
Tableaux for Diagrammatic Reasoning

Octavian Patrascoiu1, Simon Thompson 1, and Peter Rodgers1
1 Computing Laboratory, University of Kent, United Kingdom

{O.Patrascoiu, S.J.Thompson, P.J.Rodgers}@kent.ac.uk
http://www.cs.kent.ac.uk/rwd/

Abstract

Diagrammatic notations, such as the Unified

Modeling Language (UML), are in common use in
software development. They allow many aspects of
software systems to be described diagrammatically,
but typically they rely on textual notations for logical
constraints. In contrast, spider diagrams provide a
visual notation for expressing a natural class of set-
theoretic statements in a diagrammatic form. In this
paper we present a tableau system for spider
diagrams, and describe an implementation of the
system. In a software development context, the system
allows users to explore the implications of design
choices, and thus to validate specifications; beyond
this, the tableau algorithm and system are of general
interest to visual reasoners.

1. Introduction

Tableaux provide an intuitive mechanism for
exploring the models and counter-models of logical
formulas, and in particular they give mechanisms for
deciding satisfaction and validity for a wide class of
logics. To users, tableaux are of value not only as
decision procedures but also by providing a
mechanism by which a user can explore the
consequences of a statement or set of statements.

This is particularly important when a statement is
used as the specification of or a constraint on a
software system. In software development, it is a well-
known problem that specifications can suffer from
incompleteness, inconsistency, or inappropriateness to
the problem domain. It is therefore crucial that
specification writers have the chance to engage and
interact with their specifications in as many different
ways as possible.

Obviously specifications should be checked for
syntactic and type correctness, and this can be done in

a routine way. In order to understand the semantics of
the formulas, other mechanisms are needed. A decision
procedure will allow a user to find out whether a
specification is satisfiable, but this does not answer the
question of whether the intention of the specifier has
been realized. To achieve this it is necessary to tease
out the significance of the formula, and specifically

• to investigate the possible models of the
formula, and

• to explore the consequences of the formula: in
other words, to discover its ‘implications’.

Tableaux can provide both of these for the language
of spider diagrams. A spider diagram gives a
diagrammatic representation of a statement about a
finite number of sets, their membership and their
interrelationships. For instance, in the context of
specification such diagrams can be used to describe the
relations between objects and classes.

The language of spider diagrams is equivalent to
monadic predicate logic with equality [18]. It would
therefore be possible to turn diagrammatic
representations into textual statements and to apply
decision procedures or tableau methods to the
translations of diagrams. This would be perfectly
adequate in the case of a decision procedure, but where
feedback to the user is necessary – about the form of
models, or the consequences of a formula, say – then it
is crucial to work with a visual representation in order
to provide recognizable visual feedback. Hence the
system developed in this paper.

The paper begins in Section 2 with an overview of
diagrammatic reasoning, tableaux and spider diagrams
and their reasoning rules. Section 3 presents the central
tableau algorithm for spider diagrams, illustrates it by a
number of examples, discusses heuristics and
optimizations and concludes by evaluating the system
The conclusion reviews the work presented in the
paper, and explores prospects for future work.

2. Spider Diagrams

The motivation for spider diagrams comes from the

belief that visual representations of logical statements
can aid understanding of the underlying meaning, and
are more acceptable to people who are unfamiliar with
standard textual mathematical notations. A further
reason is that many essentially visual systems have to
resort to textual notation for indicating logical
expressions over visual diagrams. An example is the
Unified Modeling Language (UML) [19], which is
used for describing the design of object-oriented
systems. UML is entirely diagrammatic, except for the
language used to describe complex constraints on
collections of objects: this is the Object Constraint
Language (OCL) [12]. Researchers in diagrammatic
reasoning are developing candidates for replacing OCL
with a visual notation; spider diagrams are one such
example.

2.1. Background

The work described here is performed as part of the
Reasoning with Diagrams project [15], which engaged
in developing spider diagrams and similar
diagrammatic reasoning methods. Spider diagrams are
an extension to work of Shin [16]. Shin presented
formal systems of Venn-Peirce diagrams: Venn
diagrams extended with annotations to indicate empty
and non-empty sets. Venn-Peirce diagrams admit
purely diagrammatic reasoning and Shin proved that
they could be equipped with sets of logical rules that
are both sound and complete.

