
Computer Science at Kent

Pretty Printing
with Delimited Continuations

Olaf Chitil

Technical Report No. 4-06
June 2006

Abstract Pretty printing is the task of nicely formatting tree structured data within
a given line width limit. In 1980 Oppen published a pretty printing algorithm that takes
time linear in the size of the input, independent of the line width, and uses only limited
look-ahead. This work inspired the development of a number of purely functional pretty
printing libraries in Haskell. Here I present a new functional pretty printing algorithm
that has all the nice properties of Oppen’s and is surprisingly simple. A double-ended
queue of delimited continuations is the key to addressing all aspects of the problem
explicitly.

Copyright c© 2006 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK



1 Introduction

A pretty printer converts tree structured data, for example the syntax tree of a program
or an XML document, into nicely formatted text with a given line width limit. A pretty
printing library provides the functionality common to a large class of pretty printers,
thus enabling a programmer to easily implement a specific pretty printer. A pretty
printing library enables the programmer to compositionally describe alternative layouts
for components of the data to be printed. The pretty printing algorithm then chooses an
optimal layout from this set of layouts. There is a trade-off between the available choice
of alternative layouts, the optimality criterion and the efficiency of the pretty printing
algorithm.

Oppen [8] published an imperative pretty printer that allows the description of nice
layouts, adequate for many purposes, and that is very efficient. The algorithm takes
time linear in the size of the input, independent of the line-width limit. Furthermore,
the algorithm is bounded, that is, it produces parts of the output already after having
processed only limited parts of its input. Oppen’s work inspired numerous pretty printing
libraries, in particular several Haskell libraries [4, 9, 12, 1, 2, 11], because lazy evaluation
seems to be a natural basis for implementing boundedness.

Here I present a new purely functional algorithm that is both linear-time and bounded.
It is faster than any previous functional implementation; it is relatively simple and ex-
plicitly expresses all issues in pretty printing, many of which are hidden in previous
implementations based on implicit lazy evaluation. The new algorithm uses delimited
continuations to explicitly control the flow of the computation. I will start with a concise
formal specification and then develop the efficient implementation in several steps.

2 Specification

Interface. We will implement a library that provides the following interface:

type Width = Int

type Layout = String

text :: String -> Doc

line :: Doc

(<>) :: Doc -> Doc -> Doc

nest :: Int -> Doc -> Doc

group :: Doc -> Doc

pretty :: Width -> Doc -> Layout

The first five functions construct documents whereas the last one produces, for a given
line-width, a pretty layout from a document.

The function nest increases the indentation for all line breaks within its document
argument. Although indentation is necessary for obtaining pretty output, indentation
does not change the essential problem of selecting the optimal layout. Hence we omit

2



the function nest in the subsequent sections, but Section 7 will outline how nest can
easily be added to the final implementation.

Alternative layouts. A document may be formatted horizontally or vertically. The
former means that its layout is a single line, without any line breaks, whereas the latter
allows line breaks. A document has many different layouts and we represent it as follows:

type Horizontal = Bool

type Doc = Horizontal -> [Layout]

For convenience we use a list of Layouts, although it is actually a set. We represent
a document as a function from Horizontal to Layouts to describe both the (actually
singleton) set of layouts when the document is formatted horizontally and the set of lay-
outs when the document is formatted vertically.1 We can concisely specify the semantics
of all document constructors:

(text t) _ = [t]

line True = [" "]

line False = ["\n"]

(d1 <> d2) h = [l1 ++ l2 | l1 <- d1 h, l2 <- d2 h]

(group d) True = d True

(group d) False = d False ++ d True

The document line denotes a line break, if it is formatted vertically, and a single
space, if it is formatted horizontally. The concatenation (<>) of two documents yields
the cross product of the two sets. The function group marks a document as a unit
which may be formatted either horizontally or vertically. The two equations for group

express that within a horizontally formatted document any nested group has to be
formatted horizontally as well, but within a vertically formatted document a group can
be formatted horizontally or vertically. This is why a (vertically formatted) document
has many different layouts.

