
 

 

Coordination between Distributed PDPs  
 
 

David W Chadwick, Linying Su, Oleksandr Otenko, Romain Laborde  
Computing Laboratory, University of Kent, UK,  

[D.W.Chadwick] [L.Su-97] [O.Otenko][R.Laborde] @kent.ac.uk 
 

Abstract 
 

For distributed applications, using a centralised 
policy decision point (PDP) with a common policy 
allows coordination between multiple resources that 
are being accessed. But the central PDP is a 
bottleneck to performance because every request needs 
to be diverted to it. Having a set of distributed PDPs 
co-located with resources can overcome the 
performance bottleneck, but any form of coordination 
is then lost. Furthermore, even a centralised PDP 
sometimes needs to coordinate its access control 
decision making over time. Therefore, coordination 
between decision making, for both centralised and 
distributed PDPs, is needed. This paper addresses 
issues of coordination between distributed or 
centralised decision making, by examining when 
coordination is needed, providing a conceptual model 
for coordination, defining policy elements that can 
control coordination, and rules for the refinement of 
coordination policies The paper provides a detailed 
example of coordination policy refinement, and 
provides an outline of how we are implementing the 
model in our system.  
 
1. Introduction 
 

In a previous paper [1] we described how a high 
level access control policy for a distributed resource 
can be decomposed, or refined, into low level policies 
for the concrete resources at each site. These low level 
policies can then be distributed to each resource 
specific policy decision point (PDP), allowing the 
access control decision making to be much faster than 
using a centralised PDP configured with the high level 
policy. Our policy decomposition tool is capable of 
producing resource specific access control policies in 
either the XACML [2] or PERMIS [3] policy 
languages. However there is a downside to the use of 
multiple distributed PDPs. The use of a stateful 
centralised PDP allows co-ordination between the 
access control decisions for the multiple resources that 
are being accessed. For example, with a centralised 

stateful PDP it is possible to stop a user from accessing 
more than 3 GB of store throughout a distributed 
application, or withdrawing more than £250 per day 
from ATMs with his credit card. The disadvantage of 
this configuration is that it is a bottleneck to 
performance because every request needs to be routed 
to the central PDP. Alternatively, if each resource has 
its own local PDP then performance will increase, but 
the PDPs lack the ability to coordinate their decision 
making throughout the distributed application. Another 
problem is that most PDPs are stateless, so even a 
centralised stateless PDP is not able to coordinate its 
decision making over time. 

In this paper we describe a conceptual model for 
coordination between centralised or distributed PDPs 
that are stateless. The model proposes a coordination 
object and coordination attributes that maintain the 
state. We then define the coordination policy elements 
that provide the rules for specifying which 
coordination attributes need to be consulted during 
access control decision making, and which need to be 
updated after access has been granted. We use the 
existing concept of obligations [4] to update the 
coordination attributes. 

The rest of this paper is structured as follows. In 
section 2 we discuss the overall requirements for 
access control decision coordination with distributed 
PDPs, and suggest when coordination is required. In 
Section 3 the conceptual model of a coordination 
object and its attributes is introduced. This object and 
its attributes provide the bridges to link together the 
decision making by one or more PDPs. Section 4 
describes the access control coordination policies 
which dictate coordination, and provides the rules for 
refinement of such policies. A detailed worked 
example of such a policy refinement is given. Section 
5 addresses implementation issues. Finally section 6 
reviews related work, presents some conclusions and 
directions for our future work.  

 
2. Coordination requirements 

 
In a distributed application (e.g. grid application), 



 

 

multiple resources (e.g. file stores, processors) are 
available and their services are coordinated in order to 
accomplish a computation task. From a resource access 
control point of view, in order to prevent a user from 
consuming more than a certain amount of resource 
(say 10GB of storage), a policy has to be written 
specifying this limit, and the PDPs for each resource 
need to be informed of this policy in order to enforce 
the limit. However, without coordination between the 
PDPs, the user may obtain just under the limit from 
each different resource so that from each PDP’s 
perspective the user appears to be conforming to the 
policy, but from the distributed application’s 
perspective he is clearly breaking it. This is a scenario 
in which coordination between PDPs is required. 

We consider that in the general case a PDP is 
stateless and makes its access control decisions against 
the current policy in isolation to all past, present and 
future access control decisions. The PDP is given 
details (in the form of attributes) about the subject, the 
resource, the requested action and the environment 
(e.g. current time, temperature etc.). This set of 
attributes is known as the request context in the 
XACML specification [2]. The policy may place 
constraints on any of the request context attributes i.e. 
on the subject, resource, action or environmental 
attributes. If any access control decision will produce 
state changes in this context and these changes will 
affect future access control decision, then 
coordination between the access control decisions is 
required. Consider the following examples of policy 
constraints that require coordination between multiple 
access control decisions: (1) on a subject attribute 
“only Fred or Mary but not both” (2) on an action 
attribute “the same user cannot both create an exam 
paper and answer it” (note that this is an example of 
separation of duties) (3) on an environment attribute 
(time) “no more than ten accesses per day” (4) on a 
resource attribute “no more than 10GB of memory in 
total”. Implicit or explicit in each of these coordination 
statements is that some resource is being accessed. 

