
Authorisation using Attributes from Multiple Authorities

David W Chadwick
Computing Laboratory, University of Kent, UK,

 D.W.Chadwick@kent.ac.uk

Abstract

As attribute based authorisation infrastructures
such as XACML gain in popularity, linking together
user attributes from multiple attribute authorities
(AAs) is becoming a pressing problem. Current models
and mechanisms do not support this linking, primarily
because the user is known by different names in the
different AAs. Furthermore, linking the attributes
together poses a potential risk to the user’s privacy.
This paper provides a model and protocol elements for
linking AAs, service providers and user attributes
together, under the sole control of the user, thereby
maintaining the user’s privacy. The paper also shows
how the model and protocol elements can be
implemented using existing technologies, namely
relational databases or LDAP directories, and the
SAML protocol.

1. Introduction

Enabling local attribute based authorisation, using
attributes issued by a remote attribute authority, is
possible today using systems such as Shibboleth [1]. In
the grid world, this is also possible, using attributes
issued by a VO attribute authority [2]. However, a
problem arises if a Service Provider (SP) wishes to use
attributes issued by multiple Attribute Authorities
(AAs) to grant access to its resources. For example, a
service provider might have a policy that a member of
IEEE and a US university will get access to a premium
service; or a medical research database access policy
might mandate that a user is a medical practitioner, as
certified by the General Medical Council, and an
academic at a UK university. Policies such as these are
difficult to implement today, primarily because users
typically have different identities provided by each
AA. A practical example of this problem is now arising
as people are experimenting with providing Shibboleth
access to Grid services [5]. Users have attributes
provided by both their Shibboleth AA (called Identity
Provider or IdP) and by their VO AA, and both sets of
attributes are needed in order to gain access to the Grid
resources. Policy based access control systems such as

PERMIS [3] can enforce such policies, but they have
the restriction that the user must have the same
globally unique LDAP distinguished name at each AA,
so that the different attribute certificates can be
collected and collated together. Such restrictions on
naming are not realistic today, since each AA typically
has its own naming rules and name forms. Whilst this
restriction might become technically feasible in the
future, once national ID cards are commonly in use,
and AAs use these identifiers to name the users,
privacy concerns are likely to ensure that these names
will never be commonly used. Thus we need a scheme
whereby a user can have different and unrelated
identities at each AA, but if he or she so chooses, can
link these identities together so that the resulting
pooled set of attributes can be used to gain access to
resources from different service providers.
Furthermore, due to privacy concerns, we need to
tightly control this attribute linking to ensure that no
single third party can know which attributes the user
has linked together. Some of the consequences of this
restriction are:
- when a user links the attributes of several AAs

together, the only single person who knows about
all these linkings is the user himself,

- a SP should not be able to link a user’s request for
a service to the identity of the user without the
cooperation of the AA,

- a SP should not be able to link together the
identity of the user on multiple sequential requests,

- a SP should not be able to determine who the user
is on requests that provide attributes from multiple
AAs.

We present a solution to the problem presented here.
The rest of this paper is structured as follows. Section 2
describes the model for linking AAs, SPs and user
attributes together whilst respecting the user’s privacy.
Section 3 describes the protocols that support the
linking of the various entities together, both statically
and dynamically. Section 4 indicates how the protocol
and model can be implemented in existing
technologies, namely relational databases or LDAP
directories and the SAML protocol. Finally section 5
concludes and briefly describes our plans for the

future.

2. The Linking Model

In the model being proposed here, AAs are

statically linked together in pairwise relationships
(termed partnerships), to facilitate their users linking
their attributes together. Zero, one or more users may
statically link together their attributes from an AA
partnership. The two AA from a partnership may be in
zero, one or more federations, and the number of
federations that each is a member of may change
dynamically without affecting their partnership. A
federation is formed by AAs and SPs joining together
for business reasons, and the memberships of these
federations can continually change. When a user
initiates a session with a federation, the user may
choose to dynamically link together her attributes from
one or more AA partnerships, and these AAs are then
dynamically linked with one or more SPs for the
duration of the user session. In order for these linkages
to work correctly there are a number of underlying
assumptions, described below.

2.1 Underlying Assumptions

The model being proposed relies on the following
assumptions being true
1. Each AA and SP has a PKI key pair which is used

to identify it to the other participants
2. Each AA can choose its own naming scheme with

which to identify its users. It may use a pre-
existing global naming scheme, or use its own
local one.

3. Users are named according to the chosen naming
scheme and their attributes are stored by the AA
along with their name.

