Communicating Process Architectures 2005 249
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wbod (Eds.)
|OS Press, 2005

| nterfacing C and occam-pi

Fred BARNES

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

F.R.M.Barnes@kent.ac.uk

Abstract. This paper describes an extension to theoKRccam-tisystem that allows
processes programmed in C to participatedoam-Tt style concurrency. The uses of
this are wide-ranging, from providing low-level @ocesses running concurrently as
part of anoccam-1t network, through to concurrent systems programmed ewiinel
C. The easily extended API for C processes is based on thiédred Inmos C API,
used also by CCSP, extended to cover new featuresadm-1. One of the motiva-
tions for this work is to ease the development of low-levéwmek communication in-
frastructures. A library that provides for networking ofacimel-bundles over TCP/IP
networks is presented, in addition to initial performangeifes.

Keywords. C, occam-pi, concurrency, processes, hetworks

Introduction

The occam-1t language [1] extends classicatcam [2] in numerous ways. Included in
these extensions, and supported by theoKR3] implementation, are mechanisms that al-
low occam-Tt processes to interact with the external environment. @alssccam on the
Transputer [4] had a very physical environment — hardwarkslito other Transputers. In
contrast, modern systems support highly dynamic apptinanvironments, e.g. file-systems
and networking, thabccam-ttapplications should be able to take full advantage of.

In most cases, interaction with anything external tooanam-1t program requires in-
terfacing with C — since the environments in which &R programs run have C as a com-
mon interface (e.g. UNIX). There are a few exceptions, h@resuch as the mechanism
that provides low-level hardware 1/0O access directly froceam-tt using ‘“PLACED PORT”’S
(described in [5]).

The mechanisms currently support by &R for interfacing with C are: simple exter-
nal C calls [6]; blocking external C calls [7]; and a “user defi channels” mechanism that
allows C calls (blocking and non-blocking) to be placed bdrghannel operations, includ-
ing direct support foALTing on completion of external calls. These mechanismspagh
mostly adequate, lack the level of flexibility that prograsrsirequire. For example, it is not
immediately clear as to how a low-level network communa@ainfrastructure, such as that
required by KRC.net [8], would be implemented using the existing mechaais

All of these existing mechanisms essentially attach ‘dé€adlunction calls to various
occam-Tt operations. Programming interactions between these, catich would be re-
quired if multiplexing channels over IP links, is difficultd prone to error. On the other hand,
most of the infrastructure could be programmeaa@cam-Tt, with only the lowest-level 1/0O
inside C functions. Howevegccam-tt does not lend itself to the type of programming we
might wish to employ at this level — e.g. deliberate pointexsang for efficiency (which we
know to be safe, but which cannot be checked by the cuoeram-1tcompiler).

The C interface mechanism presented here (CIF) attemptddi@ss these issues, by
providing a very general framework for the construction afgilel processes and programs

250 F.RM.Barnes/ Interfacing C and occam-pi

in C. In some respects, this mechanism provides exactly @8&P [9] provided in terms of
support for C programs, but with the added benefitsagiam-1t (e.g. mobiles and extended
synchronisations) and the ability to support mixaatam-mtand C process networks. The
interface presented to applications is based on the otiffireos and CCSP APIs.

The uses for this are wide-ranging. Applications that rezjonly a limited amount of
external interaction can encapsulate these in concurr@nb€esses, avoiding the overheads
of repeated external C calls. The CIF mechanism can alsodektasnigrate existing C code
into occam-Tt systems — e.g. minimal-effort porting of Linux device-dng to RMoX [5].

At the far end of the scale, the CIF mechanism can be used twrgroentire concurrent
systems in C. In contract with some alternative parallel @renments, CIF offers very low
overheads and a reasonable level of control. Unbikeam-1t, however, the C compiler —
typically ‘gcc’ [10] — does not perform parallel-usage ckedeaving the potential for race-
hazard errors. The opportunity for such error can be mirechisy good application design.