Such constraints on subject, action and 
environmental attributes will always require 
coordination between access control decisions, even 
when the system only has a single centralised PDP. 
However, constraints on resource attributes may lead 
to dynamic variations in whether coordination is 
needed or not, depending upon the granularity of the 
resource PDPs and the access requests. A high level 
resource PDP that receives a single request for access 
to  a resource that is distributed wont need to 
coordinate its decision making, whereas a set of 
distributed PDPs, one per low level resource, which 
each receive a (sub)request, may need to. As we move 

down the resource hierarchy tree and both the request 
context and policy become more refined, then 
coordination will need to be introduced at the point 
where the resource, its controlling PDP and the request 
context, are lower than the resource referred to in the 
policy constraints. For example a constraint on 
memory use may not require coordination if the PDP is 
attached to the abstract memory resource and will 
receive a single request context for access to the 
resource, but will need coordination if the PDPs are 
attached to each instance of actual memory that 
comprises the memory resource and each receive a 
request context. This point will be further illuminated 
when we work through the example in Section 4.5. 

 
3. Coordination attributes 
 

Coordination attributes are conceptually the same 
as any other type of attribute (resource, subject, action 
or environmental) but in this case they are attributes of 
the coordination object, rather than the resource, 
subject, action or environment objects. The 
coordination object is conceptually a repository storing 
the data that is necessary to allow coordination to take 
place between all of the access control decisions in a 
distributed system. The semantics of the coordination 
attributes are known to the coordination object but not 
to the policy refinement process, since the latter does 
not know the semantics of any of the attributes of the 
request context (environment, subject etc.).  

The distribution and/or replication of the 
coordination object is not known by the policy 
refinement process and is not necessary for the correct 
functioning of the refinement process, although this 
information will need to be known by the component 
that fetches the coordination attributes for the PDPs at 
decision making time. The coordination object could 
be replicated, and all its attributes co-located with all 
the PDPs, in which case any update to any attribute 
will need to be propagated to all the replicas; or it 
could be centralised in which case all the fetching 
components will need to communicate with the 
centralised coordination object in order to access its 
attributes; or it could be distributed/partitioned, with 
some of its attributes being co-located with each PDP. 
This will be discussed further in Section 5. 

The coordination object is considered to be 
persistent and stateful, in much the same way that the 
environmental object stores the environmental 
attributes. In this way the PDPs remain stateless. A 
significant difference between the environmental and 
coordination attributes is that the access control 
process only needs to read the former, whereas it needs 
to read and update the latter. Furthermore, a 



 

 

coordination object can contain attributes of a subject, 
resource, action, or the environment, and can be 
indexed on any combination of those types of 
attributes. 

 
3.1. Notation for coordination attributes 
 

The coordination attributes may be used to 
coordinate the operations of a single subject or all 
subjects, on a single resource or on all resources, for 
each action or all actions, over zero, one or more 
environmental variables i.e. they are multi-
dimensional. Therefore we need to define the 
dimensions of each coordination attribute when it is 
specified. One way of looking at the dimensions of the 
coordination object is to say that it has one dimension 
for every attribute of the request context being 
coordinated. Another perhaps more helpful way is to 
say that there is one dimension for each type of object 
it is coordinating over (i.e. subject, resource, action, 
environment). Both ways should end up with the same 
implementation. In our implementation, described in 
section 5.2, we have a database table with n+1 
columns, where n is the number of request context 
attributes being coordinated. 

We can specify the coordination attribute 
dimensions by using an extension to our previous 
notation, Att(O), which represents an attribute Att of 
object O, as follows: 

Att[SubDim, ResDim, ActDim, EnvDim](C) 
where 

Att is the name of a coordination attribute 
belonging to the coordination object C. The attribute 
has optional multiple dimensions [SubDim, ResDim, 
ActDim, EnvDim], where SubDim, ResDim, ActDim 
and EnvDim denote the subject, resource, action and 
environment dimensions of the attribute, respectively. 
Every attribute in SubDim (ResDim, ActDim or 
EnvDim), if any, come from the request context. 

Note that each dimension is optional so that a 
coordination attribute may be 1-D, 2-D, 3-D or 4-D or 
single valued (0-D). For example usage(C) means that 
the coordination attribute called usage has a single 
value which is used by all subjects accessing all 
resources over all actions and environments; whereas 
usage[{username(S)}](C) is a 1-D coordination 
attribute with a different value per subject, where the 
subjects are identified by their usernames. SubDim, 
ResDim, ActDim and EnvDim are represented as sets 
of defining attributes that identify the unique set of 
subjects, resources, actions or environments which 
share the same defining attribute characteristics. 
Therefore memory[{role(S)}](C) is a 1-D coordination 
attribute that has a different value for each subject role 

in the system. There may be many subjects (principals) 
who share the same role, but all such subjects also 
share the same coordination attribute value. In this way 
it is possible to coordinate access control decisions 
between all members of a group (or role). 
Semantically, the appearance of the subject (or 
resource, action, environment) dimension means that 
this coordination attribute will have different 
coordination values for each unique set of subjects (or 
resources, actions, environments) identified by their 
defining attributes. In other words, each set of defining 
attributes comprises an index on one of the four 
dimensions of the coordination attribute. As an 
example, balance[{date(E)}](C) denotes a coordination 
attribute called balance which has a different value for 
each environment identified by its date attribute i.e. 
there is a different balance value for each date.   