Prettiest layout. The function pretty selects the “best” layout from the set of lay-
outs described by a document, given a line-width limit. One might consider the “best”
layout to be the one with the least number of lines that has all lines within the line-width
limit. However, such an optimality criterion does not admit any bounded implementa-
tion; the end of a document can influence a layout decision at the very beginning (cf. [4]).

Hence we take the same optimality criterion that Hughes and Wadler use. We com-
pare two layouts lexically line by line, if both lines are within the line-width limit, then
the layout with the longer line is better, if one line is beyond the line-width limit, then
the layout with the shorter line is better:2

1An alternative representation as a tuple is more awkward to use.
2The standard function lines :: String -> [String] breaks a text into lines based on the occur-

rences of line break characters (\n).

3



pretty w d = minimumBy (compareLayout w) (d False)

compareLayout :: Width -> Layout -> Layout -> Ordering

compareLayout w l1 l2 = compareLines w (lines l1) (lines l2)

compareLines :: Width -> [String] -> [String] -> Ordering

compareLines w [] [] = EQ

compareLines w [] _ = LT

compareLines w _ [] = GT

compareLines w (l1:l1s) (l2:l2s) = compareLine w l1 l2 ‘lexical‘

compareLines w l1s l2s

lexical :: Ordering -> Ordering -> Ordering

lexical EQ o = o

lexical LT _ = LT

lexical GT _ = GT

compareLine :: Width -> String -> String -> Ordering

compareLine w l1 l2 = if len1 <= w && len2 <= w then compare len2 len1

else compare len1 len2

where

len1 = length l1

len2 = length l2

In the definition of pretty the whole document is applied to False, expressing that
lines appearing outside any group are always formatted as line breaks.

Example. We can define a simple pretty printer for lists

toDoc :: [Int] -> Doc

toDoc xs = text "[" <>

foldr (<>) (text "]")

(intersperse (group (text "," <> line))

(map (text.show) xs))

such that pretty 60 (toDoc [1..50]) yields

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,

48, 49, 50]

Independently, each line can be formatted horizontally or vertically, because each is in
a separate group. A line is formatted horizontally, if and only if the text up to the next
line still fits on the current line. Many more examples of using the library are given in
[12].

4



Linear time. The exponential time complexity of the functional specification is irrel-
evant. We just state separately that we demand our implementation to take time linear
in the size of the expression constructing the document, independent of the line-width
limit of pretty.

Optimal Boundedness. The given functional specification is hyper-strict, as the fol-
lowing computation of the Haskell interpreter Hugs [5] demonstrates:

Main> pretty 4 (group (text "Hi" <> line <> text "you" <> undefined))

"

Program error: undefined

However, we see that the strings "Hi" and "you" already do not fit together in a line of
width 4, so the vertical format has to be chosen for the group and hence we desire the
following partial output:

Main> pretty 4 (group (text "Hi" <> line <> text "you" <> undefined))

"Hi\nyou

Program error: undefined

In general, for any partial input we consider all completions of this partial input to
total inputs. For each of these total inputs pretty selects a layout. The common prefix
of all these layouts is the output that we demand our implementation of pretty to yield
for the original partial input. So we specify pretty to be the least-strict extension of
the functional specification defined in Haskell here.

Any group with a width larger than the width-limit has to be formatted vertically.
Hence the output of the least-strict pretty is at most width-limit characters behind the
input already processed. We say that pretty is bounded, because the look-ahead into
the input is bounded by the width limit. It is even optimally bounded, because as the
least-strict extension it produces output with the minimal look-ahead possible.3

3 Algorithm Outline, Normalisation and Document Rep-

resentation

There exists a basic pretty printing algorithm that meets our specification for many but
not all documents. Transforming a document before that pretty printing algorithm is
applied ensures that the output always meets our specification.

The basic pretty printing algorithm works as follows. First determine for each group
in the document its width, that is, the space it requires for printing if it was printed
horizontally, all in one line. Given this information we can produce the optimal layout

3To be precise, we do not consider a partial string as argument of text. The argument of text is
considered as an atomic value that is added to the layout in one step. Considering partial strings in our
implementation is straightforward, but the high granularity would increase run-time by a substantial
constant factor.

5



by a simple in-order traversal of the document tree. In the traversal we keep track of the
free space remaining in the current output line. Every time we come across the start of
a group we just compare the remaining space with the width of the group. If the width
is smaller or equal, the group is formatted horizontally, otherwise vertically.

