
Abstract
This paper illustrates a way for applying formal
methods techniques to specifying and verifying
neural networks, with applications in the area of
neural network based controllers. Formal methods
have some of the characteristics of symbolic mod-
els. We describe a communicating automata
[Bowman and Gomez, 2005] model of neural net-
works, where the standard Backpropagation (BP)
algorithm [Rumelhart et al., 1986] is applied. Then
we undertake a verification of this model using the
model checker Uppaal [Behrmann et al., 2004], in
order to predict the performance of the learning
process. We discuss broad issues of integrating
symbolic techniques with complex neural systems.
We also argue that symbolic verifications may give
theoretically well-founded ways to evaluate and
justify neural learning systems.

1 Introduction
This work is an initial step towards integrating symbolic and
neural computation. Our motivations are justified from a
cognitive point of view on the one hand, and an engineering
application point of view on the other hand.

1.1 Cognitive Viewpoint
[Barnard and Bowman, 2004] suggested that one of the mo-
tivations of integrating symbolic and sub-symbolic compu-
tation is to specify and justify behavior of complex cogni-
tive architectures in an abstract and suitable form. Firstly,
numerous theories assume that mental modules, or their
neural substrates, are processing information at the same
time. Hence, any realistic architecture of the mind must be
concurrent at some level. Secondly, the control of concur-
rent processing can be distributed. So, cognition should be
viewed as the behavior that emerges from interaction
amongst independently evolving modules. Most traditional
AI approaches fail to acknowledge the requirements of con-
current and distributed control. This is because they tend to
be prescriptive and are built around centralized memory and
control algorithms. Finally, [Fodor and Pylyshyn, 1988]
argued that hierarchical decomposition is needed in order to
reflect the characteristics of the mind.
 Although connectionist networks are commonly regarded
as concurrent and distributed, they are typically limited to

only one level of concurrently evolving modules. The primi-
tive elements of neural networks are neurons but not neural
networks. To some degree, it is hard to construct and under-
stand large architectures without hierarchical structuring. In
certain respects, modeling based on neural networks is low-
level in character, i.e. it is hard to relate to primitive con-
structs and data structures found in high-level notations pre-
ferred by the symbolic modeling community.
 For these reasons, [Barnard and Bowman, 2004] provided
an illustration of modeling a high-level cognitive architec-
ture using formal methods. Their model contains a set of
top-level modules that are connected by communication
channels. Modules interact by exchanging data items along
channels. Control is distributed and each module evolves
independently. They also suggested encoding low-level neu-
ral networks using the same method, and formally relating
models at different levels of abstraction. In this paper, key
constructs within neural networks are encoded at two levels
of description, which have characteristics of symbolic sys-
tems. The low-level descriptions use neural networks en-
coded in communicating automata. We argue that this for-
malism sits between classical forms of symbolic systems
arising from programming languages such as Lisp and
Prolog, and connectionist networks. We will explain these
models in section 2. The high-level descriptions contain a
set of properties, which are expressed in logical formulae.
They are abstract descriptions of global properties, which do
not prescribe internal details of how those properties are
realised. We will explain these models in section 3. Com-
puter scientists have developed a number of theories and
tools to automatically justify the relationship between dif-
ferent levels of description within a formal framework. Our
models prescribe low-level internal structure, which we hy-
pothesis can be used to explore complex interactions within
neural networks and to justify whether high-level properties
can emerge from low-level constructs.

1.2 Application Viewpoint
Symbolic systems are good for manipulating, explaining
and reasoning about complex data structures, but neural
networks are good at dealing with complex highly non-
linear systems, especially in handling catastrophic changes
or gradual degradations. It is argued by [Schumann et al.,
2003] that neural networks can be applied to extending tra-
ditional controllers, which are ineffective in some systems,
including aircrafts, spacecrafts, robotics and flexible manu-

Symbolic Encoding of Neural Networks using Communicating Automata with
Applications to Verification of Neural Network Based Controllers

Li Su, Howard Bowman and Brad Wyble
Centre for Cognitive Neuroscience and Cognitive Systems, University of Kent,