Given a 1-D coordination attribute usage for each 
subject identified by their first name, surname and date 
of birth, this can be represented as 
usage[{birthDate(S), lastName(S), firstName(S)}](C). 
The combination of this set of defining attributes in the 
subject dimension will be used to determine an index 
on the subject dimension of the coordination attribute 
at run time. Note that 
usage[{id(S)},{id(R)},{id(A)}](C) is different from 
usage[{id(S)},{id(R)}](C) because the former defines 
a coordination attribute for each subject, resource and 
action combination whilst the latter defines an attribute 
for each subject and resource combination over all 
actions. Similarly usage[{id(S)}](C) is different from 
usage[{name(S)}](C) because a subject is identified by 
its id attribute in the former and by its name attribute in 
the latter. Obviously, 
balance[{id(S)},{id(R)},{id(A)}](C) is different from 
usage[{id(S)},{id(R)},{id(A)}](C) because these refer 
to different coordination attributes for the same set of 
dimensions.  

Each value of a defining attribute in SubDim (or 
ResDim, ActDim, EnvDim) contributes towards the 
calculation of one index on the appropriate 
coordination attribute dimension and hence serves to 
identify one coordination attribute value.  

In some situations an attribute in the request 
context could be multi-valued. For example, when the 
subject making the request has two roles, the role 
attribute could have two values such as manager and 
safety officer. This could resolve into two coordination 
attribute values if left unchecked, and would then lead 
to ambiguity. How this is resolved is still to be 
finalised. One initial suggestion was to make the 
resolution an application dependent issue, and to 
simply require that only single values are passed in the 
request context. In the example above, the application 



 

 

could require the user to pick which role he wishes to 
activate, manager or safety officer, or the application 
could pick the most senior or most junior role as 
appropriate. We realised this was not optimal, and 
there may be some cases where both roles are needed 
in order to gain access to a resource. Our current 
thinking is that some form of meta-policy is required to 
specify how multiple values of a request context 
attribute are dealt with by the coordination object, for 
example, whether one coordination attribute is created 
from a union of the attribute values, or whether 
multiple coordination attribute values are created, one 
per request context attribute value. (In our 
implementation described in section 5.2, this meta 
policy will translate into extra columns or extra rows 
being created in the coordination database.) The 
specification of this meta policy is a subject for further 
study. 

. 
3.2. Naming action attributes 

 
In our previous paper [1] we only presented a way 

of referring to an attribute of an object of any type, and 
did not provide a way of referring to an attribute of a 
specific type. For example, name(R) will return the 
name of any type of resource object. If we want to 
refer to the attribute of a specific type of resource 
object, such as a printer, we need a more specific 
notation. Prefixing the attribute name with the relevant 
type information gives us the precision we need e.g. 
printer.name(R) refers to the name of any resource of 
type printer. Similarly, whereas type(A) refers to the 
type of an action, regardless of the type of resource 
that the action is being performed on, filestore.type(A) 
refers to the type of action that is being performed on a 
resource of type filestore.  Similarly, in order to 
differentiate between action parameters (or attributes) 
that have the same name but are parameters of 
different types of action on different types of 
resources, we can prefix the parameter name with the 
type of the resource and the type of the action, i.e.  
resourcetype.actiontype. e.g. printer.print.filename(A) 
will return the value of the filename to be printed on 
the printer, whereas file.open.filename(A) will return 
the value of the filename of the file to be opened. In 
contrast, filename(A) will return the value of the 
filename attribute for any type of action on any type of 
resource. 

 
4. Policies for coordination 
 
4.1. Necessary Components 
 

In order to specify a policy which dictates 

coordination between access control decisions we need 
to identify: (1) the coordination attribute(s) that hold 
the coordination data (2) the policy conditions (or 
constraints) that are placed on the coordination 
attributes (e.g. the total memory that cannot be 
exceeded, or the limit on the amount of money that can 
be withdrawn from an ATM in a day etc.) and (3) the 
rules for when the coordination attributes are updated. 

The conditions under which a particular policy 
decision is made for the set of subjects, resources, 
actions and environment can be described by ALETs 
(Arithmetic and Logical Expression Trees) as 
described in our previous paper [1]. These form the 
primary components of an access control policy. For 
example the policy students over the age of 18 can be 
represented as the ALET role(S)=student∧age(S)>18 
whilst drive or ride in a car can be represented as 
type(R)=car∧(type(A)=drive∨type(A)=ride). To 
identify a coordination attribute in access control 
policies is now straightforward since the syntax is 
similar to that of the other attributes of subjects, 
actions, resources and environment. (The only 
difference is that a dimension component has been 
added.) We define a coordination policy as a constraint 
on user access which requires coordination between 
request contexts via a coordination attribute. An 
example coordination policy is users, identified by 
their userIDs, cannot use more than 3GB of storage 
each. This can be written as type(R)=storage∧ 
type(A)=use∧amount(A)+storage[{userID(S)}](C) ≤3. 

When a user issues an action request, the request 
context is evaluated against the access control policy, 
which now contains an embedded coordination policy. 
The request context must now therefore include the 
coordination attributes from the coordination object as 
well as the conventional subject, target/resource, action 
and environmental attributes. As the constraints in the 
policy are evaluated, if the coordination attribute in the 
constraint has a subject, resource, action or 
environment dimension, then for any subject, resource, 
action and/or environment attribute that matches the 
policy constraints, its attribute value is used in the 
respective dimension to determine the particular 
coordination attribute value to use. (Note. We still 
need to define the meta policy that will control how we 
handle dimension attributes that have multiple 
matching values.) 