In related work, Hammer [6] presented a sound and
complete system of Euler diagrams [3]. Sound and
complete sets of diagrammatic inference rules have
also been developed for several systems of spider
diagrams [7].

Figure 1 A spider diagram

Spider diagrams [5] are themselves a subset of the
constraint diagram notation [8]. Spider diagrams
represent the interrelationships and membership of a
finite collection of sets. In Figure 1 diagram d contains
three sets a, b and c which are represented by contours
(simple closed plane curves). Regions are given by

intersection, union and complementation, and a zone is
a region which properly contains no other regions.

The figure contains regions corresponding to a∩∩∩∩b,
a∪∪∪∪b and so forth but not to a∩∩∩∩c, say; a∩∩∩∩b is a zone,
but a∪∪∪∪b is not, since it properly contains the zone
representing a∩∩∩∩b (amongst others). The figure
contains a single spider, which has two feet, and which
inhabits the region a, with a foot in the zones a∩∩∩∩b and
a-b. Spiders have a single foot in each of one or more
zones.

Applied to UML, relationships between classes and
states can be expressed as contours. Constraints are
represented as graphs where nodes appear in
appropriate set intersections.

The interpretation of Figure 1 is given by three sets
a, b and c, which are subsets of a universal set, U, say.

The absence of a region corresponding to a set-
theoretic combination, such as a∩∩∩∩c, implies that the
combination must be empty: in this case the sets a and
c must be disjoint.

Spiders provide lower bounds on the cardinality of
sets: the spider that inhabits the region a implies that
the region contains at least one element.

Shading is used to provide upper bounds. The
shading of the zone b∩∩∩∩c implies that b and c are
disjoint. The shading of the zone a∩∩∩∩b implies that it
contains at most one element, that potential element
being given by the spider with one foot in the zone.

There are no upper bounds on the cardinality of any
unshaded zone in a spider diagram. In this particular
case, it is possible for the set b-(a∪∪∪∪c) to contain any
number of elements (including none).

The diagram shown in the Figure 1 is unitary; a
general spider diagram is given by a propositional
combination – using conjunction, disjunction and
negation – of unitary diagrams. A full formal
definition of the syntax and semantics of spider
diagrams is given in [18].

2.2 Semantic Tableaux

Semantic tableaux, [1] Section 2.6, provide an

intuitive and efficient mechanism for deciding
satisfiability and validity for a variety of logics. A
semantic tableau for a formula is a tree, labeled at each
node by a set of formulas: branches of the tree
represent possible models for the formula.

The tableau for a propositional formula is built by
repeatedly applying decomposition rules to any
compound formula, until only literals and their
negations (or atoms) remain.
• A conjunction, such as A∧Β, will be replaced by

the pair of formulas A, B; this reflects that fact

that any model of A∧Β will have to make both
conjuncts true.

• A disjunction like C∨D, will give rise to a split:
one branch labeled C and the other D, reflecting
that to satisfy a disjunction it is sufficient to
satisfy one of the disjuncts.

Rules which do not cause a branch are called α–rules
and branching rules are called β-rules. For each
connective (e.g. implication, ⇒) there are two rules:
one that decomposes the formula (X⇒Y) and the other
decomposing its negation, ¬(X⇒Y). In this case, we
have the rules:

Taking a larger example, we next draw the tableau for
the formula ¬((A⇒C)⇒((A∨B)⇒C)). First we
decompose the formula itself, giving the two formulas
¬((A∨B)⇒C) and (A⇒C). Either could be expanded,
but it is usually sensible to apply α–rules before β–
rules, thus delaying branching; we therefore expand
¬((A∨B)⇒C). At the next stage, two formulas remain,
both with β–rules; we expand (A⇒C) and then (A∨B).

The tableau has three branches, and so embodies three
potential models. Not all give models: consider the
leftmost branch: that has atoms A, ¬A, C, which can’t
be satisfied simultaneously; similarly the rightmost
branch is closed.
The central branch has atoms ¬A, B, ¬C, indicating
that the formula at the root is satisfied when A and C
are false and B true. Note that in building the rightmost
branch it was unnecessary to expand (A(B), since the
branch was already closed,

Building this tableau has shown that the root
formula is satisfiable; we can also conclude that the
un-negated formula (A⇒C)⇒((A∨B)⇒C) is not valid,
since its negation is satisfiable. In this way, tableaux
provide a decision procedure for validity as well as for
satisfiability.