Canterbury, Kent, CT2 7NF, UK
{ls68,hb5,bw5}@kent.ac.uk

facturing systems. Neural network based controllers have
demonstrated a superior ability to control adaptive systems.
However, the correctness of adaptive systems must be guar-
anteed in safety/mission critical domains. This is because it
is not possible to adapt toward controllable behaviours when
the system has changed beyond a critical point. This is also
because the system has to dynamically react to changes
within short periods of time. So, this requires that the learn-
ing processes converge before a pre-specified deadline.
 Unfortunately, the slow speed of learning is one of the
greatest limitations of current learning algorithms. For ex-
ample, the standard BP algorithm often requires the training
patterns to be presented hundreds or thousands of times in
order to solve a relatively simple task. Furthermore, con-
nectionist networks rarely provide any indication of the ac-
curacy and reliability of their predictions. As long ago as
1988, [Fodor and Pylyshyn, 1988] pointed out that the neu-
ral networks approach remained almost entirely experimen-
tal. Although a great deal of mathematical work has been
done, it is still not sufficient from the analytical point of
view to justify that certain configurations of neural networks
and their mechanisms are reliable.
 In some applications, the control architecture uses pre-
trained networks, which are numerical approximations of a
function. The correctness of such systems can be verified
[Rodrigues et al., 2001], but their verification does not con-
sider the adaptability of the system. Other control architec-
tures use on-line training of neural networks. This approach
is attractive because it is able to handle dynamic adaptation,
but it requires a high level of stability and correctness of the
learning process. There are existing approaches to evaluate
the performance of neural networks, such as [Schumann et
al., 2003], who proposed a layered approach to verify and
validate neural network based controllers. The limitation of
their work is that they only focus on monitoring the on-line
adaptation but cannot guarantee stability and correctness at
system design stages.
 This paper describes a case study, which applies formal
methods techniques to evaluating the learning speed using
automatic analysis (model checking). Formal methods are
strongly based on logic. They have rich tool support and
have shown their power in software engineering and various
areas where correctness and effectiveness of computer sys-
tems need to be guaranteed. So they can, for example, be
used in designing distributed systems [Bowman and Der-
rick, 2001]. In these areas, there are similar problems and
requirements in respect of modeling complex interactions
among components with distributed control.

2 Communicating Automata Specification
In this section, we introduce a communicating automata
specification of neural networks, which may be used to
specify components of neural network based controllers.
The interested reader is referred to [Bowman and Gomez,
2005] for comprehensive definition of communicating
automata. A similar framework was presented by [Smith,
1992] in a general mathematical setting. But his work did
not consider automatic simulation or verification.

2.1 Neural Network Description
Communicating automata are Finite State Machines with
associated communication channels and mathematical equa-
tions. Each neuron is encoded as an automaton, denoted as
the smallest square boxes in Figure 1 (a). Automata evolve
concurrently and the state of each neuron only depends on
the local data structure, which may change as a result of
interaction and communication between automata. Activa-
tion exchange between neurons is modeled through commu-
nication channels. In Figure 1 (a), each arrow denotes a
communication channel, such as the channel between neu-
ron I1 and H1:

1?1!1! IaHIport

 Working from left to right, port denotes the communica-
tion name (which in this case, is shared by all interactions),
I1 denotes the pre-synaptic neuron identity, defining the
sender, and H1 denotes the post-synaptic neuron identity,
defining the receiver. The last element 1Ia denotes the acti-
vation passed though the channel.
 The system in Figure 1 (a) is described as a hierarchy of
components, at the top-level it has three modules: Environ-
ment, NeuralNet and Tester. Each of which can be com-
posed from a set of modules. For example, NeuralNet itself
is composed of InputLayer, HiddenLayer and OutputLayer,
each of which is also a module composed of a set of neu-
rons. Neurons are fully connected between adjacent layers
and BP learning is applied. The Environment automaton
provides inputs to and receives outputs from NeuralNet. The
Tester will be used in the verification in section 4.
 The BP algorithm is a supervised learning rule widely
used in many applications, so study of this algorithm has
practical value. We have chosen the XOR problem as our

Figure 1: (a) Neural Network that Learns XOR. (b) Example of
a Neuron Automaton (c) The Test Automaton, Tester.

 (a)

(c) (b)

I1

I2

H1

H2

O1 Input
Layer

Hidden
Layer

Output
Layer

NeuralNet

Environment

1
?1!1!

I
aHIport

2
?2!2!

I
aHIport

1
?1!1!

H
aOHport

1
?2!1!

I
aHIport

2
?1!2!

I
aHIport

2
?1!2!

H
aOHport

Tester

Start

Deadline

Fail

deadlinet ≤
deadlinet =

success¬

Input Middle

Output

0:
?!!

=t
akiport i

)(:
,: ,

ησ
η

=
=∑
Ω=

k

iki

a
wa

t

):(,,

!!!

ikikik

k

awwi
ajkport

εδ+=⋅∀

Ω≤t

learning task due to its historical position. Although it re-
quires a small number of nodes and connections, it is char-
acteristic of difficult linearly inseparable learning tasks.
This simple problem is often used to test the ability of learn-
ing algorithms and it has been much discussed. In terms of
our larger ambition, analyses of neural network based con-
trollers, this XOR verification serves as a preliminary as-
sessment of our approach, which will be extended to realis-
tic applications in future work.