Section 1 examines the technical aspects of the C interfiaq@ementation and API.
Section 2 presents a specific application of CIF for netwagknobile channel-bundles, in
addition to a general discussion of potential applicati@as. Conclusions and initial perfor-
mance results are presented in section 3, together witls fbarfuture work.

1. Interfacing C and occam-1t

The C interface operates by encapsulating C processeslsidhée KROC run-time system
sees them as ordinaogcam-Tt processes. No changes are required in the®Run-time to
support these C processes, and no damage is caused to threaerde of existingccam-Tt
code. As a consequence, C processes incur a slight overaeladime they interact with the
run-time system (switching from a Clfocess-context to anoccam-ttone). This overhead
is small, however (less than 100 nanoseconds on an 800 MHuRe8).

C processes are managed through a variety of API calls, ti@ritgaof which require
a C process context. Some do not, however, including those used for initial tosaof C
processes. Creation and execution of the first C processyistars is slightly complicated,
requiring the use of the basic C calling mechanism. For exanusing the C interface, the
standardintegrate’ component could be written as:

void integrate (Process *me, Channel *in, Channel *out)

{
int v, total = 0;
for (;;) {
ChanInInt (in, &v); in?) out!
total += v; ——|| integrate ||——
ChanOutInt (out, total);
}
}

The ‘me’ parameter given to CIF processes gives the process a handkself. The
CIF infrastructure always knows which particular C procssexecuting, however, raising
questions about the necessity of this extra (and autontigtzavided) parameter. The above
process shows examples of tl@hanInInt’ and ‘ChanOutInt’ API calls, whose usage is
mostly obvious.

1.1. Sarting C Processes

To create an instance of the abovetegrate’ process requires a call to eithé@r'ocAlloc’
or ‘ProcInit’. To do this fromoccam-ttrequires the use of an external C call:

F.RM.Barnes/ Interfacing C and occam-pi 251

void real_make_integrate (Channel *in, Channel *out, Process **p)
{
*p = ProcAlloc (integrate, 1024, 2, in, out);

}
void _make_integrate (int *ws)
{
real_make_integrate ((Channel *)(ws[0]), (Channel *) (ws[1]),
(Process *x) (ws[2]));
}

that can be called from asccam-1tprogram after declaring with:

#PRAGMA EXTERNAL "PROC C.make.integrate (CHAN INT in?, out!, RESULT INT p) = O"

The usage of this ilmccam-Ttis slightly peculiar since the call will return providing a
process address ip’; but having already consumed itsi?” and ‘out !’ parameters. An in-
line occam-ttprocedure is provided by CIF that executes the C processniagy only when
the C process has terminated — at which point it could be frasihg ProcAllocClean’.
For example:

#INCLUDE "cifccsp.inc"

PROC external.integrate (CHAN INT in?, out!)
INT proc:
SEQ
C.make.integrate (in?, out!, proc)
cifccsp.startprocess (proc)

Creating and executing C processes inside a CIF proces<cis simpler. Processes are
created in the same way usiirocAlloc’, but are executed usin@tocPar’ (or one of its
variants).

It should be noted that the above two C functions, the entiptp_make integrate’
and real make integrate’, could be made into a single function. Separating them out
gives the parameters passed explicit names, howeveratsfeusing indices into thess’
array. The ‘real’ function can be declarechline’ to get equivalent performance if desired.

1.2. Masguerading as occam

In order to present themselves@sam-Tt processes, CIF processes need a \atichm-1t
process workspace. This is a fixed-size block that conthiestate of the CIF process, in
addition to the ‘magic’ workspace fields used for procesdrobriFigure 1 shows the layout
of this structure, with word-offsets relative to tirrocess’ pointer (equivalent to anccam
process’svor kspace-pointer).