For completeness we include the rules for
conjunction, disjunction and negation here:

Next we look at logical equivalences between

spider diagrams which will form the basis of the
extension of tableaux to spider diagrams.

2.3 Reasoning Rules for spider diagrams

To build tableaux for spider diagrams we use
transformation rules that allow us to transform one
diagram into another logically equivalent diagram by
removing, adding, or modifying diagrammatic
elements. The rules are summarized below; they are
based on the rules given by Shin in [16], which
developed earlier work of Pierce [13].

Rule 1: Add a contour. A new contour can be

drawn inside a bounding rectangle without changing
the meaning of the diagram if each zone is split into
two zones, inside and outside of the new contour. Each
foot of a spider is replaced with a connected pair of
feet, one in each new zone. Shaded zones become
corresponding shaded regions.

Rule 2: Add a zone. The rule is used to add a zone
absent from a diagram. The added zone is shaded to
indicate that it is empty.

Rule 3: Split a spider. If a unitary diagram d has a
spider whose habitat is formed by n zones, then we
may replace d with a disjunction of n unitary diagrams
d1, …, dn , each of which contains a one-footed spider
inhabiting one of the zones touched by the spider s.

Rule 4: Expand negation. The explicit negation of
a unitary diagram containing only one-footed spiders is
replaced by a disjunction of (un-negated) unitary
diagrams. The constraints placed on the models by
shading and one footed spiders represent a conjunction

of simple constraints; hence the disjunction resulting
from expanding the negation.

Rules 1-4 provide the basis for diagrammatic

reasoning with spider diagrams. Other rules used in
building the tableau are the standard equivalences of
propositional logic and compound rules built by
iteratively applying combinations of rules 1-4.

Rule 5: Expand a compound diagram. This rule

encapsulates the application of the tableau rules for
propositional and adds the children associated by the
reasoning process to ‘and’ and ‘or’ nodes. It also
applies the de Morgan laws to transfer the negation on
unitary diagrams. The children are computed according
to propositional tableau rules [1].

Rule 6: Add contours. This rule applies Rule 1
repeatedly to add a list of contours to a collection of
unitary diagrams.

Rule 7: Split spiders. Splits all the spiders used in
a collection of unitary diagrams; Rule 3 is invoked
several times.

Rule 8: Equalize contours. This rule is applied to a
collection of unitary diagrams, which will appear in a
number of different logical combinations within a
tableau. Contours are added to the individual diagrams
so that each diagram contains the same set of contours:
the union of the initial contour sets. This rule is
therefore equivalent to repeated application of Rule 1.

Rule 9: Equalize zones. This is the analogue of
Rule 8 for zones rather than contours, and it
corresponds to repeated application of Rule 2. Before
adding an extra zone, contours in the diagrams need to
be equalized.

Rule 10: Equalize diagrams. Invokes Rule 8 and
Rule 9 to equalize both the contours and the zones.

Rule 11: Expand all compound diagrams. Uses
Rule 5 repeatedly until there are no more ‘and’ and
‘or’ compound diagrams.

Every unitary spider diagram is satisfiable;

contradictions only occur in compound diagrams. In
particular, from a unitary diagram we can read off a
model by collapsing each spider to one of its feet and
reading that as element of the model.

Contradictions can be explicit, as in the situation
where a compound diagram contains both a diagram
and its explicit negation; on the other hand, an implicit
contradiction occurs in a conjunction of diagrams with
conflicting constraints on a particular zone. Shading
gives an upper bound on the cardinality of a zone
whereas spiders provide lower bounds, and these two
can conflict.

Rule 1: Adding contour c to diagram d

Rule 2: Adding zone b∩c to diagram d

 or

Rule 3: Splitting a spider

 or

Rule 4: Negate a unitary diagram

Figure 2 Illustrating Rules 1-4

3. System Definition

This section presents a tableau system for the
diagrammatic reasoning framework presented in
Section 2. We begin with the definition of some terms,
and then we present the rules used in the system. Then

¬

≡

≡

≡

≡

we present the algorithm that decides whether a
diagram is satisfiable and analyze the satisfiability of
some formulas to illustrate the algorithm. In order to
design the algorithm that builds the diagrammatic
tableau for spider diagrams we refer to the work
presented in [1], as a framework for propositional
tableaux, and [4], which presents a reasoning system
for spider diagrams.