2.2 Neuron Automaton
We define the neuron automaton based on a set of functions,
which describe the network updating dynamics. An example
of a neuron automaton is shown in Figure 1 (b), where cir-
cles denote locations of the automaton, circles with a
smaller circle inside denote initial locations, and arrows
with dotted lines denote transitions between two locations. k
denotes the identity of this neuron, i and j denote the pre-
synaptic and post-synaptic neuron identities respectively.
Note that neuron identities are assumed to be unique.
 Briefly, the neuron automaton begins at the Input loca-
tion. When all pre-synaptic activations have been received
from input channels, it moves to the next location, Middle.
Then it evaluates the net input η and the activation ka . σ
is a sigmoid function. At the Output location, it sends its
activation via output channels, and weights are updated. ε
is the learning rate and kδ denotes the extent to which neu-
ron k is in error. It is evaluated externally, an explanation of
which is beyond the scope of this paper. For simplicity of
presentation, we show a neuron automaton with just one
input and one output, but a more general form can be de-
fined.
 The timing constraints in this application are the follow-
ing. Ω≤t is an invariant of the Middle location, and t is a
local clock. Invariants are timing conditions, and automata
can only stay in locations while the condition holds. Ω=t
is a guard, which is a condition allowing the transition to be
taken. To summarize the time course of the neuron, it stays
at the Input and Output locations while communication is
completing, but it stays at the Middle location for exactly
Ω units of time, which we assume represents the time re-
quired to update net input and activation. In this case, Ω is
5 units of time. This assumption is made only for analytical
reasons and is not based on neuron physiology.

3 Requirements Language
The high level behaviour of neural networks is described
using a requirements language allowing logical formulae to
be expressed. The network of automata evolves through a
series of states, which form several paths. The system can
evolve through different paths. The requirements language
consists of state formulae, which describe individual states
and path formulae, which quantify over paths of the model.
Assuming ϕ is a state formula, ∀ , ∃ , ◊ and � are opera-
tors of path formulae. The property ϕ�∀ requires that all
states satisfy ϕ , ϕ∃◊ requires that at least one reachable
state satisfies ϕ , ϕ�∃ requires that at least along one path

all states satisfy ϕ and ϕ∀◊ requires that along all paths at
least one state eventually satisfies ϕ .
 In this paper we are interested in learning. There is a set
of properties, which we want the learning system to satisfy.
These properties fall into three categories: Reachability,
Safety and Liveness [Behrmann et al., 2004].

• Reachability Properties
These ask whether there eventually exists a state in
which something will happen. For example, the formula
success is true when all the output neurons get their ac-
tivations on the correct side of 0.5. Thus, success∃◊
checks if the learning process could eventually allow
the network to output the correct answer. These proper-
ties validate the basic behaviour of the model, but do
not guarantee the correctness of adaptive systems.

• Safety Properties
These ask whether something “bad” will ever happen.
For example, the property deadlock evaluates to true at
a state without successors. Thus, deadlock¬∀� justi-
fies that the system is free from such situations. Safety
properties can always be expressed as reachability
properties, such as deadlock¬∃◊ . Assuming approper-
ate formulation of properties, neural networks, cogni-
tive models or any dynamic systems will never reach
“bad” states if they satisfy safety properties.

• Liveness Properties
These ask whether the system eventually does some-
thing useful. So, we could check liveness properties
such as success∀◊ , which justifies that the system can
meet our requirements along all paths. By verifying
these properties over learning algorithms, we can justify
if they will eventually converge at desired situations. In
order to understand learning algorithms or adaptive sys-
tems in general, we are also interested in whether the
models can perform something infinitely often.

 Properties can be expressed by nesting different types of
operators, such as success�∀◊∀ . This property describes a
complex behaviour that we require the learning process to
possess. This behaviour is that the adaptive system starts
with no knowledge of the task. At this time, success does
not hold. During training with examples, it may sometimes
show correct answers, i.e. success holds, but it may also
show incorrect answers. When this happens, the system has
found some solutions to the task but these solutions are not
stable during further training. However, starting from some
states during the training, it is able to show correct answers
invariantly. Thereby, the above property is satisfied.