Why does this algorithm not always produce the desired output? For

putStr (pretty 6 (group (text "Hi" <> line <> text "you") <> text "!"))

this algorithm yields

Hi you!

whereas our specification says that the output should be

Hi

you!

A group that still fits on a line may be followed by further text, without a separating
line. Because there is no line, the text has to be added to the current line, even if it
does not fit. Formatting the group vertically might have avoided the problem.

We say that a document is group-closed if between the end of every group and the
next text document there is always a line document. In that case the end of every
group can be chosen to be the end of the line. Hence for group-closed documents the
algorithm produces the same layout as is selected by our functional specification.

To use the pretty printing algorithm for any document, we first apply a normalisation
transformation which transforms any document into an equivalent group-closed docu-
ment. To enable a simple transformation we represent a document as a token sequence:

data Tokens = Text String Tokens

| Line Tokens

| Open Tokens

| Close Tokens

| Empty

A group is represented as an Open token, the sequence of the grouped document and
a final Close token. To construct the token sequence in linear time we actually repre-
sent a document as a function on token sequences, and function composition performs
concatenation [3].

newtype Doc = Doc (Tokens -> Tokens)

text s = Doc (Text s)

line = Doc (Line)

Doc l1 <> Doc l2 = Doc (l1 . l2)

group (Doc l) = Doc (Open . l . Close)

6



To transform a document into a group-closed document, we normalise the token list
with respect to the following (confluent) rewriting rules:

Close (Text s ts) ⇒ Text s (Close ts)

Open (Text s ts) ⇒ Text s (Open ts)

Open (Close ts) ⇒ ts

Rewriting only moves Text tokens in and out of groups. Therefore the set of lines
“belonging” to each group, which are either all formatted as new lines or all as spaces, is
unchanged. So normalisation leaves the set of layouts denoted by a document unchanged.
Only the representation of the document is changed, so that our pretty printing algorithm
(possibly) selects a different set element as output. Normalised token lists even have the
additional property that there is no Text token between an Open token and the next
Line token. Hence making the decision whether a group is formatted horizontally or
vertically when we come across an Open token is not premature, but indeed just in time.

We can implement normalisation by a linear traversal of the token list, which collects
Open and Close tokens until the next Line token is reached:

normalise :: Tokens -> Tokens

normalise = collect id

where

collect :: (Tokens -> Tokens) -> Tokens -> Tokens

collect co Empty = co Empty

collect co (Open ts) = collect (co . open) ts

collect co (Close ts) = collect (co . Close) ts

collect co (Line ts) = (co . Line . collect id) ts

collect co (Text s ts) = Text s (collect co ts)

open (Close ts) = ts

open ts = Open ts

This normalisation reminds of the context passing representation of John Hughes [4].
The argument co of the function collect is a context of Open and Close tokens.

The construction of the token sequence and its normalisation happen in linear time
and are least-strict. In particular, for a group the Open token will always be produced if
tokens for some part of its content can be produced:

Main> (\(Doc d) -> normalise (d Empty)) (group (text "hi" <> line <> undefined))

Text "hi" (Open (Line

Program error: Prelude.undefined

4 A Linear Unbounded Algorithm

We have a group-closed document represented by a token list. Now we have to determine
the details of the actual pretty printing algorithm.

7



The algorithm outline suggests that we first determine the widths of all groups and
then in a subsequent traversal of the document produce the actual layout. However,
considering our final aim of a bounded algorithm we realise that determining group
widths and producing output have to be interleaved. Hence we endeavour straight away
to define a pretty printing algorithm that only traverses the token list a single time.

At the outermost level of a document — outside any group — pretty printing is
straightforward: When we come across a Text token we immediately output its string.
When we come across a Line token we immediately output a line break. All the time
we can also keep track of the space remaining on the current line. However, what do we
do when we come across an Open token? When going along each subsequent token we
can compute the width of the group, but we cannot yet output the tokens. However,
we can construct a function for outputting these tokens! We can construct a function
that given the information whether the group content should be formatted horizontally
or vertically and the remaining space at the beginning of the group will output the
formatted contents of the group. So we define the types

type Remaining = Int

type Out = Remaining -> Layout

type OutGroup = Horizontal -> Out -> Out

A group output function takes an argument of type Horizontal and an argument of
type Out. The later is the continuation of the function. This continuation outputs the
parts of the document that come after the group.