As presented in Section 2.2, a tableau is a tree,
labeled with sets of formulas at each node. When
spider diagrams, with diagrams as literals, replace
formulas it is necessary to present the tree in a
different form. We have chosen to use the JTree
mechanism, which presents trees using the ‘file
browser’ metaphor.

The tableau system is shown in the screenshots in
Figure 3 and Figure 4. The upper panes of the window
show the constituent unitary spider diagrams of the
diagram in question; in the lower pane the tableau is
shown as a JTree. Figure 3 shows a contradiction
between the two diagrams d1 and d2 by outlining in
bold the zone (a∩b) with contradictory constraints.
Figure 4 shows the effect of equalizing contours and
zones between two diagrams (Rule 10 above).

Figure 3 Equalized single-footed literals

3.1. Definitions

Definition 1. A literal is a unitary diagram or the

negation of a unitary diagram. A unitary diagram is a
positive literal and the negation of a unitary diagram is

a negative literal. Any diagram d is the complement of
¬ d and ¬ d is the complement of d. For any diagram
d, (d, ¬ d) is a complementary pair of literals.

Definition 2. A diagram that only contains spiders
with one foot is a single-footed diagram. Otherwise it
is a non-single-footed diagram.

Definition 3. Two diagrams d1 and d2 are equalized
if they contain the same set of zones and contours.
Otherwise they are non-equalized.

3.2. Algorithm Definition

This section presents a tableau algorithm for

deciding satisfiability and hence validity for spider
diagrams as presented in Section 2. This method
extends semantic tableaux for the propositional
calculus. We now give the construction of the semantic
tableau for our diagrammatic reasoning system; the
algorithm derives from the one presented in [1],
Section 2.6.

Algorithm 1 (Construction of a diagrammatic

tableau for spider diagrams)
Input: A diagram d of the spider diagrams calculus
Output: A diagrammatic tableau T for d with all

the leaves marked.

Figure 4 Equalizing rule

A diagrammatic tableau T for d is a tree for which
all the nodes will be labeled with a non-empty set of
diagrams. At the beginning the T consists of a single
node, the root, labeled with the set {d}. The tableau is
built by choosing an unmarked leaf l labeled with the
set of diagrams D(l) and applying one of the following

rules. The construction terminates when all the leaves
are marked with or .

• If D(l) contains at least one compound diagram,

choose a compound diagram d from D(l).
Iteratively create children for leaf l applying the
α- and β-rules rules for propositional logic, as
presented in [1].

• If D(l) contains at least one negative literal,
choose a negative literal nd from D(l). Create
children for leaf l applying the negation rule on
nd.

• If D(l) contains only positive literals, and they are
not equalized, create children for leaf l using the
equalizing rule presented above, by which
contours are introduced into diagrams.

• If D(l) contains at least one non-single-footed
literal, create children for leaf l using the splitting
spiders rule presented above, under which a
diagram containing a spider is split into a
disjunction of diagrams containing only single-
footed spiders.

• If D(l) is a set of positive single-footed literals use
the contradiction rules to mark the leaf l. If there is
a contradiction among the diagrams from D(l,) the
leaf is closed and marked with . Otherwise, it is
open and marked with .

 The algorithm is not deterministic since during the

expansion process of compound diagrams there is a
choice of which formula to expand within the label of
chosen leaf. Beside this, equalizing, negation, and
spider-splitting rules generate compound diagrams,
which generates non-determinism.

A diagrammatic tableau whose construction has
terminated is called completed diagrammatic tableau.
A completed diagrammatic tableau is closed if all the
leaves are marked with . If at least one leaf is
marked , the diagrammatic tableau is open. Nodes
below which the tableau is not completely expanded
are marked .

The proof that the construction of a diagrammatic
tableau terminates is straightforward, and is similar to
the proof for semantic tableau in propositional logic
[1][2]. A corollary of that result is that the order of
application of the tableau rules does not affect the
result of the decision procedure.

In practice, the construction of diagrammatic
tableau can be made more efficient by using some of
the ideas presented in [1]:
• Significant savings in space terms can be obtained

if all the nodes share a diagram repository and
reference elements using pointers.