4 Verification
We implemented and verified our model in Uppaal, which is
a well-known real-time model checker [Behrmann et al.,
2004]. So, our models are converted into Uppaal timed
automata notation, which is a real-time extension of com-
municating automata. We assume that the deadline is 5000
units of time, the learning rate is 0.05 and all the weights are

randomly distributed around 0.2. Note that the deadline and
Ω are both arbitrary numbers but they can be specified in
real applications. We check the system for deadlock free-
dom using the following Temporal Logic formula:

deadlock¬∀�

 The result is that the system has no deadlocks for the
XOR training set. We also verify the stability of the network
using the following Temporal Logic formula, which con-
tains timing constraints:

successdeadline �∀∀◊≤

 Satisfaction of this formula means the system always
reaches a successful state before the deadline, and success
holds invariantly from that state. However, Uppaal does not
support this formula. Hence, we introduce a test automaton
in Figure 1 (c). It begins at the Start location and moves to
the next location, Deadline, when clock t equals the parame-
ter deadline. When the test automaton is in this location, the
patterns are still presented to the neural network. If learning
is successful when deadline becomes true and remains sta-
ble during further training, the next location, Fail, is un-
reachable. With this test automaton, we are able to verify
the previous property using the following Temporal Logic
formula:

FailTester.¬∀�

 The result of the verification is that the system satisfies
the above property and is guaranteed to learn XOR accord-
ing to the required timing constraints. It also guarantees the
learning process is eventually stabilised.

5 Discussion and Future Work
In traditional neural network simulations, semantically in-
terpretable elements are patterns of activation. The states of
neural networks are expressed in numerical form, such as a
landscape, in a multi-dimensional space. However, the
states of the neural networks in our models are represented
as the locations in the product automaton, which is auto-
matically generated by the model checker. The locations
have the characteristics of symbol systems. Model checking
is based on symbolic manipulation of the product automa-
ton, which maps to the landscape in the multi-dimensional
space.
 In this paper, we have specified a neural network that
learns the XOR problem using communicating automata.
We then verified the model over a set of properties ex-
pressed in Temporal Logic. We believe that this approach
can provide insight to the field of neural network based con-
trollers. Our models and properties can be regard as sym-
bolic descriptions of the system behaviour at different levels
of abstraction. Verifications may give theoretically well-
founded ways to evaluate and justify the learning capacity
and determine whether cognitive properties can emerge
from neural-level architectures.

 We argue that most of the properties, which we have veri-
fied, are hard to justify by simulation. This is because simu-
lations can only test that something occurs but are unable to
test that something can never occur. Simulations are also not
able to test if something is (in)valid forever. Therefore,
simulations are limited in their capacity to justify safety and
liveness properties without explicit mathematical analysis.
Our verification approach on the other hand, explicitly and
formally describes the system and properties, so safety and
liveness properties can be verified.
 The next step of research is to explore different configu-
rations of neural networks, e.g. winner-take-all networks,
recurrent networks and more biologically plausible imple-
mentations of networks. We are also interested in investigat-
ing the potential of this approach in integrating symbolic
and sub-symbolic computations, enforcing hierarchical
compositional structure over neural networks, and building
or justifying brain-level models.

References

[Barnard and Bowman, 2004] P. J. Barnard and H. Bow-
man. Rendering Information Processing Models of Cog-
nition and Affect Computationally Explicit: Distributed
Executive Control and the Deployment of Attention,
Cognitive Science Quarterly, 3(3):297-328, 2004.

[Bowman and Derrick, 2001] H. Bowman and J. Derrick
(editors). Formal Methods for Distributed Processing: a
Survey of Object-oriented Approaches, Cambridge Uni-
versity Press, 2001.

[Bowman and Gomez, 2005] H. Bowman and R. Gomez.
Concurrency Theory - Calculi and Automata for Model-
ling Untimed and Timed Concurrent Systems. Springer-
Verlag, To Appear, 2005.

[Behrmann et al., 2004] G. Behrmann, A. David and K. G.
Larsen. A Tutorial on Uppaal. SFM-RT’04, LNCS 3185,
Springer-Verlag, 2004.

[Fodor and Pylyshyn,1988] J. A. Fodor and Z. W. Pylyshyn.
Connectionism and Cognitive Architecture: A Critical
Analysis, Cognition: International Journal of Cognitive
Science, Vol. 28, 3-71, 1988.

[Rumelhart et al., 1986] D. E. Rumelhart, G. E. Hinton, and
R. J. Williams, Learning Internal Representations by Er-
ror Propagation. Paralled Distributed Processing. Ex-
plorations in the Microstructure of Cognition. Vol.1:
Foundations, 318-362. MIT Press, 1986.

[Rodrigues et al., 2001] P. Rodrigues, J. F. Costa and H. T.
Siegelmann. Verifying Properties of Neural Networks.
Artifical and Natural Neural Networks, LNCS 2084,
Springer-Verlag, 158-165, 2001.

[Schumann et al., 2003] J. Schumann, P. Gupta and S. Nel-
son. On Verification & Validation of Neural Network
Based Controllers, EANN’03, 2003.

[Smith, 1992] L. S. Smith. A Framework for Neural Net
Specification, IEEE Transactions on Software Engineer-
ing, 18(7): 601 - 612, 1992.

