that has atoms A, ¬A, C, which can’t 
be satisfied simultaneously; similarly the rightmost 
branch is closed.  
The central branch has atoms ¬A, B, ¬C, indicating 
that the formula at the root is satisfied when A and C 
are false and B true. Note that in building the rightmost 
branch it was unnecessary to expand (A(B), since the 
branch was already closed, 

Building this tableau has shown that the root 
formula is satisfiable; we can also conclude that the 
un-negated formula (A⇒C)⇒((A∨B)⇒C) is not valid, 
since its negation is satisfiable. In this way, tableaux 
provide a decision procedure for validity as well as for 
satisfiability. 

For completeness we include the rules for 
conjunction, disjunction and negation here: 

 

 
Next we look at logical equivalences between 

spider diagrams which will form the basis of the 
extension of tableaux to spider diagrams. 

 
2.3 Reasoning Rules for spider diagrams 
 

To build tableaux for spider diagrams we use 
transformation rules that allow us to transform one 
diagram into another logically equivalent diagram by 
removing, adding, or modifying diagrammatic 
elements. The rules are summarized below; they are 
based on the rules given by Shin in [16], which 
developed earlier work of Pierce [13]. 

 
Rule 1: Add a contour. A new contour can be 

drawn inside a bounding rectangle without changing 
the meaning of the diagram if each zone is split into 
two zones, inside and outside of the new contour. Each 
foot of a spider is replaced with a connected pair of 
feet, one in each new zone. Shaded zones become 
corresponding shaded regions. 

Rule 2: Add a zone. The rule is used to add a zone 
absent from a diagram. The added zone is shaded to 
indicate that it is empty. 

Rule 3: Split a spider. If a unitary diagram d has a 
spider whose habitat is formed by n zones, then we 
may replace d with a disjunction of n unitary diagrams 
d1, …, dn , each of which contains a one-footed spider 
inhabiting one of the zones touched by the spider s.  

Rule 4: Expand negation. The explicit negation of 
a unitary diagram containing only one-footed spiders is 
replaced by a disjunction of (un-negated) unitary 
diagrams. The constraints placed on the models by 
shading and one footed spiders represent a conjunction 



of simple constraints; hence the disjunction resulting 
from expanding the negation.  

 
Rules 1-4 provide the basis for diagrammatic 

reasoning with spider diagrams. Other rules used in 
building the tableau are the standard equivalences of 
propositional logic and compound rules built by 
iteratively applying combinations of rules 1-4. 

 
Rule 5: Expand a compound diagram. This rule 

encapsulates the application of the tableau rules for 
propositional  and adds the children associated by the 
reasoning process to ‘and’ and ‘or’ nodes. It also 
applies the de Morgan laws to transfer the negation on 
unitary diagrams. The children are computed according 
to propositional tableau rules [1]. 

Rule 6: Add contours. This rule applies Rule 1 
repeatedly to add a list of contours to a collection of 
unitary diagrams. 

Rule 7: Split spiders. Splits all the spiders used in 
a collection of unitary diagrams; Rule 3 is invoked 
several times. 

Rule 8: Equalize contours. This rule is applied to a 
collection of unitary diagrams, which will appear in a 
number of different logical combinations within a 
tableau. Contours are added to the individual diagrams 
so that each diagram contains the same set of contours: 
the union of the initial contour sets. This rule is 
therefore equivalent to repeated application of Rule 1. 

Rule 9: Equalize zones. This is the analogue of 
Rule 8 for zones rather than contours, and it 
corresponds to repeated application of Rule 2. Before 
adding an extra zone, contours in the diagrams need to 
be equalized. 

Rule 10: Equalize diagrams. Invokes Rule 8 and 
Rule 9 to equalize both the contours and the zones. 

Rule 11: Expand all compound diagrams. Uses 
Rule 5 repeatedly until there are no more ‘and’ and 
‘or’ compound diagrams. 

 
Every unitary spider diagram is satisfiable; 

contradictions only occur in compound diagrams. In 
particular, from a unitary diagram we can read off a 
model by collapsing each spider to one of its feet and 
reading that as element of the model.   