4. Each AA has access to an Authentication Service
which can authenticate users against their name.

5. When an AA issues an attribute certificate or
attribute assertion (we treat these terms as being
synonymous) on behalf of a user, we make no
assumptions about the user identity that is inserted
in it. The AA can choose to use the actual name of
the user or a pseudonym. It may use the same or
different identifiers for the same user in different
certificates that it issues.

2.2 The AA Partnership Model

The model assumes that no AA is required to link with
any other. They can all freely make the choice whether
to link or not. However, when AAs do link together
they do so in a pair wise relationship only, termed a
partnership. Each AA partnership is unrelated to any

other AA partnership that either AA may enter into.
The partnership is also independent of any federation
that either AA may be a member of. The partnership is
cryptographically cemented by the AA pair sharing a
strong symmetric key e.g. a 256 AES key. The model
does not dictate any symmetric algorithm or key size.
The two AAs decide this amongst themselves,
according to their requirements. The model does not
dictate how this key is generated and shared. Any
secure mechanism can be used e.g. Diffie Hellman or
encrypting with the public key of the recipient, or
manual exchange. The model assumes that this strong
secret exists once the partnership has been established,
and when the partnership terminates the shared secret
will be destroyed. The AA pair may dynamically
change their shared secret, but it is outside the scope of
the model how or when this is done.

Protocol interactions defined in this paper rely on
this strong shared secret, and will carry tokens
encrypted with it between the AA pair, either directly,
or via one or more intermediaries. Successful
decryption of a received token is deemed to be
sufficient proof that the token was generated by the
other partner in the pair.

When two AAs decide to form a partnership they
are doing so for the express purpose of allowing their
users to link their attributes together. Each AA is
acknowledging that when a linked user retrieves his
attributes (either directly or indirectly) from one
partner, in order to gain access to a particular
federation service, the other partner will also release
the linked user’s attributes to the same service
providing that:

- it receives a token from the service which was
freshly generated by its partner, and

- the partners and the service provider are all part of
the same federation.

2.3 The User Account Linking Model

Users may individually decide to link together their
attributes from two AAs in a partnership. AAs should
not automatically and unilaterally link together the
attributes of their users, since this could violate the
privacy of their users. The only person who has
sufficient knowledge (and is therefore authorised) to
link together the attributes held under one name in one
partner AA, to the attributes held under another name
in the other partner AA, is the person who can
successfully simultaneously authenticate to each AA
using the respective user names used by each AA. How
this is achieved is described in section 3.1.

2.4 The AA-SP Federation Model

The model assumes that no AA or SP is required to
federate with any other. They can all freely make the
choice whether to federate or not, according to
business reasons. However, when AAs and SPs do
federate together, they do so in groups of any arbitrary
size, providing that each group contains at least one
AA and one SP. This is conceptually the same as
Shibboleth federations and Liberty Alliance circles of
trust. When a federation is formed, the members share
their public key certificates or root CA certificate(s) so
that they can each communicate with the others using
digital signatures to authenticate themselves. AAs and
SPs may be members of many different federations
simultaneously. Each federation must have a unique
federation identity, FId, so that each member will
know the context of any particular message exchange
between themselves. This is because two federation
members, e.g. an AA and an SP, may be in several
different federations simultaneously, and each
federation may be bound by different rules and
policies.

3. The Protocols

The protocols comprise a user attributes (UA) linking
protocol, a primary AA-SP protocol, and a secondary
AA-SP protocol. We do not define a protocol for
creating AA partnerships, since there are several pre-
existing protocols for exchanging symmetric keys. The
UA linking protocol is initiated by a user in order to
link together the attributes held under the two different
names (or identities) in an AA partnership. The
primary AA-SP protocol is directly or indirectly
initiated by the user when she wants to gain access to a
service provided by the SP. The secondary AA-SP
protocol is initiated by the SP when it is prepared to
merge the attributes from multiple AAs in order to
grant the user access to its resources.

3.1. The UA linking protocol

We assume that a user has identity ID1 with AA1 and
the unrelated identity ID2 with AA2. Each identity has
a set of one or more attributes [A1, A2 .. An]i
associated with it. It is these two sets of attributes that
will be linked together by the UA protocol. We further
assume that each AA will display on its web site the
list of other AAs that it has formed AA partnerships
with so that a user can see which of its attribute
accounts may be linked together.

Step 1. The user authenticates to AA1 using identity
ID1 and opens up a session.
Step 2. The user authenticates to AA2 using identity
ID2 and opens up a session.