Groups can be nested. First of all, this complicates the computation of the width
of a group. When processing a token we do not want to update a width value for each
surrounding group; their number is unbounded. Hence we introduce an absolute measure
of a token’s position. The (absolute) position gives the column in which a token would
start, if the whole document that is passed to pretty was formatted in a single line. In
the traversal of the token list we only need to keep track of the position of the current
token. The width of a group is the difference between the position of its Close token
and the position of its Open token.

type Position = Int

The second consequence of the nesting of groups is that our algorithm cannot just
defer outputting a group by passing along the token list a single group output function.
Why? Because each group has its own Horizontal value and when we extend the group
output function we can only refer to its Horizontal argument, which would be for the
outermost deferred group. We need access to the Horizontal value of the innermost
deferred group. We can best express this scoping by having a separate group output
function for each surrounding group. Only the output function for the innermost group
is extended while traversing the document of the innermost group whereas the other
functions are passed on unchanged. So each function does not represent the deferred
output of a group up to the currently processed token, but only the deferred output up
to another deferred nested group. When we come across a Close token we merge the

8



current position

︸ ︷︷ ︸

already
out-
putted

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

︸ ︷︷ ︸

group
output
function

Figure 1: Groups and group output functions in token list traversal.

function for the innermost group with the function for the next inner group. If there is
no other group we can apply the function to produce the output for the group.

Figure 1 illustrates for a point in the computation which part of the token list each
group output function is responsible for. A horizontal line symbolises a group, with
inner nested groups further up. The dashed line indicates the current point of the token
list traversal. There are three surrounding groups, hence three group output functions.

In addition to its output function we need for each surrounding group also the po-
sition of its Open token, so that when coming to its Close token we can determine the
width of the group. Altogether we keep all information about surrounding groups in a
sequence of tuples: 〈(Position,OutGroup)〉.

Here 〈a〉 denotes some abstract sequence type with elements of any type a. Addi-
tionally 〈〉 denotes both the empty sequence and the pattern that matches the empty
sequence, 〈e〉 denotes the singleton sequence with element e and the pattern that matches
the singleton sequence, and e ⊳ es denotes the expression that puts e in front of the
sequence es and the pattern that matches a non-empty sequence. Using an abstract
sequence type might seem overkill — we could just use a list instead — but when we
refine the algorithm in the next section the sequence will have to become a double ended
queue. Okasaki [7] demonstrated that premature commitment to a representation can
make functional programmers blind to a natural implementation solution.

Figure 2 gives the whole implementation. The token interpreter inter implements
the algorithm just described. The functions outText and outLine serve as building
blocks from which the group output functions are constructed. When inter comes
across a Close token, the expression p <= s1+r is used to decide whether the innermost
group is formatted horizontally or vertically — when the group output function is finally
applied. If there is no other surrounding group, then the output function is applied
and output is produced immediately, otherwise the output function is merged with the
function for the next inner group. The interleaving of outputting a group and traversing
the token list with inter is clearly expressed by the continuations.

9



pretty :: Width -> Doc -> Layout

pretty w (Doc d) = inter (normalise (d Empty)) w 1 〈〉 w

inter :: Tokens -> Width -> Position -> 〈(Position,OutGroup)〉 -> Out

inter (Empty) _ _ _ = const ""

inter (Text t ts) w p 〈〉 =

outText t (inter ts w (p + length t) 〈〉)
inter (Text t ts) w p ((s,outGrp) ⊳ qs) =

inter ts w (p + length t) ((s,\h c -> outGrp h (outText t c)) ⊳ qs)

inter (Line ts) w p 〈〉 =

outLine w False (inter ts w (p+1) 〈〉)
inter (Line ts) w p ((s,outGrp) ⊳ qs) =

inter ts w (p+1) ((s,\h c -> outGrp h (outLine w h c)) ⊳ qs)

inter (Open ts) w p qs =

inter ts w p ((p,\h c -> c) ⊳ qs)