   
4.2. Coordination policy specification 
 

A coordination policy is a constraint on user access 
which requires coordination between request contexts 
via a coordination attribute.  It can be written as a 
logical expression in which each relational expression 



 

 

returns true, false or indeterminate against the given 
coordination attribute values. Therefore, the 
coordination policy will evaluate to true, false or 
indeterminate1 to indicate the decision making. For 
example, in the case of a bank whose policy is to limit 
the withdrawals from all ATM machines per day per 
client to less than £250, this can be represented as 
role(S)=client ∧ type(A)=withdraw ∧ type(R)=ATM ∧ 
amount(A) < 250 - balance[{id(S)},{day(E)}](C), 
where role(S) denotes the role of the subject; type(R) 
denotes the type of resource; amount(A) and type(A) 
denoting the amount and type of the action; and 
balance[{id(S)},{day(E)}](C) is a coordination 
attribute variable that has subject and environment 
dimensions. In this case each access control request 
will be coordinated for each subject each day. 

The semantics of balance[{id(S)},{day(E)}](C) 
from a policy refinement/evaluation perspective is that 
this coordination attribute has a different value for 
each subject and each environment i.e. their 
combination. The subject is identified by its id attribute 
and the environment is identified by its day attribute. 
The semantics of the balance attribute are only known 
to the coordination object, and the initial values of 
balance[{id(S)},{day(E)}](C) for every subject and 
day combination will be set by the coordination object 
according to its coordination object policy. It is not a 
function of an access control policy to state how the 
coordination attributes’ lifecycles are managed. The 
coordination object policy should state what values are 
used to initialise the various coordination attributes, 
when the values are reset, and when redundant values 
should be garbage collected. However, this is out of 
the scope of the current paper.  

Once a request is granted, the coordination attribute 
value needs to be incremented with the value 
amount(A). How this is done is described in the next 
section. 

 
4.3. Obligations 

 
In order for the coordination policy to say how and 

when the coordination attribute value is updated, we 
have chosen to add an obligation element to the 
coordination part of the access control policy. The 
obligation element can be defined as a set of obligation 
actions that must be undertaken after certain conditions 
are fulfilled. Each obligation action should then be 
enacted by the Policy Enforcement Point (PEP) (rather 
than the PDP) since it is the PEP that enforces the 

                                                           
1 Indeterminate occurs when an attribute is not present in an object, 
as described in our previous paper [1]. In a logical expression 
¬indeterminate = indeterminate. See [7] for further details. 

grant or deny decisions of the PDP. In this paper we 
are primarily concerned with specifying the obligation 
policies and how they are used to enable coordination, 
rather than specifying the exact details of how they are 
enacted, although this will be covered briefly in 
section 5. 

An obligation element is a set of rules, which 
specify what actions will be performed under what 
conditions. Currently we only specify one condition, 
termed Chronicle. The Chronicle condition defines 
when the obligation actions should take place. 
Chronicle=After-Request indicates the obligation 
actions should take place only after the user’s request 
has been enforced. Chronicle=Before-Request 
indicates that the obligation actions should take place 
before the user’s request is enforced. It is up to the 
policy writer to determine which value to use. 

The obligation actions used for coordination 
attribute update can be considered as assignments. In 
fact, an assignment X←Y is an action and object pair, 
in which the action is assign,  the object is X and Y is 
the parameter of assign. For example, 
balance[{id(S)}](C) ← balance[{id(S)}](C) + 
amount(A) is the obligation action for incrementing the 
value of  balance[{id(S)}](C) with the amount of the 
current action.  

In conclusion, an Obligation Policy is specified as 
@{<Chronicle=[After-Request|Before-Request], 
{V1←E1, V2←E2, …}>}. @ is used to link an 
obligation policy to the particular coordination policy 
to which it applies.  

 
4.4. Policy refinement 
 

“Policy refinement is the process of transforming a 
high-level, abstract policy specification into a low-
level, concrete one.” [6] In our previous paper [1] we 
described how the process of policy refinement takes 
place in two stages. In the first stage, the high level 
abstract policy for the root resource type is refined for 
each subordinate resource in the resource type 
hierarchy until the leaf resource types are reached. In 
the second stage, each resource type policy is refined 
for the particular resource instances that exist in the 
actual deployment. Each node in a resource hierarchy 
is labelled as an AND or OR node. AND nodes 
represent encapsulation of different types of child 
resource nodes (e.g. a computer resource node is 
labelled AND since it is comprised of memory, cpu 
and filestore child nodes). OR nodes represent a 
generic resource type whose children are subclasses 
which inherit the properties of the superior node (e.g. a 
memory node is labelled OR when it may be 
comprised of either CRAM and/or MRAM). 



 

 

An implicit assumption in this model is that each 
resource instance has an associated PDP that is used to 
evaluate the access requests against the policy. If a 
resource instance does not have an associated PDP, 
then the resource cannot exist in (either of) the 
resource hierarchy trees. An example of this will be 
given later in Section 4.5. 