• Using heuristics can make the tableau smaller. For
example it is best to use α-rules before β-rules,
and to split spiders only after the diagrams are
equalized to avoid duplication of formulas.

Adding some derived rules will shorten the
contradiction checking process. Examples include:
• If D(l) is a set of literals and contains at least a

false diagram, the leaf is closed and marked with
. Otherwise other rules should be applied.

• If D(l) is a set of true literals, the leaf is closed and
marked with . Otherwise other rules should be
applied.

• If D(l) contains both a diagram and its negation,
then the leaf should be closed and marked with .

3.3. System Features

In this section we review the design of the tableau

system, drawing attention to the various features and
the motivation for their inclusion. A key aspect of a
system of this sort is its usability, and to support this
the system can be driven both automatically and with
user intervention. We discuss system features in three
broad categories now.

Logical aspects

Comprehensive set of literals and logical

operators. The implemented system supports true,
false, and user-defined unitary diagrams together with
compound diagrams built using the propositional
operators ‘not’, ‘and’, (inclusive) ‘or’, implication and
equivalence. It can easily be extended to support other
logical operators like exclusive or,‘xor’.

Mixed visual and textual notation. Unitary
diagrams are created using a diagram editor while the
compound diagrams are described using a textual
notation. A parser reads the textual notation and builds
an internal representation. The internal model was built
using Model Driven Architecture [10] and the Kent
Modeling Framework [9].

User interaction

Viewing and editing diagrams. It is possible to
view and edit a population of diagrams with ease. This
can be particularly important when debugging well-
formedness constraints expressed using diagrammatic
languages.

Familiar browsing metaphor. The system uses the
J-Tree library which provides a standard interface to
tree structures such as file hierarchies. This model is
familiar to users from file and directory browsers.

Application of rules over diagrams. It is possible
to apply transformation rules over diagrams. Selective
application is supported (e.g. adding a contour, a zone,
or splitting a given spider), so that one can focus on
particular diagrams, without being distracted by having
to check ones which are not the current focus. The
feedback from rule application has been designed to be
as helpful as possible.

On-the-fly application of the rules. In developing
well-formedness constraints it is often very useful to
be able to experiment with constraints and sub-
diagrams. The system is capable of reasoning about
sub-diagrams that can be then integrated into a large-
scale diagram.

Backtracking. The process of diagrammatic
tableau construction is non-deterministic. So, at some
point one might realize that the applied rule is not
appropriate. The system allows the user to go back to
previous step and choose another rule.

System implementation and visualization

Diagram layout. Diagrams can be displayed using
automatic layout techniques [11][14]. However, the
layout process is time-consuming and so is optional.
Instead, the user can view a fast embedding of a
diagram, which is poorly laid out, or just view the
abstract syntax as a textual collection of zones and
spiders.

Visual layout. Displaying trees is always a problem
because on the one hand the number of nodes tends to
grow on lower levels whilst on the other the graphical
space is limited to a scrollable screen. In an attempt to
deal with this, and to avoid under-use of screen real
estate, the system provides a mixture of vertical and
horizontal display directions: tree nodes which do not
contain graphic information are displayed using the
vertical dimension while graphic information is
displayed on the horizontal dimension.

Syntax checking for diagrams. The system detects
syntactic and semantic errors prior to the construction
of the tableau. The graphic editor manages the syntax
errors that appear in unitary diagrams. The parser is
responsible for reporting the syntax errors in the
textual description of the compound diagrams. This
ensures the fact the system will process only well-
formed diagrams.

Link between abstract and concrete levels. After
a diagram has been read using concrete syntax
notations, it is transformed into an abstract
representation. The reasoning is performed at the
abstract syntax level. The results obtained at the
abstract level are then reported to the user at the

concrete level. This increases the usability and the
extensibility of the reasoning system.

Diagram storage. The system offers the possibility
of persistent storage for diagrams. This is a useful
facility, especially in the case of large-scale systems.

3.4. Example

Figure 5 contains the tableau after the expansion of
the top-level “or” and some marking. A contradiction
has been detected in one branch, in the zone shown
with a thick border. However, the tableau as a whole is
still in an “undefined” state: more rules need to be
applied in order to decide if the tableau is open or not.