The workspace below offset 0 is that normally associateld suspendedccam-Ttpro-
cesses. These are used only when the CIF process is ina&tvélocked on channel com-
munication. The workspace offsets from 0 to 2 are used by CdEgsses that have gone
parallel and are waiting for their sub-processes to tertaina the same way thatccam-1t
processes do. The workspace offsets from 4 to 12 hold thes@dEific process state, includ-
ing the stored state of the run-time system when a CIF prasesecuting (held in processor
registers foloccam-Tt processes).

When a CIF process is initially created, @gtry-point is set to the C function specified
in the call to ProcAlloc’. Theiptr field is set to point at an assembler routine that starts the

There seems little point in cleaning up after thiategrate’ process, since it is not expected to terminate.

252 F.RM.Barnes/ Interfacing C and occam-pi

12| nparamwords

11| endp-link

10| call-succ

ol Bpr .| |cF

8| Fptr process

7| “entry-point state

6| occam-stack

5| c-stack-base

4 | c-stack-pointer

3

2 | par—priority Ny

1| par<count used by
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, PAR

0| temp/par-succ

-1| iptr

=2 link

~3| priority “magic”

~a| pointeristate workspace

-6 | timer-state

Figurel. CIF process workspace

process for the first time and handles its shutdown. When gf@i€ess is blocked, themtry-
point field holds the real ‘return’ address in the user’s C codelswtheiptr field points to an
assembler routine that resumes the process. Figure 2 shewtetcycle of a CIF process.

i !

ProcAlloc() ProcAlloc() ...
creates process creates process a
CIF
process
ProcPar() cifcesp.startprocess
schedules processes schedules process 4
suspends self -~ suspends self = > CIF process scheduled = enter run—time

save occam state
restore C state

i i ‘ kernel
|

save C state
restore occam state

l (user C code)
/\ run—time kerne -

reschedule if last process terminates interaction
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr reschedules parent

restore occam state

ProcPar() returns cifccsp.startprocess
i returns

¢ e » ProcAllocClean()
destroys process

Figure 2. CIF process life-cycle

When entering the run-time kernel, a CIF process must séswporkspace in the same
way that anoccam-1t process would. Furthermore, it must also use the correlihgalon-
vention for the particular entry-point. In-line assembtecros are used to achieve this, con-
taining code very similar to that generated by thedCRranslator, ‘tranx86’ [11]. The return-
address (inptr) is always to a pre-defined block of assembler, howeveryésabres the CIF
process correctly when it is rescheduled.

F.RM.Barnes/ Interfacing C and occam-pi 253

As an example, the following shows the pseudocode forthenInInt ()’ assembler
routine (placed in-line within the C code):

1: // chan : channel address (in register)

2: [/ ptr : destination pointer (in register)
chan-in-int €han, ptr):

3: push frame-pointer)

4: save-c-state

5. restore-occam-state

6: wptr[iptr] < global-resume-point

7. jump (LY_in32, chan, ptr)
local-resume-point:

8: pop frame-pointer)

There is a certain degree of unpleasantness in the actiahbks code. Much of it
due to subtle differences in the way that different GCC warsihandle in-line assembler
macros such as thes@he actual kernel call here.Y_in32’ expects to be called with the
channel-address in the EAX register and the destinatioreaddn the EBX register. These
are handled usingegister constraints (a GCC feature) in the assembler-C interface.

The assembler macros represented by ‘save-c-state’ astdreeoccam-state’ are imple-
mented respectively with:

1: frame-pointer <= wptr
2. wptr[c-stack-pointer] < stack-pointer
3: wptr[entry-point] <= local-resume-point

and:

1: stack-pointer <= wptr[occam-stack]
2. Fptr < wptr[fptr]
3. Bptr < wptr[bptr]

