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Abstract. We argue that garbage collection should be more closely tiedto ob-
ject demographics. We show that this behaviour is sufficiently distinctive to make
exploitation feasible and describe a novel GC framework that exploits object life-
time analysis yet tolerates imprecision. We argue for future collectors based on
combinations of approximate analyses and dynamic sampling.

1 Introduction

Currently, much GC effort is, in a sense, wasted on preventing the premature reclama-
tion of live objects. it has long been known that programs’ ‘object demographics’ are
not random, but objects are allocated, interact and die in particular patterns. We argue
that understanding and exploiting this regularity offers the key to reducing tracing cost
by concentrating GC effort on those regions of the heap in which few objects are live.
Neither generational nor concurrent GC provides a good solution to the huge heaps ex-
pected in the near future. Generational collection addresses only ‘youthful’ objects: it
handles very new, ‘middle-aged’ and ‘immortal’ objects poorly. Concurrent collectors
cannot reclaim any space until their trace of live objects iscomplete.

Lifetime Aware GC, LA, is a new paradigm for allocation and collection. Its goal
is to use object death-time predictions to lay out objects inthe heap in death-order and,
at each collection, to scavenge only those objects expectedto have died. LA is thus
distinct from both generational [21] and older-first collectors [20].

Two requirements must be met in order to construct an LA collector. First, it must be
possible to identify good object death-time predictors. Ideally, such predictions would
be perfect but we argue that such accuracy is neither possible nor necessary. Second, we
require a GC architecture that can exploit these predictions and tolerate prediction errors
in an efficient manner. Below we describe how we acquire good predictors, describe in
detail the LACE architecture and outline future directionsof this project.

Suppose the object allocator has very good (but not necessarily perfect) advice on
the expected lifetime of an object that it is about to allocate. How could it take advantage
of such advice? Let us consider a horticultural analogy.

Some farmers grow a variety of crops. Each crop has a different expected ripening
time (i.e. from planting to harvesting) but this may vary between plants according to
environment, genetics, etc.

Full-Collection farmers walk up and down a single greenhouse, harvesting any ripe
plants, and planting new ones. Some FC farmers may move immature specimens in
order to get a contiguous bed for new planting. All FC farmers do a lot of walking.



The Generational farmer has 2 greenhouses. She plants seeds of every variety in
a single nursery greenhouse. When that is full, she harvests any ripe plants but also
has to replant any longer ripening varieties in her mature greenhouse. Occasionally, she
harvests the mature greenhouse as well, in the same way as the FC farmer. She does a
lot of replanting (and walking in the mature greenhouse).

The smart Lifetime-Aware (LA) farmer builds several greenhouses. All the crops in a
single greenhouse are expected to have the same ripening time. Each greenhouse has
a number of beds. The farmer places a label in each bed indicating when he expects to
harvest that bed (i.e. the ripening time plus some slack). He only plants seeds in a bed if
the label allows time for them to ripen; otherwise he prepares a new bed. The LA farmer
only ever harvests beds with expired labels. He never has to replant a crop of a variety
expected not to be ripe, although very occasionally he might have to replant an unripe
plant to another greenhouse with a different ripening time. He does not walk much.

Such a scenario can be modelled by modifying the Beltway GC framework [2],
a generalisation of region-based, copying GC (we describe Beltway in more detail in
Section 5). Greenhouses are implemented by Beltwaybelts, beds byincrementsand
expected ripening times by the expected lifetimes of objects. Belts therefore model
expected lifetimes rather than generations. Thus,belt is both an allocation abstraction
and a characterisation of a collection policy (e.g. when to collect) rather than just a
mechanism for delaying collection (c.f. generation). Now,instead of collecting the first
increment from thelowestbelt (as per Beltway), we collect expired increments in expiry
date order fromall belts.

2 Related work

The requirements made of the GC by applications running in different environments
vary in the priorities they assign to different performancemetrics but, even within a sin-
gle domain of interest, the memory behaviour of applications may differ substantially.
No ‘one size fits all’ solution is possible even within a single environment [7, 16]. The
simplest forms of regional organisation distinguish objects by their age or by their mor-
tality. Large objects are commonly allocated into a separate area. Objects known to the
JVM implementer to be immortal may be kept in an immortal area[1].