Figure 5 Indicating a contradiction between unitary
diagrams

4. Conclusion and Further Work

In this paper we have described a system that
supports reasoning with spider diagrams. This system
allows users to construct their own spider diagrams
and to explore the construction of a diagrammatic
tableau. In addition, it can expand automatically all the

compounds diagrams within a tableau node. The
diagrammatic tableau is displayed using a mixture of
vertical and horizontal display directions: tree nodes
that do not contain graphic information are displayed
using the vertical dimension while graphic information
is displayed on the horizontal dimension.

Our plan is to extend the work in this paper to the
considerably more expressive constraint diagram
reasoning system [8]. Ideally, we will be able to design
and implement an algorithm to construct tableaux for
constraint diagrams. This is only possible for a
decidable system. Restricted forms of the constraint
diagram notation, which include arrows and universal
spiders, yield decidable systems [17].

We also plan to use a heuristic approach to generate
even shorter tableaux. The heuristic algorithm would
search for an optimal operation to apply. If it fails to
find a solution, it could be because more operations are
required, or because there is no solution.

Currently the output from our tool appears in
mixture of textual and diagrammatic notation. In order
to present tableaux to users as a tree of diagrams we
need to create concrete diagrams from their abstract
descriptions. In [3] the authors give an algorithm for
drawing a class of spider diagrams from abstract
descriptions. The quality of the diagram layout has
been improved using iterative methods and layout
metrics [11][14]. More research is required on drawing
strategies for diagrams in the context of tableaux so
that the diagrams appear sufficiently similar after rule
application.

Acknowledgement. This work has been funded by
the UK EPSRC (Engineering and Physical Sciences
Research Council) under grants GR/R63509/01 and
GR/R 63516/01.

5. References

[1] Ben-Ari M. Mathematical logic for computer
science. Springer-Verlag 2001.

[2] Fitting M. First-order logic and automated theorem
proving, Springer-Verlag 1996.

[3] Flower, J., and Howse, J. Generating Euler
diagrams, In Proceedings of Diagrams 2002, pages
61-75, Springer-Verlag, 2002.

[4] Flower J, G. Stapleton G. Automated theorem
proving with spider diagrams CATS’04,
Computing: The Australasian Theory Symposium ,
Dunedin , New Zealand, January 2004.

[5] Gil J., J. Howse, and S. Kent. Formalising Spider
Diagrams, Proc. IEEE Symp on Visual Languages
(VL99), IEEE Press, 130-137. 1999.

[6] Hammer E.M. Logic and Visual Information, CSLI
Publications. 1995.

[7] Howse J., F. Molina, and J. Taylor. SD2: A sound
and complete diagrammatic reasoning system,
Proc. IEEE Symp on Visual Languages (VL2000),
IEEE Press, 127-136. 2000.

[8] Kent S. Constraint Diagrams: Visualizing
Invariants in OO Modelling. In Proceedings of
OOPSLA97, pages 327-341. ACM Press, October
1997.

[9] Kent Modeling Framework.
www.cs.kent.ac.uk/projects/kmf

[10] Model Driven Architecture www.omg.org/mda
[11] Mutton P., P. Rodgers, and J. Flower. Drawing

Graphs in Euler Diagrams. Proc. Diagrams 2004,
pages 66-81. Springer-Verlag LNAI.

[12] Object Constraint Language. Object Management
Group http://www.omg.org document ad/03-01-07.

[13] Pierce C., Collected Papers. Vol. 4. Harvard
University Press.

[14] Rodgers P., P. Mutton and J.Flower. Dynamic
Euler Diagram Drawing. Proc. IEEE Symposium
on Visual Languages and Human-Centric
Computing (VL/HCC'04), pages 147-156. IEEE,
September 2004.

[15] The Reasoning with Diagrams project:
www.cs.kent.ac.uk/projects/rwd/

[16] Shin S-J. The Logical Status of Diagrams. CUP.
1994.

[17] Stapleton G., J. Howse, and J. Taylor. A constraint
diagram reasoning system. In Proceedings of
Distributed Multimedia Systems, International
Conference on Visual Languages and Computing
(VLC '03). pp. 263-270, Miami, USA, 2003.

[18] Stapleton G., J. Howse, J. Taylor and S Thompson.
What Can Spider Diagrams Say? Proc. Diagrams
2004, pages 112-127, Springer-Verlag LNAI.

[19] Unified Modeling Language. Object Management
Group http://www.omg.org.