The first of these saves the globally visibleifccsp_wptr’ variable (containing the
workspace-pointer for the CIF processptr’) in the EBP register, that holds the workspace-
pointer ofoccam-Tt processes. The current stack pointer is saved inside thev@ikspace,
along with the address at which the C process should resuheesdcond of these macros
restores theccam run-time state, consisting of its stack-pointer (whichis &ctual C stack-
pointer of the run-time system), and the current run-quexeters (that are held in the ESI
and EDI registers). Strictly speaking, the copyingaffccsp_wptr’ to the EBP register is
part of restoring th@ccam run-time state, but since these macros typically alwaysvol
each other, restoring EBP early results in more efficienecod

The actual return address of the CIF process, as seen by nknre system, is the
address of theglobal-resume-point’. This is a linked-in assembler routine that performs,
effectively, the inverse of these two macros, before jumgpinthe stored resume point.

1.3. Providing the API

The application interface and user-visible types are ¢oathin the header filecifccsp.h”.
Files containing CIF functions need only include this toesscthe API. The various func-
tions that make up the API are either preprocessor macro®xipand to blocks of in-line

2This is not so much the fault of GCC, but rather certain distions that included development (and poten-
tially unstable) versions of GCC.

254 F.RM.Barnes/ Interfacing C and occam-pi

assembler (as shown above), or for some more complex opesa(ie.g. ProcPar ()’ and
‘ProcAlt()’), actual C functions provided by the CIF library.

The API includes the majority of functions available in thegoal Inmos C API and
the CCSP API. Additional functions are provided specificdtir new occam-1t mecha-
nisms, again a mixture of assembler macros and C functiomssé include, for example,
‘ProcFork ()’ to fork a parallel process (following theccam-1t ‘FORK’ mechanism) and
‘DMemAlloc ()’ to dynamically allocate memory.

A complete description of the supported API, and some basmeles, can be found
on the CIF web-page [12].

In addition to the standard and extended API functions, &alditional macros are pro-
vided to make external C calls. The first two of these are usedlake blocking C calls, i.e.
that run in a separaté@iread with the expectation that they will block in an OS systemi-cal
The second pair of macros are used to make ordinary exteroall§; but only for certain
functions. For each macro pair, there is one that is useditfucations with no arguments,
and a second to call functions with an arbitrary number ofisrgnts. For example:

void do_write (int fd, const void *buf, size_t count, int *result)

{

*result = write (fd, buf, count);

}

void my_process (Process *me, Channel *in, Channel *out)
{
for (5;) {
void *mobile_array[2];
int fd, result;

/* input INT descriptor followed by a MOBILE []BYTE
* array of data.

*/

ChanInInt (in, &fd);

ChanMIn64 (in, mobile_array) ;

BLOCKING_CALLN (do_write, fd, mobile_array[0],
(size_t) (mobile_array[1]), &result);

DMemFree (mobile_arrayl[0]);
ChanOutInt (out, result);

}

This process inputs an integer file-descriptor, followedlynamic mobile array from
the ‘in’ channel, then writes that data to the given file-descriftigically a network socket).
After the call the dynamic mobile array is freed, followeddnmmunication of the underly-
ing ‘write’ result on the 6ut’ channel.

The correspondingccam-ttinterface for my_process’ would be:

PROTOCOL FD.DATA IS INT; MOBILE []BYTE:
PROC my.process (CHAN FD.DATA in?, CHAN INT out!)

It should be noted that ordinary CIF routines may not be ussidlé an external C call.
For blocking calls (e.g.do_write ()’ in the above), code executes with a thread stack, not
in the CIF process’s stack. For ordinary (non-blockingeexal C calls, code may or may
not execute in a thread stack. For example, BI®CKING_CALLN’ in the above could be
replaced with:

F.RM.Barnes/ Interfacing C and occam-pi 255

EXTERNAL_CALLN (do_write, fd, mobile_array[0],
(size_t) (mobile_array[1]), &result);

The decision of whether to ruré_write’ in the CIF process’s stack, or tleecam-1t
run-time’s stack, depends on whether POSIX threads [13reibled. Where POSIX threads
arenot enabled (and the run-time system uses Linux’s natiterie’ thread mechanism), the
above call will be reduced to just:

do_write (fd, mobile_array[0], (size_t) (mobile_array[1]), &result);