Generational GC segregates objects by age, with different generations collected at
different frequencies (younger more frequently). The principle underlying generational
collection is to concentrate effort on reclaiming those objects most likely to be garbage.
Variations on generational collection include older-firstcollection [20, 19, 8] and the
Beltway framework [2].

Most approaches to tailoring the GC to the behaviour of the mutator are based on
generic heuristics, i.e. the same heuristic is applied to all objects, regardless of their
class or the point in the program at which they were allocated. For example, gener-
ational GCs seek to exploit the weak generational hypothesis thatmost objects die
young by first allocatingall objects in a nursery. Adaptive tenuring techniques and
hot-swapping collectors also address only ‘average’ object behaviour. We believe that
programs exhibit distinctive behaviour at a much finer grain, related to the design of
the program, and given good object lifetime predictions andan implementation that can



exploit them, significant performance gains can accrue by avoiding processing live ob-
jects before their expected time of death (improving both throughput and pause times)
and reclaiming objects promptly after their death [15].

Four studies have taken a step in this direction. Cheng et al.[5] (CHL) gathered pro-
files from a generational collector for ML. By tagging objects with the programsitethat
allocated them, they identify those sites that allocate objects promoted consistently by
their collector. This advice is then used to allocate objects from those sites directly into
the old generation. Because their pre-tenuring threshold is a function of their particular
collector configuration, the wider applicability of this study is reduced. Blackburn et
al. [3] remove this dependency from pretenuring advice by normalising object lifetime
as a multiple of the maximum volume of live objects at any time. Harris [9] gathers
feedback dynamically to pretenures objects. None of these techniques exploited any
finer age distinction than ‘short’, ’long lived’ or ’immortal’ Hirzel et al. [11] find a
correlation between object connectivity and object lifetime. They propose to use con-
nectivity to convert the object graph into a tree of stronglyconnected components, thus
removing the need for write barriers.

3 Experimental methodology

An ideal lifetime predictor would indicate, for each object allocated, precisely when it
would die (thereby allowing its space to be reclaimed shortly thereafter). Unfortunately,
ideal prediction is possible only in special cases. However, even agoodpredictor offers
the promise of reductions in processing costs (e.g. unnecessary copying) and floating
garbage by avoiding processing an object until soon after its death. Even if the predic-
tion is ‘wrong’, either in the sense that the object turns outto be still alive or had died
long before, the correctness of the collector is not compromised; it will simply either
‘waste’ effort. But this is what a generational collector would do inall cases.

We considered the role of allocation sites in phase behaviour (which sites allocate
in which phases of the program?) and how well sites predictedobject lifetimes. In con-
trast with previous work, we examine allocation patterns ata finer level of detail than
‘short-lived/long-lived/immortal’ and we find that the behaviour of very many sites—
according to the program phases in which they participate oraccording to the lifetime
distributions of the objects that they allocate—is strongly correlated. We further refine
our predictors by consideringscope(all objects are allocated on behalf of either the JIT
compiler or the application—the run-time system merely serves these), andpackage
(was the allocating method from Jikes RVM, a standard Java library or an application
class). Such context is cheap to determine, and its exploitation requires neither special-
isation of methods nor examination of threads’ stacks. Our key results are

– Most sites allocate objects with lifetimes in only a small number of narrow ranges.
– Sites cluster strongly with respect to both the lifetime distributions of the objects

they allocate, and the phases in which the site’s objects live: 8 clusters account for
almost all allocation.

– Clusterings are stable and largely unaffected by differentprogram inputs.
The platform used was Jikes RVM version 2.3.1 with GNU Classpath 0.06, and

benchmarks drawn from SPEC’sjbb2000 [18] andjvm98 suites [17], and the new Da-



Capo suite, versionβ041020 [12]. We experimented with several different sizes of in-
put: 1, 10 and 100 forjvm98, small, default and large inputs for DaCapo and different
numbers ofjbb2000 ‘warehouses’ and threads.

