
Pretty Printing with Partial Continuations

Olaf Chitil

University of Kent, UK

Extended Abstract

A pretty printer converts tree structured data, for example the syntax tree of
a program or an XML document, into nicely formatted text with a given line
width limit. A pretty printing library provides the functionality common to a
large class of pretty printers, thus enabling a programmer to easily implement
a specific pretty printer. A pretty printing library enables the programmer to
compositionally describe alternative layouts for components of the data to be
printed. The pretty printing algorithm then chooses an optimal layout from this
set of layouts. There is a trade-off between the available choice of alternative
layouts, the optimality criterion and the efficiency of the pretty printing algo-
rithm.

In 1980 Oppen [4] published an imperative pretty printer that allows the
description of nice layouts, adequate for many purposes, and that is very efficient.
The algorithm takes time linear in the size of the input, independent of the line-
width limit. Furthermore, the algorithm is bounded, that is, it produces parts
of the output already after having processed only limited parts of its input.
Oppen’s work inspired numerous pretty printing libraries, in particular several
Haskell libraries [3, 5, 7, 1, 2, 6], because lazy evaluation seems to be a natural
basis for implementing boundedness.

In [1, 2] I presented the first purely functional algorithm that has all the
nice efficiency properties of Oppen’s algorithm. This algorithm uses an intricate
lazy coupling of two double-ended queues. Thus it demonstrates the power of
laziness but is rather complex and requires a specially modified implementation
of double-ended queues.

Subsequently Doaitse Swierstra [6] showed that the two special double-ended
queues can be replaced by one double-ended queue and a lazy list, thus giving a
simpler solution that also reuses a standard double-ended queue implementation.

Now I present a new purely functional algorithm that is both linear-time
and bounded and is faster than any previous functional implementation. It is
relatively simple and explicitly expresses all issues in pretty printing, many of
which are hidden in previous implementations based on implicit lazy evaluation.
Correctness and linear runtime of the new algorithm do not rely on lazy evalua-
tion. However, lazy evaluation ensures that input and output are only evaluated
as demanded and thus the algorithm only requires a small bounded amount of
space.

In the new algorithm partial continuations express explicitly the necessary
switching between producing output and processing the input. While traversing



the document that is to be formatted we update a standard double-ended queue
of partial continuations. Each partial continuation can output a part of the
document. The double ended queue serves as a buffer for those parts of the
document that have been traversed but for which the correct formatting cannot
yet be decided. We need a double ended queue to both process new input and to
check continously if we can already produce more output. Finally, specialisation
reduces the number of costly operations on the double-ended queue and thus
improves performance.

Acknowledgements

Thanks to Bernd Braßel and Michael Hanus for discussions about how logical
variables could simplify the implementation of pretty printing. The need for
deferring output until logical variables are bound gave me the idea of using
continuations.

References

1. Olaf Chitil. Pretty printing with lazy dequeues. In Preliminary Proceedings of the
2001 ACM SIGPLAN Haskell Workshop, pages 183–201. Universiteit Utrecht, 2001.
UU-CS-2001-23.

2. Olaf Chitil. Pretty printing with lazy dequeues. Transactions on Programming
Languages and Systems (TOPLAS), 27(1):163–184, January 2005.

3. John Hughes. The design of a pretty-printing library. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, LNCS 925. Springer Verlag, 1995.

4. Dereck C Oppen. Prettyprinting. ACM Transactions on Programming Languages
and Systems, 2(4):465–483, 1980.

5. Simon L Peyton Jones. A pretty printer library in Haskell. Part of the GHC
distribution at http://www.haskell.org/ghc, 1997.

6. S. Doaitse Swierstra. Linear, online, functional pretty printing (corrected and ex-
tended version). Technical Report UU-CS-2004-025a, Utrecht University, 2004.

7. Philip Wadler. A prettier printer. In The Fun of Programming, chapter 11, pages
223–244. Palgrave Macmillan, 2003.