Contradictions can be explicit, as in the situation 
where a compound diagram contains both a diagram 
and its explicit negation; on the other hand, an implicit 
contradiction occurs in a conjunction of diagrams with 
conflicting constraints on a particular zone. Shading 
gives an upper bound on the cardinality of a zone 
whereas spiders provide lower bounds, and these two 
can conflict. 

 

  
Rule 1: Adding contour c to diagram d 
 
 

 

 

 
Rule 2: Adding zone b∩c to diagram d 
 
 
 or 

Rule 3: Splitting a spider 
 
 
 or 

 
Rule 4: Negate a unitary diagram 
 
Figure 2 Illustrating Rules 1-4 
 
3. System Definition 
 

This section presents a tableau system for the 
diagrammatic reasoning framework presented in 
Section 2. We begin with the definition of some terms, 
and then we present the rules used in the system. Then 
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we present the algorithm that decides whether a 
diagram is satisfiable and analyze the satisfiability of 
some formulas to illustrate the algorithm. In order to 
design the algorithm that builds the diagrammatic 
tableau for spider diagrams we refer to the work 
presented in [1], as a framework for propositional 
tableaux, and [4], which presents a reasoning system 
for spider diagrams. 

As presented in Section 2.2, a tableau is a tree, 
labeled with sets of formulas at each node. When 
spider diagrams, with diagrams as literals, replace 
formulas it is necessary to present the tree in a 
different form. We have chosen to use the JTree 
mechanism, which presents trees using the ‘file 
browser’ metaphor. 

The tableau system is shown in the screenshots in 
Figure 3 and Figure 4. The upper panes of the window 
show the constituent unitary spider diagrams of the 
diagram in question; in the lower pane the tableau is 
shown as a JTree. Figure 3 shows a contradiction 
between the two diagrams d1 and d2 by outlining in 
bold the zone (a∩b) with contradictory constraints. 
Figure 4 shows the effect of equalizing contours and 
zones between two diagrams (Rule 10 above). 

 
 
 
 

Figure 3 Equalized single-footed literals 
 
 
3.1. Definitions 

 
Definition 1. A literal is a unitary diagram or the 

negation of a unitary diagram. A unitary diagram is a 
positive literal and the negation of a unitary diagram is 

a negative literal. Any diagram d is the complement of 
¬ d and ¬ d is the complement of d. For any diagram 
d, (d, ¬ d) is a complementary pair of literals.  

Definition 2. A diagram that only contains spiders 
with one foot is a single-footed diagram. Otherwise it 
is a non-single-footed diagram. 

Definition 3. Two diagrams d1 and d2 are equalized 
if they contain the same set of zones and contours. 
Otherwise they are non-equalized. 

 
3.2. Algorithm Definition 

 
This section presents a tableau algorithm for 

deciding satisfiability and hence validity for spider 
diagrams as presented in Section 2. This method 
extends semantic tableaux for the propositional 
calculus. We now give the construction of the semantic 
tableau for our diagrammatic reasoning system; the 
algorithm derives from the one presented in [1], 
Section 2.6. 

 
Algorithm 1 (Construction of a diagrammatic 

tableau for spider diagrams) 
Input: A diagram d of the spider diagrams calculus 
Output: A diagrammatic tableau T for d with all 

the leaves marked. 
 

 
Figure 4 Equalizing rule 
 

A diagrammatic tableau T for d is a tree for which 
all the nodes will be labeled with a non-empty set of 
diagrams. At the beginning the T consists of a single 
node, the root, labeled with the set {d}. The tableau is 
built by choosing an unmarked leaf l labeled with the 
set of diagrams D(l) and applying one of the following 



rules. The construction terminates when all the leaves 
are marked with  or . 

 
• If D(l) contains at least one compound diagram, 

choose a compound diagram d from D(l). 
Iteratively create children for leaf l applying the 
α- and β-rules rules for propositional logic, as 
presented in [1]. 