When POSIX threads are enabled, the call is redirected tikadrin assembler routine,
that performs the call on theccam-tt run-time’s stack. This stack-switch is actually only
required when the POSIX threads implementation storeadhspecific information in the
stack, rather than in proessor registers. In this caseéteésant since theirite ()’ call sets
the global errno’ value; however, the standard C library, in the presence@$ KX threads,
re-directs this to a thread-specifexrno’ (so that concurrent system-calls in different threads
do not race onerrno’). In cases where the POSIX threads implementation is bugtore
the thread-identifier in processor registers, locatingttiniead-specificcrrno’ is no problem
— and can be done safely when code is executing in a C stackev&nif POSIX threads
are configured to use the stack to store thread-specificrdatdang the call from a CIF stack
results in a crash (as the ‘pthreads’ code walks off the tofh@fCIF stack whilst looking
for thread-specific data). Linux distributions vary in thieandling of this, but it is arguably
better to use spare processor registers for holding thadhdentifier (avoiding the chance
of false-positives in a stack search).

2. Applications

CIF has a potentially huge range of application. Generaiaking, it allows the programmer
to interface C withoccam-1t in a naturally compatible way, i.e. channel communication
and other CSP-style concurrency mechanisms [14]. Dedpitesafety and practicality of
occam-Tt, there are some things which are still more desirable toraragn C — particularly
low-level interface code that typically deals wiphinters, which occam-1tdoes not support
natively. Explicit pointer types (such as those found in >e the potential for aliasing and
race-hazard errors, requiring care on the programmerts par

One of the original motivations for CIF was in order to eas@lementation of the
‘ENCODE. CHANNEL’ and ‘DECODE . CHANNEL’ compiler built-ins [15]. These transforoccam
channel communications intmldress,size pairs, using extended inputs to block the process
outputting whilst the resulting address and size are handlbese “protocol converters”
are necessary for implementing the 8®&net infrastructure [8§]— as well as other sim-
ilar infrastructures — transforming application-levelhmmunications into something suit-
able for network communication. The standard implemeomatif ‘ENCODE . CHANNEL’ and
‘DECODE . CHANNEL' is by means of tree re-writing inside the compiler, necesbacause dif-
ferent channel protocols require different handling, fdriel run-time information is gen-
erally not available. Although the mechanism is fully suéfitt for its intended uses, mak-
ing it compatible with newoccam-tttypes, e.g. aMOBILE BARRIER' [16], is hon-trivial and
time-consuming.

A generic implementation ofENCODE . CHANNEL' and ‘DECODE. CHANNEL' in C is rela-
tively simple, provided that information about the struetof the channel-protocol is avail-
able. Recent versions of the KR system have the option of including this information in
generated code. In practice, this is only supported for taaihiannel-types, since they pro-

3KRoC.net will be known as “pny” when released, to avoid confusion withreet targeting KRC.

256 F.RM.Barnes/ Interfacing C and occam-pi

vide a convenient place to store a pointer to the generafegidgscription block. Figure 3
shows an example of how a generic protocol decoder coulddxtwigh anoccam-Ttappli-
cation.

application »| | cif_decode_channel »=(| network_iface ||-----» (tcp)

Figure 3. Generic protocol decoding in C

Unlike the compiler built-in versions of these protocol eerters, the C implementations
are substantially simpler. In the case of figure 3, the two @ines could be combined to
a certain degree, providing a single CIF process that detbs nvetworking ofoccam-tt
channels directly — such a mechanism would be non-transparelike KRoC.net where
transparency is key.

The following section presents a library that uses CIF pgses to provide networked
mobile channels. Eacbhannel-bundle networked results in multiple encode/decode pro-
cesses and the necessary infrastructure to support them.