When coordination is needed, then a coordination 
and obligation policy must be included in the high 
level resource type abstract policy at the outset. This 
will be inherited down the resource type hierarchy as 
follows. The coordination policy may be inherited as 
is, or it may need to be further refined so that it can be 
given to a more resource specific PDP, or it may need 
to be discarded altogether. Coordination policies may 
contain dimensions stating the resources and actions to 
which they apply. If they don’t, they apply to all the 
resources and actions contained in the resource 
hierarchy and will be evaluated by the root node only 
e.g. usage(C)<4. Consequently they won’t be refined.  
If a coordination policy does contain a resource and/or 
action dimension, but a subordinate resource is not an 
encapsulating type (AND node) or supertype (OR 
node) as in the coordination policy, or it is of the 
correct type (or supertype) but does not support the 
action that is specified in the coordination dimension, 
then the refinement process does not need to carry this 
coordination policy down to that subordinate resource 
type. It can be simply discarded. Conversely if a 
resource is of an encapsulating type or supertype of the 
one that is specified in the coordination dimension and 
the action is supported, then the coordination policy 
will need to be carried down to the subordinate 
resource type, with a change of resource type and 
action parameters to match those of the subordinate 
resource. This process will continue until the leaves of 
the resource tree are reached.  

 
4.5. A comprehensive cxample 
 

In this section, we present an access control policy 
example which dictates coordination between access 
control decisions and demonstrates how the 
coordination policy refinement process takes place.  

Suppose we have a resource description for a 
computing cluster described by the type hierarchy in 
Figure 1. The type hierarchy defines that the type 
cluster contains the types CPU and memory. The type 
CPU is a simple type that cannot be decomposed 
further. However, the type memory is an aggregated 
type, labelled OR, which contains the type MRAM 
(Main RAM) and CRAM (Cache RAM). Each 
resource is driven by its own specific action/command 
and parameters as shown in Figure 1.  

Suppose we have a computing cluster instance as 
shown in Figure 2. The instance contains two Pentium 
4 CPUs, two chunks of MRAM and two chunks of 
CRAM. 

type: cluster
action: run {Job}

type: memory
action: use {Size}

type: CRAM
action: use

{Size}

type: MRAM

action: use
{Time}

type: CPU

action: get {Size}

 
Figure 1. A resource type hierarchy for a 

computing cluster resource 
 

type: cluster
action: run {Job}

type: memory
action: use {Size}

type: CRAM
action: use {Size}

type: MRAM

action: use {Time}

model: pentium4
action: get {Size}

type: CPU

 
Figure 2. A resource instance hierarchy for a 

computing cluster resource 
 

Suppose we have a high level policy that states 
“Any member of staff, identified by their userID, can 
run a job on any computing cluster but the use of 
memory must be limited to 3GB, with no more than 
2GB of cached RAM or 2GB of main RAM being 
allocated”. Note that the policy writer only needs to be 
aware of the resource type and instance hierarchies in 
as much as (s)he places constraints on these embedded 
resources.  

If we assume that the user gets memory by issuing 
one use memory request, then no coordination is 
needed for this since a single test can be performed by 
the memory’s PDP to ensure that Size≤3. If however 
the user could have submitted multiple use memory 
requests, then coordination would have been needed 
by the memory’s PDP, as described later. If we further 
assume that the system breaks the user’s request down 
and issues multiple requests for CRAM and MRAM, 
then coordination is needed on use CRAM and get 
MRAM requests. Therefore coordination and obligation 
policies (shown in bold) have to be included in the 
high level abstract policy as below: 



 

 

role(S)=staff∧type(R)=cluster∧cluster.type(A)=run∧ 
((type(R)=memory∧memory.type(A)=use∧ 
memory.use.size(A)≤3) ∧  

((type(R)=CRAM∧CRAM.type(A)=use∧ 
CRAM.use.size(A)+ 
balance[{userID(S)},{type(R)=CRAM}](C)≤2 
@{<Chronicle=After-Request,{ 
balance[{userID(S)},{type(R)=CRAM}](C)← 
balance[{userID(S)},{type(R)=CRAM}](C)+ 

CRAM.use.size(A) } >})∨  
(type(R)=MRAM∧MRAM.type(A)=get∧ 
MRAM.get.size(A)+ 
balance[{userID(S)},{type(R)=MRAM}](C)≤2 
@{<Chronicle=After-Request,{ 
balance[{userID(S)},{type(R)=MRAM}](C)← 
balance[{userID(S)},{type(R)=MRAM}](C)+ 

MRAM.get.size(A) } >})) 
This policy assumes that the user can only make 

one request for memory. Had this assumption not been 
true, then coordination of the memory usage would 
also be needed via another coordination policy such as 
memory.use.size(A)+balance[{userID(S)},{type(R)=‘
memory’}](C) ≤3. 

Refining the policy to the next level down in the 
resource type hierarchy will produce policies for the 
memory type resource and the CPU type resource. 
From the memory type resource two resource type 
specific policies for MRAM and CRAM will be 
produced.  

The resource type specific policy for the memory 
resource will be  

role(S)=staff∧type(R)=memory∧ 
memory.type(A)=use∧memory.use.size(A)≤3 ∧ 
((type(R)=CRAM∧CRAM.type(A)=use∧ 

CRAM.use.size(A)+ balance[{userID(S)},{ 
type(R)= CRAM}](C)≤2 
@{<Chronicle=After-Request,{ 
balance[{userID(S)},{type(R)=CRAM}](C)← 
balance[{userID(S)},{type(R)=CRAM}](C)+ 

CRAM.use.size(A) } >})∨  
(type(R)=MRAM∧MRAM.type(A)=get∧ 
MRAM.get.size(A) +balance[{userID(S)},{ 
type(R)= MRAM}](C)≤2 
@{<Chronicle=After-Request,{ 
balance[{userID(S)},{ type(R)=MRAM}](C)← 
balance[{userID(S)},{ type(R)=MRAM}](C)+ 

MRAM.get.size(A) } >}) 
The logical expression was refined and simplified 

according to the rules specified in [1]. 
The resource type specific policy for the CPU will 

be role(S)=staff∧type(R)=CPU∧CPU.type(A)=use. 
This policy has no size constraint because the resource 
type constraint i.e. type(R)=memory evaluates to false 

against the CPU type node and 
type(R)=cluster∧cluster.type(A)=run is made specific 
to type(R)=CPU∧CPU.type(A)=use (for fuller details 
of this refinement see [1]). The obligation policy 
disappears because the CPU type does not encapsulate 
CRAM or MRAM types (according to the resource 
type hierarchy). Consequently we will not discuss this 
policy further. 