The above steps can be implemented in several
different ways. We envisage that the simplest way
from a user’s perspective is to establish an Https
(TLS/SSL) connection with each AA from his web
browser, using links provided on each AA web site that
point to their AA partners. Once the user has two open
browser windows, he will input his respective
usernames and passwords into each prompt. These are
then transferred via encrypted links to each AA.

Note. At this time neither AA knows that the user
has established a secure connection with the other AA,
since the two browser sessions are unrelated.

Step 3. The user transfers the same long random secret
to each AA across the encrypted link. The simplest
way for the user to enact this is to simply cut a long
random string from any document currently open on
his desktop and paste this into the same empty field in
each of the two browser windows that are currently
connected to each AA. We suggest a field length of 64
characters is long and strong enough.

Step 4. When an AA receives the long random
number, it opens up a service port to listen for
incoming messages and displays this URL back to the
user, along with the prompt “Please provide this URL
to the other attribute authority you wish to link to this
one”. It also displays the prompt “Please provide the
URL of the other attribute authority” along with an
empty field for the user to complete.

Step 5. The user gives the URL of AA1 to AA2 and the
URL of AA2 to AA1. The user can simply cut and paste
the URL displayed in browser window 1 into browser
window 2, and vice versa.

Note. After step 5 has been completed, each AA
knows the details of the other AA whom the user has
chosen to link his attributes with. Assuming that the
user has correctly chosen two AAs who have a
partnership with each other, then each AA will be able
to identify this partnership and the corresponding
strong symmetric key that has been shared between
them. Otherwise each AA can terminate the session
with the user with an appropriate error message.

Step 6a. (Enacted by both AAs in parallel). As soon as
an AA (AAi) receives the URL input by the user, it
sends the following message to that URL

dateTimeAAi, nonceAAi {Hash(LRN), dateTimeAAi,
nonceAAi, RIDAAi,}EncSSK

Where
dateTimeAAi is the current date and time for AAi

nonceAAi is a random nonce generated by AAi. The
dateTime and nonce are used to prevent replay of this
message.
Hash(LRN) is the SHA1 hash of the long random
secret input by the user,
RIDAAi is a random identifier for IDi generated by AAi
and stored along with the record for this user,
{..} EncSSK represents encryption of the message
enclosed in { } using the strong secret key shared
between AA1 and AA2.

Note. Since the destination URL has been
specifically generated by the receiving AA, it can be
sure that only the trusted AA from its partnership will
contact it using this URL. Therefore no further
identification information is needed in this message.
Successful decryption is proof enough that the partner
AA is communicating with it, and the dateTime and
nonce allow the recipient to confirm that this message
is not a replay of a previous communication with the
partner AA.

Step 6b. (Enacted by both AAs in parallel). Upon
receipt of the message from Step 6a, the receiving AA
(AAj) decrypts the message, and compares the received
hash to a hash of the long random number given to it
by the user. If they are identical, then AAj stores the
random identifier provided by AAi (and used by AAi to
identify the user) along with its record for this user.

Note that Steps 6a and 6b may be reversed for one
of the AAs i.e. it may receive the message in Step 6b
before it sends the message in Step 6a, in which case it
sends message 7 instead of message 6a. After step 6 (or
6 and 7) has been completed then both AAs have
linked the user’s two sets of attributes together and
have exchanged new random identifiers to identify this
user. Each AA’s record for this user will now contain

IDi, PWi, [A1, A2 .. An]i, RIDAAi, AAj, RIDAAj

Step 7. (Optional. Only enacted instead of step 6a if
step 6b occurred first). AAj generates its own random
identifier RIDAAj to identify the user, and sends the
following message to AAi

{Hash(LRN), dateTime, nonce, RIDAAi,
RIDAAj}EncSSK

Recovery. In the event of a protocol failure, and one of
the messages 6a or 7 not being received by the
intended recipient, then the intended recipient should
resend message 6a, and wait for message 7 to be
returned. In the event that one of the AAs receives
message 6a twice, it should respond with message 7.

3.2 The Primary AA-SP protocol

The Primary AA-SP protocol piggybacks on any
existing AA-SP protocol such as SAML, Shibboleth,
Liberty Alliance etc. One such suggested
implementation is given in section 4. The user contacts
the SP, authenticates to it1 in the usual way using an
identity that is linked to the primary AA. The SP
contacts the primary AA to ask for the user’s attributes,
and the user indicates to the primary AA which
attributes should be returned, as well as which linked
AA accounts she wants to be contacted for their sets of
attributes to be returned as well. The primary AA
returns the primary attributes along with the following
set of tokens:

AA1 {nonce, timeDate, RIDAA1}EncSSKP1,
[AA2 {nonce, timeDate, RIDAA2}EncSSKP2 …
AAi {nonce, timeDate, RIDAAj}EncSSKPj] (1)

where {..}EncSSKPi represents encryption of the
message enclosed in { } using the strong secret key
shared between the primary AA and AAi. Conceptually,
these tokens are references to remote AAs. These
tokens inform the SP that the user wishes to use
additional attributes that can be obtained from the
referenced set of AAs. This set of references can be as
long as required by the user. Each element in the set
comprises the name of the AA and an encrypted token
that should be sent to that AA. The encrypted token
contains the unique random identifier used by that AA
to identify the user, as well as a nonce and current
timeDate stamp. The latter form a dual purpose. Firstly
they allow the recipient AA to detect the replay of
messages, and secondly they ensure that the SP will
never get the same token twice, even though it always
contains the same random user id. Thus the SP will not
be able to link consecutive user requests together to
determine which users have linked attributes in which
AAs, unless the primary AA always uses the same
identifier to identify the same user with the SP, in
which case the SP will know that user x has some
attributes in AAs 1 to i, although it wont know the
identity of the user with those AAs.

Note that any additional protection of the above set
of tokens as they are transferred from the primary AA
to the SP, will be enacted in the same way as
protection of the primary attributes, since they are
carried in the same message. If the primary attributes
are transferred in the clear, then the names of the

1 In Shibboleth the user is redirected to his home site
(IdP and AA) where he authenticates and is then
redirected back to the SP, who then contacts the AA to
ask for the user’s attributes.

linked AAs will also be transferred in the clear, but we
assume that the latter is less of a privacy issue than the
former. If the primary attributes are protected, e.g. via
an SSL connection or web services security, then the
tokens will be protected in the same way.

3.3 The Secondary AA-SP protocol

It is important to note that attribute merging is a
function of the SP. It decides whether it needs to link
together user attributes from different AAs or not, in
order to grant access to the user. If merging is not
necessary, due to the SP’s policies, then the SP will
simply ignore the set of tokens provided in the primary
AA-SP protocol and grant (or deny) access to the user
based on her attributes from the primary AA. If
however the SP knows that multiple attributes from
multiple authorities are necessary in order to grant
access, then it will act on the tokens provided in the
primary AA-SP protocol, and contact the AAs that it
deems to be necessary.

The SP and the primary AA, AAP, are obviously in
the same federation, FId, otherwise the user would not
have gotten this far in the transaction. But one or more
of the secondary AAs may not be in the same
federation as the primary AA and SP, or may be in
multiple different federations with them. It is not a
requirement of the model that each AA knows which
federation(s) its partner AAs are in. Thus it is
incumbent upon the SP to notify the secondary AAs of
the federation which is currently being utilized. The SP
sends a normal attribute request message to each
secondary AA (e.g. AA1) that is in the current
federation, FId, and piggybacks the following
parameters in that message:

FId, AAP {nonce, timeDate, RIDAA1}EncSSKP1 (2)

This message informs the recipient AA (AA1) of its
partner AA (AAP). This allows the recipient AA to
select the appropriate secret key with which to decrypt
the token. Once decrypted, the recipient AA can
determine if the message was replayed or not, and if
not, use the random identifier RIDAA1 (that it
previously generated) to locate the user’s attributes.
These are then returned in the normal way in the
attribute response message.

Protection of the attribute request and response
messages will be performed as usual. No additional
requirements are placed on this by the secondary AA-
SP protocol. Thus SSL or web services security might
be used, as applicable to the application.

The SP will repeat this protocol for each linked AA
it deems to be necessary. Once the attributes have been

received, the SP can merge them and use them all in
making its access control decisions.

4. Implementation

4.1 The Attribute Database

Attributes are normally stored in either relational
databases or LDAP directories. The model described
above can be implemented in either as follows.

4.1.1. Relational Database

Assuming that there is an existing attribute table
containing the rows: userPrimaryKey, AttributeType,
AttributeValue, for example:

12345, ID, Fred26
12345, Age, 45
12345, PW, ****
12345, Role, Project Manager
45678, ID, JohnW
45678, Role, Engineer

etc,
then two new tables need to be defined. The first
contains details of the AA partnerships, and stores the
AA partner names along with the shared secret keys2.
The second contains details of all the user account
linkages, using the tuple: userPrimaryKey, localRID,
AAj, RIDAAj , for example:

12345, SA8NOREYS…, cs.kent.ac.uk/atauth,
RE7CP2YLZ…
12345, FSZN0TR5CL…, aa.bat.com/sts/issue,
SP9DCLBYT…
45678, S97CHWT7A…., cs.kent.ac.uk/atauth,
CUA6GL1S..

etc.