• If D(l) contains at least one negative literal, 
choose a negative literal nd from D(l). Create 
children for leaf l applying the negation rule on 
nd.  

• If D(l) contains only positive literals, and they are 
not equalized, create children for leaf l using the 
equalizing rule presented above, by which 
contours are introduced into diagrams. 

• If D(l) contains at least one non-single-footed 
literal, create children for leaf l using the splitting 
spiders rule presented above, under which a 
diagram containing a spider is split into a 
disjunction of diagrams containing only single-
footed spiders. 

• If D(l) is a set of positive single-footed literals use 
the contradiction rules to mark the leaf l. If there is 
a contradiction among the diagrams from D(l,) the 
leaf is closed and marked with . Otherwise, it is 
open and marked with . 

 
 The algorithm is not deterministic since during the 

expansion process of compound diagrams there is a 
choice of which formula to expand within the label of 
chosen leaf. Beside this, equalizing, negation, and 
spider-splitting rules generate compound diagrams, 
which generates non-determinism. 

A diagrammatic tableau whose construction has 
terminated is called completed diagrammatic tableau. 
A completed diagrammatic tableau is closed if all the 
leaves are marked with . If at least one leaf is 
marked , the diagrammatic tableau is open. Nodes 
below which the tableau is not completely expanded 
are marked . 

The proof that the construction of a diagrammatic 
tableau terminates is straightforward, and is similar to 
the proof for semantic tableau in propositional logic 
[1][2]. A corollary of that result is that the order of 
application of the tableau rules does not affect the 
result of the decision procedure. 

In practice, the construction of diagrammatic 
tableau can be made more efficient by using some of 
the ideas presented in [1]: 
• Significant savings in space terms can be obtained 

if all the nodes share a diagram repository and 
reference elements using pointers. 

• Using heuristics can make the tableau smaller. For 
example it is best to use α-rules before β-rules, 
and to split spiders only after the diagrams are 
equalized to avoid duplication of formulas. 

Adding some derived rules will shorten the 
contradiction checking process. Examples include: 
• If D(l) is a set of literals and contains at least a 

false diagram, the leaf is closed and marked with 
. Otherwise other rules should be applied.  

• If D(l) is a set of true literals, the leaf is closed and 
marked with . Otherwise other rules should be 
applied. 

• If D(l) contains both a diagram and its negation, 
then the leaf should be closed and marked with . 

 
3.3. System Features 

 
In this section we review the design of the tableau 

system, drawing attention to the various features and 
the motivation for their inclusion. A key aspect of a 
system of this sort is its usability, and to support this 
the system can be driven both automatically and with 
user intervention. We discuss system features in three 
broad categories now. 

 
Logical aspects 

 
Comprehensive set of literals and logical 

operators. The implemented system supports true, 
false, and user-defined unitary diagrams together with 
compound diagrams built using the propositional 
operators ‘not’, ‘and’, (inclusive) ‘or’, implication and 
equivalence. It can easily be extended to support other 
logical operators like exclusive or,‘xor’. 

Mixed visual and textual notation. Unitary 
diagrams are created using a diagram editor while the 
compound diagrams are described using a textual 
notation. A parser reads the textual notation and builds 
an internal representation. The internal model was built 
using Model Driven Architecture [10] and the Kent 
Modeling Framework [9]. 
 
User interaction 
 

Viewing and editing diagrams. It is possible to 
view and edit a population of diagrams with ease. This 
can be particularly important when debugging well-
formedness constraints expressed using diagrammatic 
languages. 

Familiar browsing metaphor. The system uses the 
J-Tree library which provides a standard interface to 
tree structures such as file hierarchies. This model is 
familiar to users from file and directory browsers. 



Application of rules over diagrams. It is possible 
to apply transformation rules over diagrams. Selective 
application is supported (e.g. adding a contour, a zone, 
or splitting a given spider), so that one can focus on 
particular diagrams, without being distracted by having 
to check ones which are not the current focus. The 
feedback from rule application has been designed to be 
as helpful as possible. 