inter (Close ts) w p 〈(s1,outGrp1)〉 =

\r -> outGrp1 (p<=s1+r) (inter ts w p 〈〉) r

inter (Close ts) w p ((s1,outGrp1) ⊳ (s2,outGrp2) ⊳ qs) =

inter ts w p ((s2,\h c -> outGrp2 h (\r1 -> outGrp1 (p<=s1+r1) c r1)) ⊳ qs)

outText :: String -> Out -> Out

outText t c r = t ++ c (r - length t)

outLine :: Width -> Horizontal -> Out -> Out

outLine w h c r = if h then ’ ’ : c (r-1) else ’\n’ : c w

Figure 2: The linear unbounded pretty printing algorithm

5 A Linear Bounded Algorithm

The algorithm in Figure 2 is still unbounded, because only when an outermost group has
been completely traversed, the group and all its inner groups are outputted. Nonetheless,
turning this algorithm into a bounded one requires few modifications.

While traversing the token list we know the start position of the outermost surround-
ing group, the remaining space at the start of the outermost surrounding group and the
position of the current token. Thus we see when the width of the outermost group is
definitely larger than the remaining space. At that point in the traversal of the token
list we can already output the outermost group.

Figure 3 gives the implementation of the linear bounded algorithm. The new function
prune checks whether the outermost group still fits. If it does not fit, then it applies
its output function and continues checking whether the next outermost group fits. The
function prune uses the pattern es ⊲ e to access the last element of the sequence.
So the sequence is no longer a simple stack but a double-ended queue. Okasaki [6]
describes a functional implementation of double-ended queues with amortised constant

10



inter :: Tokens -> Width -> Position -> 〈(Position,OutGroup)〉 -> Out

inter (Empty) _ _ _ = const ""

inter (Text t ts) w p 〈〉 =

outText t (inter ts w (p + length t) 〈〉)
inter (Text t ts) w p ((s,outGrp) ⊳ qs) =

prune ts w (p + length t) ((s,\h c -> outGrp h (outText t c)) ⊳ qs)

inter (Line ts) w p 〈〉 =

outLine False (inter ts w (p+1) 〈〉)
inter (Line ts) w p ((s,outGrp) ⊳ qs) =

prune ts w (p+1) ((s,\h c -> outGrp h (outLine h c)) ⊳ qs)

inter (Open ts) w p qs =

inter ts w p ((p,\h c -> c) ⊳ qs)

inter (Close ts) w p 〈〉 = inter ts w p 〈〉
inter (Close ts) w p 〈(s1,outGrp1)〉 =

\r -> outGrp1 (p<=s1+r) (inter ts w p 〈〉) r

inter (Close ts) w p ((s1,outGrp1) ⊳ (s2,outGrp2) ⊳ qs) =

inter ts w p ((s2,\h c -> outGrp2 h (\r1 -> outGrp1 (p<=s1+r1) c r1)) ⊳ qs)

prune :: Tokens -> Width -> Position -> 〈(Position,OutGroup)〉 -> Out

prune ts w p 〈〉 = inter ts w p 〈〉
prune ts w p qs@(qs’ ⊲ (s,outGrp)) =

\r -> if p>s+r then outGrp False (prune ts w p qs’) r else inter ts w p qs r

Figure 3: The linear bounded pretty printing algorithm

time complexity for every operation.
The few places in which the definition of inter had to be adapted are underlined.

Only processing the tokens Text and Line increases the current position and hence only
there calls of prune have to be inserted. Additionally, inter may now come across a
Close token even when the sequence of start positions and group output functions is
empty, because groups may have been pruned before their Close token was reached.