To generate traces of allocation and death events, we modified Jikes RVM’s com-
pilers so that, as each allocating bytecode is compiled, a unique identifieraid is created,
a map entry(site, aid)generated and additional instructions are emitted to writethis
aid into the object’s header, We used a dynamic scoping mechanism to encode further
context into an object’said field when it is allocated without having to crawl the call
stack. We thus distinguish allocation due to the compiler (either directly or indirectly),
by Jikes RVM classes (com.ibm.JikesRVM.* or org.mmtk.* packages), Java libraries
(java.* or gnu.java.*) and application classes. Objects allocated by the Jikes RVM
in the boot-image are immortal and were not tracked.

The compiler-modification approach gave good performance and, importantly, al-
lows the same framework to be used both to tag allocations in trace-gathering runs and
to provide allocators with advice in performance runs. In order to capture death times,
we force full heap GCs at 64KB intervals. Although this losesprecision, little would
be gained from collecting at finer intervals (although this granularity does exaggerate
the space rental of short-lived objects). Performance was acceptable for trace gather-
ing, extending the elapsed time forjavac, for example, from approximately 10s to 3.5h
(instead of a week with the Merlin trace gathering tool [10]).

4 Object lifetimes

A large object that lives for a long time incurs a greater GC cost than a small, short-
lived one. This cost depends on the object’s size (it occupies space in the heap, each
reference field must be scanned, and the object may be copied)and the number of times
the memory manager processes it.Space rental[3], the product of an object’s size
and its lifetime, provides an estimate of this cost to a simple, non-generational, tracing
collector. We focus attention on (groups of) sites with highspace rental.

We wanted to examine to what extent site predicts object lifetime. We characterise
a site by itslifetime density function: the probability density function of the lifetimes
of its objects allocated. From a program trace, we obtain a lifetime density function,
ldfs(t) = vs(t) for a sites wherevs(t) = fraction of volume (bytes) of objects allocated
by s with lifetimes in the range(t,(t +δt)]. Time is measured in bytes allocated.

Our results show that most sites allocate objects with a narrow range of lifetimes.
Even better, other than for very short-lived data, many longer lived objects allocated by
a site tend to die at the same point in the program (often this behaviour is repeated in
phases). Such sites are good candidates for special treatment.

Programs typically have many hundreds or a few thousand sites. From an im-
plementation viewpoint, a 1:1 mapping between site and allocator is undesirable: the
heap would become badly fragmented if each allocator were toallocate into a differ-
ent region, and cache performance might become an issue. We used the Kolmogorov-
Smirnov Two-sample test [4] to cluster similar distributions. The advantages of this
test are that it is computationally cheap, non-parametric and distribution-free: it does



All sites All packages Jikes Application Java library
default compilerdefault default default

Benchmark 1 4 8 1 4 8 1 4 1 4 1 4 8 1 4 8

compress 0.7 83.6 91.9 0.7 84.2 91.85.4 99.8 9.2 99.1 0 92 100 28 73.7 74.8
jess 0.4 99.1 99.9 0.4 99.2 99.90.2 96.9 9.7 99.9 0 99.8 100 13 84.7 87.4
raytrace 0.6 97.9 99.3 0.6 98.1 99.3 3 99.6 8.4 91.5 0 99.5 10010.3 88 93.7
db 1 14.9 42.2 1 14.1 41.54.9 99.9 9.5 96.4 0 99.9 100 1 10.4 98.7
javac 0.7 88 89.4 0.7 88.1 89.51.3 100 3.7 99.7 0.1 30.6 99.8 0.8 98.4 98.8
mpegaudio13.7 68.5 77.619.2 88 98.21.8 74.111.5 97.995.4 98.7 98.827.1 74.3 93.1
mtrt 0.6 97.5 99.2 0.6 97.8 99.33.6 100 7.3 86.3 0 99.2 100 6.5 92.3 96
jack 0.4 97.3 98.6 0.4 97.5 992.1 100 1 26.1 0.1 98.7 99.9 0.3 98.8 99.6