2.1. Networking Mobile Channels

A simple mobile channel-type networking mechanismdocam-ttis currently being de-
veloped. In particular it aims to facilitate the multipleenit/single-server arrangement of
communication, of an arbitrary mobile channel-type. Fareple:

PROTOCOL REQUEST IS MOBILE []BYTE:
PROTOCOL RESPONSE IS MOBILE []BYTE:

CHAN TYPE APP.LINK
MOBILE RECORD
CHAN REQUEST req?:
CHAN RESPONSE resp!:

Figure 4 gives an idea of what such a networked applicatigimthook like. New clients
can connect to a server, and “plug-in” a client-end of therddshannel-type, provided they
know where it is — i.e. host-name and TCP port. Unlike theoKRhet infrastructure, this
“application link layer” is unable to cope with the commuation of mobile channel ends,
that could alter the TCP ‘wiring’, and is beyond its scopeny aase.

The implementation under development allows the user toifypdifferent behaviours
for the networked “virtual mobile-channel”. In this exarapbnd in order to operate as we
intend, the infrastructure needs to know how communicatiom ‘req?’ correspond with
those ontesp!’ — if at all. To a certain extent, this is related to how the r&tubclient-end
‘CLAIM gets handled. For the network shown in figure 4, applicatiodes will compete
internally for access to the server, or will delegate thapomsibility to the server. Which
behaviour is chosen can affect performance significantly.

For instance, if each communication oreq?’ is followed by a communication on
‘resp!’, the client-end semaphore claim can remain local to appbo nodes — the server
knows that whichever client communicated areq?’ will be expecting a response on
‘resp!’, or rather, to which client the communication aresp!’ should be sent. However, if
the application behaviour is such that communicationgesp!’ can happen independently
of those onteq?’, the server needs to be aware of client-end claims, sotkabiws which
client to send data output onesp!’ to.

F.RM.Barnes/ Interfacing C and occam-pi 257

application ﬁ application
- nodel | ;_ de2
L] - L] "
N |
y) o Y

Y

server

Figure 4. Networking any-to-one shared mobile-channels

The primary aims of this link-layer are simplicity and eféocy. To connect to a server
using the above protocol, a client will use code such as:

SHARED APP.LINK! app.cli:
APP.LINK? app.svr:
INT result:
SEQ

app.cli, app.svr := MOBILE APP.LINK

all.client.connect (app.svr, "korell:3238", result)

IF

result = 0
SKIP -— else STOP
code using "app.cli"

The callto all.client.connect’ dynamically spawns the necessary processes to han-
dle communication, connecting to the server and verifyirggdrotocol before returning. It is
the server that specifies how communication is handled xamgle:

SHARED APP.LINK! app.cli:
APP.LINK? app.svr:
INT result:
SEQ

app.cli, app.svr := MOBILE APP.LINK

all.server.listen (app.cli, "**:3238", "**(0 -> 1)", result)

IF

result = 0
SKIP -— else STOP
code using "app.svr"

The string %(0 -> 1)” is given as the usage-specification, stating that each aomm
nication on channel 0 feq?’) is followed by a communication on channel k¢§sp!’), re-
peated indefinitely. These usage-specifications are eéshgntgular-expression styleaces
(for that channel-type only), and like the direction-sfiecs are specified from the server
point-of-view. Table 1 gives an overview of the supporteddsfication language, in order of
precedence.

The usage specification, in addition to controlling the lvéa of client-side CLAIM's,
is used to build a state-machine. This state machine is uselieint and server nodes to keep
track of the currentrace position. In particular, the infrastructure will not allawcommuni-
cation to proceed if it not ‘expected’.

258 F.RM.Barnes/ Interfacing C and occam-pi

Table 1. Supported usage-specification expression syntax

Syntax Description

x) sub-expression, whefeis an expression most binding
*X X repeated zero or more times, whéris an expression
+X X repeated one or more times, whéris an expression

X | Y XorY,wherex andy are expressions
n -> X nfollowed byX, wheren is a channel index anxlis an expression
n communication om, wheren is a channel index least binding

The infrastructure comprising this “application link la¥/es dynamically created behind
the relevant client and server calls. Figure 5 shows thastifucture created at the server-end,
for the above APP.LINK' channel type.