When the AA receives an SP request for a user’s
attributes, and the user indicates that linked attributes
from one or more AAs should also be returned, then it
looks up the user’s primary key in the new table,
matches the AAs with those requested by the user, and
constructs message (1) from this data and the secret
keys of the partners.

4.1.2. LDAP Directory

The AA partnership secret keys could be stored in
LDAP by creating an LDAP entry for each AA partner,

2 For security reasons the AA may decide to store the
partner secret keys in another place, e.g. in a file
encrypted to a strong password known to the AA
administrator.

and storing the secret keys in these, or they could be
stored elsewhere e.g. in a file encrypted by a strong
password known to the AA administrator.

There are two ways of implementing user account
linkages in LDAP. In method 1, each user’s entry
contains a set of subordinate entries, each containing
the details of one user account link. A new LDAP
schema is needed for this type of entry, comprising an
object class (accountLink) and three attribute types
(localRID, aa, remoteRID). In method 2, a new
complex attribute type (accountLink) is defined whose
values comprises a concatenation of the three string
values localRID+aa+remoteRID.

4.2. The Primary AA-SP protocol using SAML

SAML is expressly designed with extension points to
allow new protocol elements to be added. In the Global
Grid Forum draft “Use of SAML for OGSI
Authorisation” [6], there is already a
SubjectAttributeReferenceAdvice element, which
specifies that “the designated attributes associated with
the specified subject may be obtained from the
referenced URI”. We therefore propose to use this
element to carry the AA-SP protocol. The element
contains the URI of the AA, and one or more
saml:AttributeDesignators. The latter comprises an
attribute namespace (a URI) and an attribute name. We
define the following namespace:
http://sec.cs.kent.ac.uk/namespaces/attributes
and attribute name: encryptedIdentifier. The base64
encoding of {nonce, timeDate, RIDAA1}EncSSKP1 is
used as the attribute name.

4.3. The Secondary AA-SP protocol in SAML

We use the SAML AttributeQuery element to carry

the Secondary AA-SP protocol. This element
comprises an optional Resource element and one or
more AttributeDesignators. The Resource element is
used to hold the Federation identifier, FId, and the
Attribute Designator is copied from the same field of
the Primary AA-SP protocol.

5. Conclusions

In this paper we have defined a secure way of linking
user attributes together from multiple attribute
authorities, in such a way that only the user is aware of
the linkages, and the AAs can only become aware of
the linkages by conspiring or collaborating together.
By linking attributes together in this way, the user can
then gain access to resources whose access control
policies require possession of attributes from multiple
AAs. Even though the service provider is responsible

for collecting the linked attributes, it is not able to
discover which user has them, without the
collaboration of the involved AAs. In this way the
user’s privacy is protected. We have defined a general
model for linking the user attributes together, the
cryptographic protocol elements that are needed to
securely establish the linkings, and we then indicate
how the model and protocols can be implemented
using existing technologies, namely relational
databases or LDAP directories, and the SAML
protocol.

Our future plans are to standardise this model and
protocol, and add the standardised version to the
Shibboleth open source software.

6. References

[1] S. Cantor. “Shibboleth Architecture, Protocols and
Profiles”, Working Draft 02. 22 September 2004, see
http://shibboleth.internet2.edu/
[2] Alfieri R, et al. “VOMS: an authorization system
for virtual organizations”, 1st European across grids
conference, Santiago de Compostela. Available from:
http://grid-auth.infn.it/docs/VOMS-Santiago.pdf; 13-
14 February 2003.
[3] D. W. Chadwick, A. Otenko, E. Ball. “Role-based
access control with X.509 attribute certificates”. IEEE
Internet Computing, March-April 2003, pp.62-69.
[4] OASIS. “Assertions and Protocol for the OASIS
Security Assertion Markup Language (SAML) V2.0”,
15 January 2005
[5] Tom Barton, Jim Basney, Tim Freeman, Tom
Scavo, Frank Siebenlist, Von Welch, Rachana
Ananthakrishnan, Bill Baker, Kate Keahey. ‘‘Identity
Federation and Attribute-based Authorization through
the Globus Toolkit, Shibboleth, GridShib, and
MyProxy”. To be presented at NIST PKI Workshop,
April 2006.
[6] Von Welch, Rachana Ananthakrishnan, Frank
Siebenlist, David Chadwick, Sam Meder, Laura
Pearlman. “Use of SAML for OGSI Authorization”,
Aug 2005, Available from
https://forge.gridforum.org/projects/ogsa-authz