The resource type specific policies for CRAM and 
MRAM will be: 

role(S)=staff∧type(R)=CRAM∧ 
CRAM.type(A)=use∧ 
CRAM.use.size(A) +balance[{userID(S)},{ 
type(R)= CRAM}](C)≤2 
@{<Chronicle=After-Request,{ 
balance[{userID(S)},{type(R)=CRAM}](C)← 
balance[{userID(S)},{type(R)=CRAM}](C)+ 

CRAM.use.size(A) } >}) 
and 

role(S)=staff∧type(R)=MRAM∧ 
MRAM.type(A)=get∧ 
MRAM.get.size(A)+balance[{userID(S)},{ 
type(R)=MRAM}](C)≤2 
@{<Chronicle=After-Request, 
{balance[{userID(S)},{type(R)=MRAM}](C)← 
 balance[{userID(S)},{type(R)=MRAM}](C)+ 
 MRAM.get.size(A) } >} 
The reason why the constraint 

memory.use.size(A)≤3 has been deleted is that this 
relational expression only applies to the memory 
resource, as is indicated by its name. The pair of 
coordination policies are refined because only one of 
them evaluates to true for each resource type. 

Refining the abstract high level policy for the 
cluster type to the cluster instance produces the 
following policy for a cluster level PDP: 

role(S)=staff∧type(R)=cluster∧type(A)=run 
The reason that the policy has been simplified to 

such an extent, by removing the memory and CPU 
constraints and coordination policy and accompanying 
obligation policy is that the resource types and actions 
associated with these do not match the resource 
instance that the policy is being created for, and we 
assume that the constraints for the lower level 
resources will be enforced by PEPs and PDPs using 
lower level policies. If this is not the case, then the 
resource type hierarchy is invalid, and should only 
consist of the cluster resource type (there is an implicit 
assumption in the model that each resource instance 
has an associated PDP).  

Similarly, when refining the memory type policy 
for the memory instance we get: 

role(S)=staff∧type(R)=memory∧ 



 

 

memory.type(A)=use∧memory.use.size(A)≤3 
Applying the MRAM type specific policy for the 

MRAM instances we get: 
role(S)=staff∧type(R)=MRAM∧ 
MRAM.type(A)=get∧MRAM.get.size(A) 
+balance[{userID(S)},{type(R)=MRAM }](C)≤2 
{<Chronicle=After-Request, 
{balance[{userID(S)},{type(R)=MRAM }](C)← 
 balance[{userID(S)},{type(R)=MRAM }](C)+ 
 MRAM.get.size(A) } >} 

The policy for the CRAM instances will be: 
role(S)=staff∧ type(R)=CRAM∧ 
CRAM.type(A)=use∧CRAM.use.size(A) 
+balance[{userID(S)},{type(R)=CRAM }](C)≤2 
{<Chronicle=After-Request, 
{balance[{userID(S)},{type(R)=CRAM}](C)← 
 balance[{userID(S)},{type(R)=CRAM}](C)+ 
 CRAM.use.size(A) } >} 
From the above example, we can see that very 

simple policies can be prepared for the PDPs of all 
resource instances except MRAM and CRAM which 
require coordinating actions, and even these policies 
are simpler than the high level abstract one for the root 
resource. 

  
5. Implementation issues 
 
5.1. The coordination object 
 

The coordination object is a container which holds 
the coordination attributes. From an implementation 
perspective, the coordination object C can be a data 
base comprising of tables, in which each table 
represents one coordination attribute. A coordination 
attribute is identified by its whole notation rather than 
its name, and its dimensions define the dimensions of 
the corresponding database table. 

A 0-D coordination attribute (e.g. name(C)) can be 
represented as a 1x1 database table, which has a single 
value. A 1-D coordination attribute, (e.g. 
name[{SubDim}](C)) can be represented as a MxN 
table, where M-1 is the number of defining attributes 
in the (subject) dimension and N is the length of this 
dimension (i.e. the number of unique combinations of 
the M-1 attribute values). For example, given a 
coordination attribute credit[{firstName(S), 
lastName(S)}](C), this can be represented as a 3xN 
table, where N is the number of unique 
firstName/lastName combinations. There are 
firstName(S), lastName(S) and value columns in the 
table. The firstName(S) and lastName(S) columns are 
used to record a unique combination of these two 
subject attribute values. The value column is used to 

record values of the coordination attribute for each 
firstName and lastName combination.  

Similarly, a 2-D, 3-D or 4-D coordination attribute 
can also be represented as a table. The general formula 
for the size of a table is 

(|SubDim|+|ResDim|+|ActDim|+|EnvDim|+1)xN 
where |x| represents number of members in the set x. 