6 Optimisation by Specialisation

Nearly every call of inter and every call of prune pattern matches on the queue. This
distinction between empty and non-empty queue and projection of components costs
substantial time. Processing the majority of tokens, Text and Line, updates the front
element of the queue but leaves the rest unchanged. Only the Open and Close token and
sometimes prune modify the queue. Hence we specialise inter into three and prune

into two mutually recursive function definitions:

noGroup :: Tokens -> Width -> Position -> Out

oneGroup :: Tokens -> Width -> Position -> Position -> OutGroup -> Out

multiGroup :: Tokens -> Width -> Position -> Position -> OutGroup ->

11



〈(Position,OutGroup)〉 -> Position -> OutGroup -> Out

pruneOne :: Tokens -> Width -> Position -> Position -> OutGroup -> Out

pruneMulti :: Tokens -> Width -> Position -> Position -> OutGroup ->

〈(Position,OutGroup)〉 -> Position -> OutGroup -> Out

The function noGroup is used when there is no deferred group, the function oneGroup

when there is one deferred group and the function multiGroup when there are at least
two deferred groups. The function multiGroup takes a queue as argument, but it takes
the information for the innermost and the outermost deferred group separately, so that
accessing or updating that information requires no queue operations.

Specialisation makes the algorithm approximately 35% faster. However, the spe-
cialised algorithm is substantially longer and contains duplicated code.

The output function itself takes a continuation to pass control. This continuation is
not necessary. We can also define our algorithm with a type

type OutGroup = Horizontal -> Remaining ->

(Remaining,String -> String)

This type makes even more explicit that a group output function produces a partial
output (of type String -> String to enable constant time concatenation [3]) and an
updated remaining space. Using this type is just inconvenient: merging an output group
with the output of a single Text or Line token or with another output group is more
awkward than with continuations, because of the required pattern matching on tuples.

7 Indentation

To complete the pretty printing library we have to add the function nest. There are
different interpretations of the expression nest n. In Wadler’s library it increases the
current left margin by n columns whereas in Oppen’s pretty printer (and other libraries)
it sets the left margin to the current column position plus n. We can implement both
variants by adding two new tokens:

data Tokens = . . .

| OpenNest (Margin -> Remaining -> Width -> Margin) Tokens

| CloseNest Tokens

type Margin = Int

We extend the implementation to interpret the new tokens such that the function of the
first token takes the current margin to determine a new margin and the second token
resets the margin to its previous value. Just as we keep track of the space remaining on
the current line we keep track of old left margins; we extend the type Out:

type Out = Remaining -> [Margin] -> Layout

12



8 Related Work

The basic idea of the algorithm presented here dates back to Oppen [8]. In particular
he also represents a document as a token list. In his Section 2 Oppen assumes that any
document is group-closed; he hints at the end of his Section 5 that other input can be
transformed. Oppen updates a mutable array in a complex pattern to keep track of the
information required for switching between processing input and producing output.

Oppen’s work inspired numerous pretty printing libraries for Haskell. The libraries
of John Hughes [4], Simon Peyton Jones [9] and Phil Wadler [12] all use some forms
of backtracking and hence are less efficient than Oppen’s algorithm. The delimited
continuation pretty printer implements the interface designed by Phil Wadler and the
specification is based on the less formal specifications of John Hughes and Phil Wadler.
The semantics of the delimited continuation pretty printer agrees with that of Phil
Wadler, except that Wadler’s is bounded but not optimally bounded (Section 9 of [2]
demonstrates the difference).

In [1, 2] I presented the first purely functional algorithm that has all the nice efficiency
properties of Oppen’s algorithm. This algorithm uses an intricate lazy coupling of two
double-ended queues. Thus it demonstrates the power of laziness but is rather complex
and requires a specially modified implementation of double-ended queues.

Subsequently Doaitse Swierstra [11] showed that the two special double-ended queues
can be replaced by one double-ended queue and a lazy list, thus giving a simpler solu-
tion that also reuses a standard queue implementation. The delimited continuation
implementation is even simpler and does not rely on laziness. Unfortunately Swierstra’s
method for handling documents that are not group-closed is faulty.

Swierstra’s algorithm does not use any intermediate data structures. We can easily
remove the token list from the delimited continuation algorithm as well. The token list
interpreter inter is clearly in the image of defunctionalisation [10]. Applying the inverse
of defunctionalisation we replace the token list type by a functional type and obtain a
function for every token:

type PrettyTokens = Width -> Position -> 〈(Position,OutGroup)〉 -> Out

pEmpty :: PrettyTokens

pText :: String -> PrettyTokens -> PrettyTokens

pLine :: PrettyTokens -> PrettyTokens

pOpen :: PrettyTokens -> PrettyTokens

pClose :: PrettyTokens -> PrettyTokens

Similarly we can replace the use of the token list in normalisation by another function
type and a set of functions. We just have to give up the minor optimisation Open

(Close ts) ⇒ ts, because it requires matching a Close token more than once. The
resulting algorithm has no intermediate data structures but replaces the token list type
by two different functional types. I find this functional variant hard to read. There is
no noticeable difference in runtime between the variants, because at a low level closures
and algebraic data types are implemented rather similarly.

