Symbolic Encoding of Neural Networks

using Communicating Automata with

Applicationsto Verification of Neural Network Based Controllers

Li Su, Howard Bowman and Brad Wyble
Centre for Cognitive Neuroscience and Cognitive Systems/esity of Kent,
Canterbury, Kent, CT2 7NF, UK
{Is68,hb5,bw5}@kent.ac.uk

Abstract

This paper illustrates a way for applying formal
methods techniques to specifying and verifying
neural networks, with applications in the area of
neural network based controllers. Formal methods
have some of the characteristics of symbolic mod-
els. We describe a communicating automata
[Bowman and Gomez, 2005] model of neural net-
works, where the standard Backpropagation (BP)
algorithm [Rumelharet al, 1986] is applied. Then
we undertake a verification of this model using the
model checker Uppaal [Behrmaseh al, 2004], in
order to predict the performance of the learning
process. We discuss broad issues of integrating
symbolic techniques with complex neural systems.
We also argue that symbolic verifications may give
theoretically well-founded ways to evaluate and
justify neural learning systems.

1 Introduction

This work is an initial step towards integratingrdolic and
neural computation. Our motivations are justifiedni a
cognitive point of view on the one hand, and aniresgying
application point of view on the other hand.

1.1 Cognitive Viewpoint

[Barnard and Bowman, 2004] suggested that oneeofrtb-
tivations of integrating symbolic and sub-symbaa@mpu-
tation is to specify and justify behavior of compleogni-
tive architectures in an abstract and suitable fdfirstly,
numerous theories assume that mental modules, er th
neural substrates, are processing information etstime
time. Hence, any realistic architecture of the mindst be
concurrent at some level. Secondly, the controtafcur-
rent processing can be distributed. So, cognitlooukl be

viewed as the behavior that emerges from intemactio

amongst independently evolving modules. Most tiaualt
Al approaches fail to acknowledge the requiremehtson-
current and distributed control. This is becaussy ttend to
be prescriptive and are built around centralizedhory and
control algorithms. Finally, [Fodor and Pylyshyn988B]
argued that hierarchical decomposition is needextder to
reflect the characteristics of the mind.

Although connectionist networks are commonly rdgdr
as concurrent and distributed, they are typicattyitéd to

only one level of concurrently evolving modules eTgrimi-
tive elements of neural networks are neurons bunaaral
networks. To some degree, it is hard to constrndtumder-
stand large architectures without hierarchicalaitming. In
certain respects, modeling based on neural netvisrksv-
level in character, i.e. it is hard to relate tinyitive con-
structs and data structures found in high-levehtimts pre-
ferred by the symbolic modeling community.

For these reasons, [Barnard and Bowman, 2004jgedv
an illustration of modeling a high-level cognitiaechitec-
ture using formal methods. Their model containseticd
top-level modules that are connected by commurinati
channels. Modules interact by exchanging data itelmsg
channels. Control is distributed and each moduleives
independently. They also suggested encoding loetlesu-
ral networks using the same method, and formaligting
models at different levels of abstraction. In thaper, key
constructs within neural networks are encoded atlevels
of description, which have characteristics of syhabsys-
tems. The low-level descriptions use neural netwazk-
coded in communicating automata. We argue thatftnis
malism sits between classical forms of symbolictays
arising from programming languages such as Lisp and
Prolog, and connectionist networks. We will expl#iese
models in section 2. The high-level descriptionatam a
set of properties, which are expressed in logioamntilae.
They are abstract descriptions of global propertidsch do
not prescribe internal details of how those prapsrare
realised. We will explain these models in sectiorC8m-
puter scientists have developed a number of thedais
tools to automatically justify the relationship ween dif-
ferent levels of description within a formal framak. Our
models prescribe low-level internal structure, viahige hy-
pothesis can be used to explore complex interaxtiathin
neural networks and to justify whether high-levedperties
can emerge from low-level constructs.

1.2 Application Viewpoint

Symbolic systems are good for manipulating, exjptain
and reasoning about complex data structures, butahe
networks are good at dealing with complex highlynno
linear systems, especially in handling catastroghianges
or gradual degradations. It is argued by [Schumetnal,
2003] that neural networks can be applied to extentta-
ditional controllers, which are ineffective in sorsgstems,
including aircrafts, spacecrafts, robotics andiliexmanu-

facturing systems. Neural network based controltease
demonstrated a superior ability to control adapsiystems.
However, the correctness of adaptive systems nauguhr-
anteed in safety/mission critical domains. Thibésause it
is not possible to adapt toward controllable betwarg when
the system has changed beyond a critical point iBhalso
because the system has to dynamically react togelsan
within short periods of time. So, this requirestttie learn-
ing processes converge before a pre-specified idead|

Unfortunately, the slow speed of learning is arfiehe
greatest limitations of current learning algorithri®r ex-
ample, the standard BP algorithm often requiregréiaing
patterns to be presented hundreds or thousandses in
order to solve a relatively simple task. Furthereor con-
nectionist networks rarely provide any indicatidntiee ac-
curacy and reliability of their predictions. As tprago as
1988, [Fodor and Pylyshyn, 1988] pointed out that heu-
ral networks approach remained almost entirely gxypsn-
tal. Although a great deal of mathematical work bagn
done, it is still not sufficient from the analyticpoint of
view to justify that certain configurations of nalinetworks
and their mechanisms are reliable.