Besides the value column, there is a column for 
each attribute in the set defining a dimension. For 
example, the coordination attribute recording the 
number of accesses in different modes to files in 
different filestores could be held as numberOfAccesses 
[{id(S)},{id(R)},{mode(A),fileName(A)}](C) and can 
be represented as a table which consists of 5 columns.  

 
5.2. Accessing the coordination data 
 

By using a database to store the coordination 
attributes we benefit from a number of advantages: (1) 
fast performance for retrieving and updating the 
attribute values, since databases are optimised for this; 
(2) built in support for multiple concurrent accesses, 
through the well defined concepts of read-write locks 
and transactions; (3) the ability to distribute and 
replicate the database if necessary in order to increase 
performance. 

The policy enforcement component that is 
responsible for accessing request context attribute 
values is, according to the XACML model, the Policy 
Information Point (PIP). This is defined as “the system 
entity that acts as a source of attribute values” [2]. At 
run time, the value of a coordination attribute can be 
obtained by retrieving the particular value from the 
corresponding table using parameters from the request 
context.  

Using table T above as an example, assume a 
subject (id = X) wants to access a file (mode = M, 
fileName = F) on a resource (id = Y), then the current 
value of the numberOfAccesses may be located from 
table T by the following SQL command: SELECT 
value FROM T WHERE id(S)=X AND id(R)=Y AND  
mode(A)=M AND fileName(A)=F. If no record can be 
located using these dimensional attribute values, this 
means that it is the first user access of this kind, and a 
new row, consisting of these dimensional attribute 
values and an initial value for the numberOfAccesses 
(taken from the coordination object policy), should be 
inserted into the table. The initial value can then be 
given to the PDP. 

Details of which coordination attribute values are 
needed for a given access control policy may be 
obtained from the PDP after initialisation by calling a 
new method getCoordinationAttributeTypes. This 
returns the details (names, dimensions) of the 



 

 

coordination attributes that are in the access control 
policy and that may be needed for decision making. 

Since we store the coordination attributes in a 
relational database, we can dynamically build the 
coordination object without prior knowledge of the 
access control policy; we only need to know the 
coordination object policy. For example, say 
getCoordinationAttributeTypes returns the 
coordination attribute balance[{userID(S)}](C), then 
we can create an empty table called balance at 
initialisation time, and only populate it with values as 
and when subjects make access requests. The balance 
table will be a 2xN table as shown in Figure 3. Assume 
further that the coordination object policy requires that 
all initial values be set to zero. If a user whose id is the 
LDAP DN CN=fred, O=kent, C=uk requests to get 0.5 
GB from a memory device, in order to get a 
coordination datum for balance[{userID(S)}](C), we 
need to retrieve the datum from the table using the 
condition userID(S)=”CN=fred,O=kent,C=uk”. If this 
access request is the first request from this user, the 
retrieve action will fail. Consequently, a new record 
containing this user’s LDAP DN and value 0 (the 
initial value) must be inserted into the table. The 
current value (i.e. 0) is then given to the PDP in the 
request context as the coordination attribute value. If 
the access control policy evaluates to true against this 
request context then the response will include an 
authorisation decision of permit and an obligation to 
update the value by 0.5 either before or after enforcing 
the user’s request (Chronicle). We have implemented 
coordination attribute retrieval and obligation 
enforcement as an atomic transaction on the database 
(i.e. read value followed by update) in order to ensure 
consistency of access control decision making.  

 

userID(S) value

CN=fred,O=kent,C=uk 0.5
CN=mary,O=huhhot,C=cn 1

 
Figure 3. The coordination data for 
balance(C[{userID(S)}]) 

 
If another user (e.g. CN=mary,O=huhhot,C=cn) 

requests to get 1 GB, another row will be inserted into 
the table when this request is processed. After these 
two requests and the corresponding obligations have 
been performed, the table will look like Figure 5. At 
some point in time coordination values will need to be 
reset, and the tables reduced in size (garbage 
collected). These are all features of the coordination 
object policy, which we are still defining. 

   

5.3. Coordination object distribution 
 

Given a set of access control policies, we can 
construct a coordination object which will initially 
contain a set of empty tables. The coordination object 
can be naturally partitioned according to the tables it 
contains. These partitions can then be distributed 
and/or replicated by the underlying database 
management system according to an application’s 
performance requirements. We propose that any table 
containing resource attribute columns is partitioned 
horizontally according to the resource attribute values, 
and then distributed to the sites where each resource 
resides.  All remaining tables are not partitioned but 
are stored in a central repository. This coordination 
object partitioning and distribution is illustrated in 
Figure 4, where cc denotes the centralised coordination 
object holding non-partitioned tables and dc denotes 
the partitioned and distributed coordination object 
holding tables partitioned for each resource. 

 

Local PDP

Decision
Request

D
ecision

Decision
Request

Decision
Request

D
ecision

D
ecision

Local PDPLocal PDP

Distributed Application

Site 1 Site 3

DC

CC

Site 2

PEP

PIP

PEP

DCPIP

PEP

DCPIP

 
Figure 4. Distributed and centralized coordination 
objects 

 
The distributed coordination object (i.e. tables 

having resource attribute columns) may be further 
refined by removing the resource attribute columns, 
since they will always contain the same values – that 
of the resource that they have been distributed to. In 
this way, the distributed table can be reduced in size 
and accessed more efficiently. 