’ encode_channel ‘

server.process <, % shutdown_delta
. resp!

‘ m ’ decode_channel ‘ T

’ all_server_linkif ‘

vy

(op—channels) A
Y

all_sock_if | [<t-em » (TCP/IP)

Figure5. Server-side channel-type networking infrastructure

The three ‘op-channels’ emerging from the channel-bundlespecially inserted by the
compiler, that generates communications on entry and mxit & ‘CLAIM block, and when
the channel-end is freed by the application (i.e. when ideascope). Programming this
infrastructure in C makes easier the handling of dynamjaakated ‘encode’ and ‘decode’
processes. Internallyall _server_linkif’ ALTS across its input channels and processes
them accordingly. Theall_sock_if’ process is responsible for network communication
and operates by waiting in aélect ()’ system-call, that allows it to be interrupted without
side-effects, before reading or writing data.

The low-level protocol used by the current implementatioas not respectoccam-1t
channel semantics. Instead, the individual channelspmated behave as buffered channels,
where the size of the buffer is determined by the network gredtaiing-system. This will be
addressed in the future, once confidence in the basic merhdras been established — i.e.
successfully using CIF to transpartcam-1t channel-communications over an IP network.
The current implementation is reliable, however.

A future implementation will likely use UDP [17] instead oCP [18], giving the link-
layer explicit control over acknowledgements, timeoutd packet re-transmission. Having
available a description of channel usage enables someisptions to be made in the under-
lying protocol, that are currently being investigated.

3. Conclusions and Future Work

The C interface mechanism presented in this paper has a ange of uses, from providing
low-level C functionality tooccam-1t applications through to supporting entire CSP-style

F.RM.Barnes/ Interfacing C and occam-pi 259

applications written in C. Although CIF processes incuriaddal overheads (saving and
restoring the C andccam states), these are not significantly damaging to perforsanc

The ‘commstime’ benchmark is traditionally used to measure communicatierheads
in occam-Tg, it has been rewritten using CIF in order to get a practicahsneement of
the CIF overheads. On a 3.2 GHz Pentium-4, each loop footlkam-1t commstime takes
approximately 89 nanoseconds, 396 nanoseconds for CIB.chnresponds to a complete
save/restore overhead of 26 nanoseconds, which will be @ptable overhead for the ma-
jority of applications.

The current CIF implementation is not intended to be exgefsefficient (i.e. in-lining
of certain run-time kernel calls, as ‘tranx86’ optionallyas). These will gradually appear in
future releases of K&C, as the C interface matures.

The one major drawback of the CIF interface is the inabilifyttee C compiler to
guarantee correct usage. This particularly applies to #meling of dynamic mobile types,
whose internal reference-counts must be correctly maaied! Incorrect handling can lead
to memory-leaks, deadlocks and/or undefined behavioun&h®espite this, it is hoped
that users will find this C interface useful, for both its uséhwveccam-mtand as a software-
engineering tool to apply CSP concurrency in C applicatieng. migrating threaded C ap-
plications to a more compositional, and predictable/pote/gdramework).

References

[1] P.H. Welch and F.R.M. Barnes. Communicating mobile psses: introducing occam-pi. In A.E. Abdal-
lah, C.B. Jones, and J.W. Sanders, edit@bsyears of CSP, volume 3525 ol ecture Notes in Computer
Science, pages 175-210. Springer Verlag, April 2005.

[2] Inmos Limited.occam?2 Reference Manual. Prentice Hall, 1988. ISBN: 0-13-629312-3.

[3] P.H. Welch, J. Moores, F.R.M. Barnes, and D.C. Wood. TiRo& Home Page, 2000. Available at:
http://www.cs.kent.ac.uk/projects/ofa/kroc/.