On-the-fly application of the rules. In developing 
well-formedness constraints it is often very useful to 
be able to experiment with constraints and sub-
diagrams. The system is capable of reasoning about 
sub-diagrams that can be then integrated into a large-
scale diagram. 

Backtracking. The process of diagrammatic 
tableau construction is non-deterministic. So, at some 
point one might realize that the applied rule is not 
appropriate. The system allows the user to go back to 
previous step and choose another rule. 

 
System implementation and visualization 
 

Diagram layout. Diagrams can be displayed using 
automatic layout techniques [11][14]. However, the 
layout process is time-consuming and so is optional. 
Instead, the user can view a fast embedding of a 
diagram, which is poorly laid out, or just view the 
abstract syntax as a textual collection of zones and 
spiders. 

Visual layout. Displaying trees is always a problem 
because on the one hand the number of nodes tends to 
grow on lower levels whilst on the other the graphical 
space is limited to a scrollable screen. In an attempt to 
deal with this, and to avoid under-use of screen real 
estate, the system provides a mixture of vertical and 
horizontal display directions: tree nodes which do not 
contain graphic information are displayed using the 
vertical dimension while graphic information is 
displayed on the horizontal dimension. 

Syntax checking for diagrams. The system detects 
syntactic and semantic errors prior to the construction 
of the tableau. The graphic editor manages the syntax 
errors that appear in unitary diagrams. The parser is 
responsible for reporting the syntax errors in the 
textual description of the compound diagrams. This 
ensures the fact the system will process only well-
formed diagrams. 

Link between abstract and concrete levels. After 
a diagram has been read using concrete syntax 
notations, it is transformed into an abstract 
representation. The reasoning is performed at the 
abstract syntax level. The results obtained at the 
abstract level are then reported to the user at the 

concrete level. This increases the usability and the 
extensibility of the reasoning system.  

Diagram storage. The system offers the possibility 
of persistent storage for diagrams. This is a useful 
facility, especially in the case of large-scale systems. 
 
3.4. Example 
 

Figure 5 contains the tableau after the expansion of 
the top-level “or” and some marking. A contradiction 
has been detected in one branch, in the zone shown 
with a thick border. However, the tableau as a whole is 
still in an “undefined” state: more rules need to be 
applied in order to decide if the tableau is open or not. 

 

 
 
Figure 5 Indicating a contradiction between unitary 
diagrams  
 
 
 
4.   Conclusion and Further Work 
 

In this paper we have described a system that 
supports reasoning with spider diagrams. This system 
allows users to construct their own spider diagrams 
and to explore the construction of a diagrammatic 
tableau. In addition, it can expand automatically all the 



compounds diagrams within a tableau node. The 
diagrammatic tableau is displayed using a mixture of 
vertical and horizontal display directions: tree nodes 
that do not contain graphic information are displayed 
using the vertical dimension while graphic information 
is displayed on the horizontal dimension. 

Our plan is to extend the work in this paper to the 
considerably more expressive constraint diagram 
reasoning system [8]. Ideally, we will be able to design 
and implement an algorithm to construct tableaux for 
constraint diagrams. This is only possible for a 
decidable system. Restricted forms of the constraint 
diagram notation, which include arrows and universal 
spiders, yield decidable systems [17]. 

We also plan to use a heuristic approach to generate 
even shorter tableaux. The heuristic algorithm would 
search for an optimal operation to apply. If it fails to 
find a solution, it could be because more operations are 
required, or because there is no solution. 

Currently the output from our tool appears in 
mixture of textual and diagrammatic notation. In order 
to present tableaux to users as a tree of diagrams we 
need to create concrete diagrams from their abstract 
descriptions. In [3] the authors give an algorithm for 
drawing a class of spider diagrams from abstract 
descriptions. The quality of the diagram layout has 
been improved using iterative methods and layout 
metrics [11][14]. More research is required on drawing 
strategies for diagrams in the context of tableaux so 
that the diagrams appear sufficiently similar after rule 
application. 
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