Although we suggest distributing PDPs and the 
coordination object to each resource for performance 
reasons, the coordination mechanism described here is 
independent of distribution. 
 
6. Related work and conclusion 
 

The OrBAC model [8] abstracts users by roles, 
actions by activities and objects by views. Thus, 
policies can be specified at different levels. In the 



 

 

application level, a user can do an action on an object. 
In the abstract level, a role can take part in an activity 
on a view. The policy refinement in this model 
concerns only a simple mapping. Mapping of the 
activities with respect to the views into the actions with 
respect to the objects is only specified by a simple 
relation Use(action, activity, organisation) with respect 
to Consider(object, view, organisation). This model 
considers neither multiple access control decision point 
issues nor coordination between different access 
control decisions. Ryutov and Neuman [9] mention the 
problem of side effects of access control in their work 
on extending access control policy evaluation 
mechanisms for generating audit data. Nevertheless, 
they only propose to record them in “system variables” 
described by a name and a value. They also assume the 
existence of a software component that can access 
system variables. However, the impact of side effects 
on the security policy is not developed. Siebenlist and 
Mori [5] have addressed distributed PDPs and the 
coordination between them. But theirs is a 
Master/Slave model, in which the master PDP 
orchestrates the querying of a series of slave PDPs 
which each make their own (sub)authorisation 
decisions whilst the master then determines whether 
the ultimate decision is grant or deny. But this 
mechanism is only used to determine the decision for 
one user access request, and does not address 
coordination between user access requests.  

This work has built upon our previous work of 
access control policy specification and decomposition 
[1]. We have provided a conceptual model for 
coordination, and have extended the policy 
specification to include coordination and obligation 
policies, in order to dictate how coordination between 
access control decision making should take place. By 
sharing and exchanging coordination data between one 
or more PDPs, the PDPs can coordinate their access 
control decision making. Using distributed PDPs 
loaded with resource specific policies will increase the 
performance of the decision making compared to a 
centralised PDP.  

Our future work will be to define coordination 
object policies, which specify what values the 
coordination attributes should be initialised with, and 
when they should be discarded. We also need to 
specify meta policies for how multiple valued 
coordination attributes should be handled. We have yet 
to determine how the system can validate whether user 
requests have already been coordinated and enforced 
by higher level PDPs or not - at the moment we 
assume they have because we assume every resource 
has an equivalent PDP. We also do not have a formal 
way of specifying whether the user is able to make 

multiple requests or only single requests to a PDP. 
Since this is an application level issue, we currently 
leave it up to the policy writer to decide. Finally, we 
need to specify a trust model to allow the refinement 
system to download new policies to the PDPs when the 
system configuration or policy changes. When 
everything is complete, we plan to undertake 
performance measurements on the system to see where 
bottlenecks, if any, occur. 

 
7. References 
 
[1] L. Su, D. W. Chadwick, A. Basden and J. A. 
Cunningham, “Automated Decomposition of Access Control 
Policies”, Sixth IEEE International Workshop on Policies for 
Distributed Systems and Networks, Stockholm, Sweden, 
June, 2005,  pp. 3-13.  
[2] OASIS “Extensible Access Control Markup Language 
(XACML) version 2.0”, http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-
os.pdf, pp. 17-18. 
[3] D.W.Chadwick, A. Otenko. “RBAC Policies in XML for 
X.509 Based Privilege Management” in Security in the 
Information Society: Visions and Perspectives: IFIP TC11 
17th Int. Conf. On Information Security (SEC2002), May 7-9, 
2002, Cairo, Egypt. Ed. by M. A. Ghonaimy, M. T. El-
Hadidi, H.K.Aslan, Kluwer Academic Publishers, pp 39-53. 
[4] C .Bettini, S. Jajodia, X. Wang and D. Wijesekera, 
“Provisions and Obligations in Policy Management and 
Security Applications”, In proceedings of VLDB 2002, pp. 
502-513 
[5] F. Siebenlist and T. Mori, “Globus Toolkit: Authorization 
Processing”, GlobusWORLD 2005, 7-11 Feb. Boston, MA, 
USA, http://www.globus.org/toolkit/presentations/GW05-
XACMLandGlobus-Demo.ppt.pdf 
[6] A.K. Bandara, E.C. Lupu, J.  Moffett, and A. Russo, “A 
Goal-based Approach to Policy Refinement”, Proceedings of 
the Fifth IEEE International Workshop on Policies for 
Distributed Systems and Networks (POLICY’04), Yorktown 
Heights, New York, 07 – 09 June 2004, pp. 229-239. 
[7]Grigori Mints, "A Short Introduction to Intuitionistic 
Logic", Publisher Springer, ISBN 0306463946, Oct 2000 
[8] A. Abou El Kalam, R. El Baida, P. Balbiani, S. 
Benferhat, F. Cuppens, Y. Deswarte, A. Miège, C. Saurel et 
G. Trouessin, “Organization Based Access Control”, In: 
IEEE 4th International Workshop on Policies for Distributed 
Systems and Networks (Policy 2003), Lake Come, Italy, 
June 4-6, 2003. 
[9] Tatyana Ryutov and Clifford Neuman, “The specification 
and enforcement of advanced security policies”, In: IEEE 3rd 
International Workshop on Policies for Distributed Systems 
and Networks, Monterey, USA, June 2002, ISBN: 0-7695-
1611-4, p128 – 138 