In some applications, the control architecturesugee-
trained networks, which are numerical approximatiof a
function. The correctness of such systems can héede
[Rodrigueset al, 2001], but their verification does not con-
sider the adaptability of the system. Other conarchitec-
tures use on-line training of neural networks. Tdpproach
is attractive because it is able to handle dynadaptation,
but it requires a high level of stability and catreess of the
learning process. There are existing approachevatiate
the performance of neural networks, such as [Scharea
al., 2003], who proposed a layered approach to veifg
validate neural network based controllers. Thetétion of
their work is that they only focus on monitoringetan-line
adaptation but cannot guarantee stability and cbress at
system design stages.

This paper describes a case study, which appbiesa
methods techniques to evaluating the learning spsat)
automatic analysis (model checking). Formal methais
strongly based on logic. They have rich tool supord
have shown their power in software engineering\arebus
areas where correctness and effectiveness of cempyts-
tems need to be guaranteed. So they can, for erarbel
used in designing distributed systems [Bowman aed- D
rick, 2001]. In these areas, there are similar jerob and
requirements in respect of modeling complex intiéoas
among components with distributed control.

2 Communicating Automata Specification

In this section, we introduce a communicating awtt@m
specification of neural networks, which may be used
specify components of neural network based coetsll
The interested reader is referred to [Bowman anthé€xo

€Y J_

NeuralNe
port! [1H1?a tHUO1?a |Outpu
= | (1L > [Ha| W p
. port! 11 H2?a Layel
Input Hidder
Layel Layel @ g
port! 121 H1?a ,
g port! 12! HZ?: portt H2!01%a,,
Environmen
(b) ortli'k ?a . (c) Star
Inpu 2~ Middle t < deadline
_______ >Q B | t = deadline
1t=Q _
! 0=y aw,, Deadlint
| a, = a(n) | - SUCCESS
port!k! jla, Lommmemee K Y
Ui |1Wk,i =w t EJka1) Output OFaiI

Figure 1: (a) Neural Network that Learns XOR. (Bpfple of
a Neuron Automaton (c) The Test Automatdaster

2.1 Neural Network Description

Communicating automata are Finite State Machingb wi
associated communication channels and mathematici-
tions. Each neuron is encoded as an automatoneteas
the smallest square boxes in Figure 1 (a). Autoreatdve
concurrently and the state of each neuron only migpen
the local data structure, which may change as altre$
interaction and communication between automataivAct
tion exchange between neurons is modeled througimen
nication channels. In Figure 1 (a), each arrow tEn@a
communication channel, such as the channel betwean
ronll andH1:

port!'11'H1?a,,

Working from left to rightport denotes the communica-
tion name (which in this case, is shared by a#érimttions),
I1 denotes the pre-synaptic neuron identity, definihg
sender, andH1 denotes the post-synaptic neuron identity,
defining the receiver. The last element denotes the acti-
vation passed though the channel.

The system in Figure 1 (a) is described as a ituleyaof
components, at the top-level it has three modi#esiron-
ment NeuralNetand Tester Each of which can be com-
posed from a set of modules. For exampleuralNetitself
is composed ofnputLayer HiddenLayerand OutputLayey
each of which is also a module composed of a seeaf
rons. Neurons are fully connected between adjalesets
and BP learning is applied. THenvironmentautomaton
provides inputs to and receives outputs fideuralNet The

2005] for comprehensive definition of communicating Testemwill be used in the verification in section 4.

automata. A similar framework was presented by {Bmi
1992] in a general mathematical setting. But hiskwaid
not consider automatic simulation or verification.

The BP algorithm is a supervised learning rule elyid
used in many applications, so study of this alpamithas
practical value. We have chosen the XOR problenowas

learning task due to its historical position. Altigh it re-
quires a small number of nodes and connections,dhar-
acteristic of difficult linearly inseparable leangi tasks.
This simple problem is often used to test the ghilf learn-
ing algorithms and it has been much discussedering of
our larger ambition, analyses of neural networkeldason-
trollers, this XOR verification serves as a prefiary as-
sessment of our approach, which will be extendecatis-
tic applications in future work.