13



Surprisingly the algorithms of [4, 9, 12, 1, 2] are all first-order. Are higher-order
functions essential for our algorithm? Naturally not, because defunctionalisation [10] can
replace a continuation by a data structure and a first-order interpreter. Here this means
replacing the types Out and OutGroup by two complex mutually recursive algebraic data
types. Again we obtain an implementation that is harder to read.

9 Conclusions

I presented a new linear bounded pretty printing algorithm that is shorter and simpler
than previous ones. Delimited continuations express explicitly the necessary switching
between producing output and processing the input. For a partially traversed group,
for which we do not yet have enough information to decide whether it is formatted
horizontally or vertically, we produce a group output function that when we have the
information will output the group contents. A group output function is a delimited
continuation. The function that traverses the token list passes control to an output
function to continue the pretty printing. However, the output function does not compute
the whole remaining output, but passes control back to another function to continue. For
every deferred surrounding group we keep a group output function and the start position
of the group in a double-ended queue. It has to be a double ended queue, because
processed input relates to the innermost surrounding group but the outermost group
has to be checked continuously for whether it fits. Finally, specialisation reduces the
number of costly operations on the double-ended queue and thus improves performance.

Correctness and linear runtime of the algorithm do not rely on lazy evaluation.
However, lazy evaluation ensures that input and output are only evaluated as demanded
and thus the algorithm only requires a small bounded amount of space.

Hughes [4] and Wadler [12] used algebraic techniques to derive their pretty printing
implementations that are based on backtracking. In contrast, no formal derivation or
correctness proof exists for any of the linear pretty printing implementations by Swierstra
[11] or myself [2]. I agree with Section 8 of Swierstra [11] that the linear implementations
employ programming techniques that are “not easy to express in purely algebraic style”.
So there is a challenge: This report gives a concise formal specification and a highly
efficient implementation, both of which are fairly short. Can anybody give a readable
proof of their equivalence?

Acknowledgements

Thanks to Bernd Braßel and Michael Hanus for discussions about how logical variables
could simplify the implementation of pretty printing. The need for deferring output
until logical variables are bound gave me the idea of using continuations.

14



References

[1] Olaf Chitil. Pretty printing with lazy dequeues. In Preliminary Proceedings of the
2001 ACM SIGPLAN Haskell Workshop, pages 183–201. Universiteit Utrecht, 2001.
UU-CS-2001-23.

[2] Olaf Chitil. Pretty printing with lazy dequeues. Transactions on Programming
Languages and Systems (TOPLAS), 27(1):163–184, January 2005.

[3] John Hughes. A novel representation of lists and its application to the function
“reverse”. Information Processing Letters, 22(3):141—144, 1986.

[4] John Hughes. The design of a pretty-printing library. In J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, LNCS 925. Springer Verlag, 1995.

[5] The Haskell User’s Gofer System. http://www.haskell.org/hugs/.

[6] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998.

[7] Chris Okasaki. Breadth-first numbering: lessons from a small exercise in algorithm
design. In International Conference on Functional Programming, pages 131–136,
2000.

[8] Dereck C Oppen. Prettyprinting. ACM Transactions on Programming Languages
and Systems, 2(4):465–483, 1980.

[9] Simon L Peyton Jones. A pretty printer library in Haskell. Part of the GHC
distribution at http://www.haskell.org/ghc, 1997.

[10] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Conference Record of the 25th National ACM Conference, pages 717–740,
1972.

[11] S. Doaitse Swierstra. Linear, online, functional pretty printing (corrected and ex-
tended version). Technical Report UU-CS-2004-025a, Utrecht University, 2004.

[12] Philip Wadler. A prettier printer. In The Fun of Programming, chapter 11, pages
223–244. Palgrave Macmillan, 2003.

15