jbb2000 0.4 47.5 95.5 0.4 92.9 95.40.2 100 2.7 73.7 0 44.2 100 0.7 90.4 91.6

antlr 0.3 0.8 91.6 0.3 88.7 91.60.1 100 5.8 99.5 0 99.2 100 0.2 90.3 99.9
bloat 0.1 99.1 100 0.1 99.7 1000.1 100 5.5 99.6 0 100 100 0.1 100 100
fop 5 58.1 60.9 5.4 56.6 85.40.2 95.5 9.5 98.2 21 52.3 99.7 1.8 7.3 80.9
hsqldb 0.2 6.5 91.3 0.2 6.5 99.90.2 100 2.9 100 0 99.8 100 0.1 100 100
jython 0.1 99.8 99.9 0.1 99.8 99.90.4 10013.5 100 0 100 100 0.3 99.7 99.9
pmd 0.2 29.2 30.8 0.2 30.1 30.90.4 99.9 6.8 99.6 0 38.7 100 0.1 100 100
ps 0.4 1 100 0.4 1 1000.4 100 0 100 7.4 100 100 0.8 99.9 100

Table 1: The volume of allocation (as percentages) due to the top 1, 4 or 8 lifetime clusters for
large program inputs (speed 100 forjvm98, 8 warehouses and 2 threads forjbb2000, and ‘large’
for DaCapo).

not matter what the underlying distribution is — this is important as lifetimes are not
normally distributed.

Table 1 shows the volume of allocation due to the top few clusters of sites. The
number of statistically distinct lifetime density functions is only a small fraction of
the number of allocation sites. The top 8 clusters account for over 90% of allocation
in all but 5 benchmarks. These clusters also account for an average of 97.7% of space
rental. Furthermore, when compiler, Jikes RVM and application allocation are clustered
separately, only 4 clusters account for over 99% of both all compiler and all Jikes RVM
space rental. We conclude that sites cluster sufficiently tightly to exploit with just a
small number of allocators.

To exploit these behaviour patterns without having to gather trace data for every
program input size, we want to be able to use data gathered fora particular program
from one input for a different input. Although we cannot hopefor expected lifetimes
of clusters to remain constant as input grows, we do find that allocation sites share the
same clusters from one input to another.

Table 2 compares stability of the top 8 clusters of thejvm98 and DaCapo bench-
marks across three different input sizes. If, for every cluster i of input A, every site
of clusteri appears in a single clusterj of input B, then the clusterings are equivalent
and ARI=1 (e.g. across alljbb2000 configurations). With the exception ofmpegaudio,
all ARIs are sufficiently close to 1 to conclude that the clusterings change little across
inputs.

This suggests that a feasible implementation strategy for LA collection might be to
acquire clustering data from a single training run. These clusters would indicate which



SPEC jvm98 100:10 10:1DaCapo large:default default:small
compress 1.000 0.998antlr 1.000 0.892
db 0.998 1.000bloat 0.946 0.859
jack 0.991 0.973fop 1.000 0.987
javac 0.975 0.997hsqldb 1.000 0.983
jess 0.991 0.996jython 0.819 0.953
mpegaudio 0.642 0.638pmd 0.957 0.984
mtrt 0.989 0.989ps 0.949 0.976
raytrace 0.980 0.993

Table 2: Adjusted Rand Index of top 8 clusters for three different input sizes (speeds 1, 10 and
100 for jvm98, and small, default and large for DaCapo).

sites had similar behaviours, and therefore should be allocated under the same policy. A
lightweight run-time sampling (from afew clustersrather thanmany sites) could then
be used to measure lifetimes, or to report when most objects allocated on a belt are
dead; this also has the benefit of being able to respond to phase changes.

5 The LACE framework

The LACE collector is built on top of Beltway, but with different rules for collection
of increments and promotion of objects that survive a collection. Beltway groups ob-
jects into one or more regions (increments), held on queues (belts), that are collected
independently. Increments, the unit of collection, are collected in first-in-first-out order:
the increment at the front of the lowest numbered belt is always collected first, and any
survivors are copied to the last increment on that or a highernumbered belt. Beltway
can thus be configured as any copying semispace, generational or older-first collector
as well as a number of novel collectors [2]). A key insight behind Beltway is the separa-
tion of age (by varying the number of increments allowed on a belt) from incrementality
(increments provide the unit of collection).