[4] M.D. May, P.W. Thompson, and P.H. WeldRetworks, Routersand Transputers, volume 32 ofTransputer
and occam Engineering Series. 10S Press, 1993.

[5] F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. 8 a Raw Metaloccam Experiment. In J.F. Broenink
and G.H. Hilderink, editorsCommunicating Process Architectures 2003, WoTUG-26, Concurrent Sys-
tems Engineering, ISSN 1383-7575, pages 269-288, Amsiertiae Netherlands, September 2003. I0S
Press. ISBN: 1-58603-381-6.

[6] David C. Wood. KRC — Calling C Functions froneccam. Technical report, Computing Laboratory,
University of Kent at Canterbury, August 1998.

[7] F.R.M. Barnes. Blocking System Calls in KR/Linux. In P.H. Welch and A.W.P. Bakkers, editors,
Communicating Process Architectures, volume 58 ofConcurrent Systems Engineering, pages 155-178,
Amsterdam, the Netherlands, September 2000. WoTUG, IOSPISBN: 1-58603-077-9.

[8] M. Schweigler, F.R.M. Barnes, and P.H. Welch. Flexitleansparent and Dynamaccam Network-
ing with KRoC.net. In J.F. Broenink and G.H. Hilderink, edito€ymmunicating Process Architectures
2003, WoTUG-26, Concurrent Systems Engineering, ISSN 1383-7548e® 199-224, Amsterdam, The
Netherlands, September 2003. I0S Press. ISBN: 1-58603381

[9] J. Moores. CCSP — a Portable CSP-based Run-time Systppo8ing C andbccam. In B.M. Cook,
editor, Architectures, Languages and Techniques for Concurrent Systems, volume 57 ofConcurrent Sys-
tems Engineering series, pages 147-168, Amsterdam, The Netherlands, April 1999.W& 10S Press.
ISBN: 90-5199-480-X.

[10] Free Software Foundation inc. Using the GNU Compileli€tion (GCC), version 3.3.5, 2003. Available
at:http://gcc.gnu.org/onlinedocs/gecc-3.3.5/gcc/.

[11] F.R.M. Barnes.tranx86 — an Optimising ETC to IA32 Translator. In Alan Chalmers, Maylirmehdi,
and Henk Muller, editorsCommunicating Process Architectures 2001, volume 59 ofConcurrent Systems
Engineering, pages 265-282, Amsterdam, The Netherlands, Septemb&r@@d UG, 10S Press. ISBN:
1-58603-202-X.

[12] F.R.M. Barnes. The occam-pi C interface, May 2005. Rlade at:http://wuw.cs.kent.ac.uk/
projects/ofa/kroc/cif .html.

260 F.RM.Barnes/ Interfacing C and occam-pi

[13] International Standards Organization, IEEE. Infotiora Technology — Portable Operating System In-
terface (POSIX) — Part 1: System Application Program latesf(API) [C Language], 1996. ISO/IEC
9945-1:1996 (E) IEEE Std. 1003.1-1996 (Incorporating AINSEE Stds. 1003.1-1990, 1003.1b-1993,
1003.1c-1995, and 1003.1i-1995).

[14] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-13-153271-
5.

[15] Frederick R.M. Barnes.Dynamics and Pragmatics for High Performance Concurrency. PhD thesis,
University of Kent, June 2003.

[16] P.H. Welch and F.R.M. Barnes. Mobile Barriers for ocepmmSemntics, Implementation and Applica-
tion. In J. Broenink, H. Roebbers, J. Sunter, P. Welch, an&lVbod, editorsCommunicating Process
Architectures 2005. 10S Press, September 2005.

[17] J. B. Postel. User datagram protocol. RFC 768, IntefEmgtineering Task Force, August 1980.

[18] J. B. Postel. Transmission control protocol. RFC 788 1net Engineering Task Force, September 1981.