2.2 Neuron Automaton

We define the neuron automaton based on a sehofifuns,
which describe the network updating dynamics. Aaneple
of a neuron automaton is shown in Figure 1 (b), rertoér-
cles denote locations of the automaton, circlesh vat
smaller circle inside denote initial locations, aadows
with dotted lines denote transitions between twations.k
denotes the identity of this neurdnandj denote the pre-
synaptic and post-synaptic neuron identities respsyg.
Note that neuron identities are assumed to be ®gniqu
Briefly, the neuron automaton begins at thput loca-
tion. When all pre-synaptic activations have beeteived
from input channels, it moves to the next locatikfigdle.
Then it evaluates the net inpgt and the activatiora, . o
is a sigmoid function. At th®utput location, it sends its
activation via output channels, and weights areatgatl £

is the learning rate and, denotes the extent to which neu-

ronk s in error. It is evaluated externally, an expldon of
which is beyond the scope of this paper. For sicrtgliof
presentation, we show a neuron automaton with gust
input and one output, but a more general form carddy>
fined.

The timing constraints in this application are fokow-
ing. t<Q is an invariant of thdliddle location, and is a
local clock. Invariants are timing conditions, asgtomata
can only stay in locations while the condition foltd=Q
is a guard, which is a condition allowing the tition to be
taken. To summarize the time course of the neutatays
at theInput and Output locations while communication is
completing, but it stays at thHdiddle location for exactly
Q units of time, which we assume represents the tigne
quired to update net input and activation. In ttdse,Q is
5 units of time. This assumption is made only foalgtical
reasons and is not based on neuron physiology.

3 RequirementsLanguage

The high level behaviour of neural networks is déscl
using a requirements language allowing logical fdee to
be expressed. The network of automata evolves ghreu
series of states, which form several paths. Théeesy€an
evolve through different paths. The requirementglmge
consists of state formulae, which describe indigldstates
and path formulae, which quantify over paths of riedel.
Assuming ¢ is a state formulal], C, ¢ and[] are opera-
tors of path formulae. The property ¢ requires that all

all states satisfyp and 00 ¢ requires that along all paths at
least one state eventually satisfigs

In this paper we are interested in learning. Ther set
of properties, which we want the learning systersatisfy.
These properties fall into three categories: Rdaitiha
Safety and Liveness [Behrmaanal, 2004].

¢ Reachability Properties

These ask whether there eventually exists a state i
which something will happen. For example, the fdanu
successs true when all the output neurons get their ac-
tivations on the correct side of 0.5. Thus}success
checks if the learning process could eventuallgvall
the network to output the correct answer. Thespeyro
ties validate the basic behaviour of the model, dmt

not guarantee the correctness of adaptive systems.

e Safety Properties

These ask whether something “bad” will ever happen.
For example, the propertleadlockevaluates tarue at

a state without successors. Thiig]-deadlock justi-

fies that the system is free from such situati@afety
properties can always be expressed as reachability
properties, such as (X deadlock. Assuming approper-
ate formulation of properties, neural networks, réeg
tive models or any dynamic systems will never reach
“bad” states if they satisfy safety properties.

Liveness Properties

These ask whether the system eventually does some-
thing useful. So, we could check liveness propertie
such as[J0success which justifies that the system can
meet our requirements along all paths. By verifying
these properties over learning algorithms, we oatify

if they will eventually converge at desired sitoas. In
order to understand learning algorithms or adapise
tems in general, we are also interested in wheteer
models can perform something infinitely often.

Properties can be expressed by nesting diffeygst of
operators, such aS0 Isuccess This property describes a
complex behaviour that we require the learning @sscto
possess. This behaviour is that the adaptive systants
with no knowledge of the task. At this timgeyccessdoes
not hold. During training with examples, it may sstimes
show correct answers, i.seuccessholds, but it may also
show incorrect answers. When this happens, themsybas
found some solutions to the task but these solsitaye not
stable during further training. However, startingni some
states during the training, it is able to show ectrianswers
invariantly. Thereby, the above property is sagisfi

4 Verification

We implemented and verified our model in Uppaalichlis
a well-known real-time model checker [Behrmaghal,
2004]. So, our models are converted into Uppaakdim
automata notation, which is a real-time extensibrram-

states satisfyp, (D¢ requires that at least one reachableMunicating automata. We assume thatdbadlineis 5000
state satisfiegp, 1@ requires that at least along one pathunits of time, the learning rate is 0.05 and &l weights are

randomly distributed around 0.2. Note that deadlineand
Q are both arbitrary numbers but they can be sgektifi
real applications. We check the system for deadfoe&-
dom using the following Temporal Logic formula:

00 -deadlock

The result is that the system has no deadlockshier
XOR training set. We also verify the stability betnetwork
using the following Temporal Logic formula, whiclore
tains timing constraints:

0o Illsuccess

<deadlin

Satisfaction of this formula means the system wdwa

reaches a successful state beforedibadline andsuccess
holds invariantly from that state. However, Uppdaés not
support this formula. Hence, we introduce a tesbraaton
in Figure 1 (c). It begins at tH&tart location and moves to

the next locationDeadling when clock equals the parame-
ter deadline When the test automaton is in this location, th

patterns are still presented to the neural netwlbikarning
is successful whedeadlinebecomedrue and remains sta-
ble during further training, the next locatioRail, is un-
reachable. With this test automaton, we are ableetdy
the previous property using the following Tempdrabic
formula:

00 - TesterFail

The result of the verification is that the systeatisfies
the above property and is guaranteed to learn XERrd-
ing to the required timing constraints. It also iguriees the
learning process is eventually stabilised.

5 Discussion and Future Work

In traditional neural network simulations, semaaitic in-
terpretable elements are patterns of activatioe. Sthtes of
neural networks are expressed in numerical forroh s1s a

landscape, in a multi-dimensional space. Howevke t

states of the neural networks in our models areesgmted
as the locations in the product automaton, whiclauto-
matically generated by the model checker. The iooat
have the characteristics of symbol systems. Modetking
is based on symbolic manipulation of the produdbia-
ton, which maps to the landscape in the multi-disn@mal
space.

In this paper, we have specified a neural netwbek

We argue that most of the properties, which weshaari-
fied, are hard to justify by simulation. This ischese simu-
lations can only test that something occurs buuaable to
test that something can never occur. Simulatioesbso not
able to test if something is (in)valid forever. Téfere,
simulations are limited in their capacity to jugt#fafety and
liveness properties without explicit mathematicahlgsis.
Our verification approach on the other hand, expli@and
formally describes the system and properties, fetysand
liveness properties can be verified.

The next step of research is to explore diffemtfigu-
rations of neural networks, e.g. winner-take-altwaoeks,
recurrent networks and more biologically plausiltgle-
mentations of networks. We are also interestedvnstigat-
ing the potential of this approach in integratingnbolic
and sub-symbolic computations, enforcing hieramdhic
compositional structure over neural networks, aunilding
or justifying brain-level models.

References

e[Barnard and Bowman, 2004] P. J. Barnard and H. -Bow

man. Rendering Information Processing Models of-Cog
nition and Affect Computationally Explicit: Distnitbed
Executive Control and the Deployment of Attention,
Cognitive Science Quarterl$(3):297-328, 2004.

[Bowman and Derrick, 2001] H. Bowman and J. Derrick
(editors).Formal Methods for Distributed Processing: a
Survey of Object-oriented Approach&ambridge Uni-
versity Press, 2001.

[Bowman and Gomez, 2005] H. Bowman and R. Gomez.
Concurrency Theory - Calculi and Automata for Medel
ling Untimed and Timed Concurrent Syste@pringer-
Verlag, To Appear, 2005.

[Behrmannet al, 2004] G. Behrmann, A. David and K. G.
Larsen. A Tutorial on UppaaBFM-RT'04 LNCS 3185
Springer-Verlag, 2004.

[Fodor and Pylyshyn,1988] J. A. Fodor and Z. WyBln.
Connectionism and Cognitive Architecture: A Critica
Analysis, Cognition: International Journal of Cognitive
ScienceVol. 28, 3-71, 1988.

[Rumelhartet al, 1986] D. E. Rumelhart, G. E. Hinton, and
R. J. Williams, Learning Internal RepresentatiogsE-
ror PropagationParalled Distributed Processing. Ex-
plorations in the Microstructure of Cognitior\Vol.1:
Foundations, 318-362. MIT Press, 1986.

[Rodrigueset al, 2001] P. Rodrigues, J. F. Costa and H. T.

learns the XOR problem using communicating automata Sjegelmann. Verifying Properties of Neural Networks

We then verified the model over a set of propergas
pressed in Temporal Logic. We believe that thisreagh
can provide insight to the field of neural netwbdsed con-
trollers. Our models and properties can be regardyan-
bolic descriptions of the system behaviour at défe levels
of abstraction. Verifications may give theoretigailvell-

founded ways to evaluate and justify the learniagacity

and determine whether cognitive properties can gener

from neural-level architectures.

Artifical and Natural Neural NetworksLNCS 2084
Springer-Verlag, 158-165, 2001.
[Schumanret al, 2003] J. Schumann, P. Gupta and S. Nel-

son. On Verification & Validation of Neural Network
Based Controller&£ANN'03 2003.

[Smith, 1992] L. S. Smith. A Framework for NeuraktN
Specification |EEE Transactions on Software Engineer-
ing, 18(7): 601 - 612, 1992.