Beltway has been modified in a number of ways to support LA. ForLA, we tune
GC to application behaviour by associating apolicy with one of more of each of the
top n (n=8) allocation site clusters (with other sites associated with a default policy).
Practically, each policy is mapped to a Beltway/LA belt. A policy includes the expected
time to die(TTD) of the objects allocated by that cluster(s). It may also includehowwe
expect cluster objects to die. For some clusters, objects allocated have varying lifetimes
but all objects die at the same point (e.g. at the end of a phase). For other clusters, all
objects share similar lifetimes but do not die together. We do not require predictions
to be accurate. It is therefore possible that the GC discovers a few live objects when
it collects an increment. A policy therefore also specifies how such survivors are to be
handled. There are a number of possibilities.

– It is common for survivors to be immortal: these may be copiedto an immortal belt.
– Other clusters exhibit a small number of distinct object lifetimes: here survivors

may be copied to a belt corresponding to the next expected lifetime of this cluster
– If we have no better information, objects may be copied to thedefault belt or to a

belt that is only collected as a last resort.



Using a mechanism similar to that used to tag objects for tracing (Section 3), we
modified the compiler to pass a belt number to the allocator. The allocator uses the
belt’s policy to allocate the object into an increment on that belt.

– For clusters (belts) that expect all objects allocated within a phase to die together,
we allocate a fresh increment stamped with atime of death, TOD= now+TTD for
that belt. All subsequent allocations for that cluster are made to the same increment
until now> TOD, after which an allocation causes this increment to beclosedand
a new increment to be appended to the belt.

– For clusters in which objects are predicted to share lifetimes but not to die together
(such as typical young generation objects), the increment is stamped with a TOD
sufficient to allow the increment to hold many objects. The increment is only closed
when an object is allocated at a time such thatnow+TTD> TOD.

In either case, the collector is invoked when we run out of space and all increments
with TOD≤ noware collected in increasing TOD order, with any survivors promoted
according to their belt’s policy.

LA uses more increments than Beltway but still requires collection to be complete,
that is all garbage including cyclic garbage to be collectedeventually. This means that
any cyclic garbage structure will eventually be promoted toa single increment. This has
two consequences: survivor policies must not contain cycles and this ‘final’ increment
must be sufficiently large to handle the worst case (half the size of the heap if the
increment is collected by copying). We therefore allow increments to grow (up to a
maximum size) in units of pages.

As in Beltway, we useframes, 2n-aligned contiguous regions to allow a fast write-
barrier that records inter-increment references. However, increments may comprise more
than one frame since a 1:1 mapping would exhaust a 32-bit address space. In the worst
case, this might lead to a slower slow-path in the write-barrier. However, we expect
good write-barrier performance for two reasons. First, there is ample evidence that
most pointer ‘lengths’ are short and hence such writes will be caught by the fast-path
(the source and target will be in the same frame). Second, because we expect our life-
time predictions to be reasonably accurate and because objects that die at similar times
will tend to be allocated to the same increment, we expect fewreferences from other
increments, and hence expect remsets to be small.

6 Conclusions

We argue that next generation GC should exploit mutator behaviour. Analysis of pro-
gram traces shows that program sites allocate objects with distinctive and largely con-
sistent behaviour, that sites cluster strongly with respect to the lifetime distributions of
the objects they allocate, and that these clusterings are robust against changes of input.
We described LACE, a garbage collector framework that can exploit program knowl-
edge to both avoid unnecessary copying and reduce floating garbage, but importantly
tolerates imprecise allocation advice.

We plan to investigate how on-line sampling can be combined with our static clus-
ter analysis. We also intend to investigate static analysistechniques, both to identify



clusters of similar sites and to identify points in the program where it islikely but not
guaranteedthat objects allocated by a site will be dead. We also believethat phase
boundary analysis, e.g. [14], might be profitably combined with our approach.
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