
Computer Science at Kent

Dependable and Secure Storage in
Pervasive Peer-to-Peer Systems

Rudi Ball, Vicki Spurrett
and Rogério de Lemos

Technical Report No. 11-06
September 2006

Copyright © 2006 University of Kent
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent CT2 7NF, UK

 1

Dependable and Secure Storage
in Pervasive Peer-to-Peer Systems

Rudi Ball, Vicki Spurrett, Rogério de Lemos
Computing Laboratory

University of Kent
Canterbury, Kent CT2 7NF, UK

ABSTRACT
This paper describes an approach to dependable and secure
storage for pervasive systems based on the fragmentation-
redundancy-scattering (FRS) technique. FRS is able to tolerate
both accidental and intentional faults by fragmenting confidential
information into insignificant fragments, and scattering these
fragments in a redundant fashion across a system. The goal is that
the original information that has been fragmented and scattered
can only be reassembled by a trusted agent. The system
architecture is based on the peer-to-peer architectural style in
which each peer (agent) is able to request services for the storage
of information, store information fragments, and forward to other
agents those fragments that are to be stored elsewhere. The
feasibility of the approach is demonstrated in the context of a
multi-agent prototype implemented using IBM’s Aglet System.

Keywords
Agents, Dependability, Security, Fragmentation-Replication-
Scattering, Encryption, P2P architectural style.

1. INTRODUCTION

Current static file storage systems store a file in a single

location. This presents the problem of availability, as when that
single storage location fails all the data stored on it is inaccessible
until the failure is corrected. If a file on the storage becomes
corrupted, then that file is lost. The benefit of peer-to-peer filing
systems is their ability to store files in many different locations.
However, simple file storage in peer-to-peer systems does not
enforce the replication of data throughout the system. Data stored
in a single location is lost when the peer within the system is lost.

Users increasingly have many pervasive computing devices
at their disposal with some of these devices containing reasonably
large unused collections of storage capacity. Not only is there a
proliferation of these devices, but also the mechanisms of
communications and middleware between these devices have
improved radically over the past decade. The increased
connectivity of varying devices could provide increased and more
available shared or pooled storage. Coupled with this, the usage
and popularity of some decentralised data storage systems has
grown with file sharing networks like Gnutella [9], information
anonymity systems like Freenet [4] and Freehaven [7] and
persistent storage systems like Oceanstore [11] being some of the
examples. However the storage in some of these systems still
requires the active knowledge of a storage location and data’s
attributes (such as capacity and location). When storing data in
these types of systems, data needs to be actively directed to the
storage location and when retrieving information, that data

location needs to be actively found. Replicated information is
more easily found.

Work on secure computing systems has focused mainly on
intrusion prevention, that is, the means for preventing the
occurrence of intrusions [15], and which is based on forecasting
and preventing, as far as possible, the different intrusions that
could damage overall system security. Such approaches become
unfeasible in the context of open and decentralized systems
containing a large number of components. Instead of attempting
to prevent any type of intrusion, which in the context of ever
changing environments may be very costly to achieve, some
contributions have already been made in tolerating them. The
basis for such approach is that, in case intrusions are successful,
the whole system’s security will not be compromised since the
intrusions will be handled in the same way faults are tolerated.
Although the term “intrusion tolerance” has been introduced a
while ago [8], only recently there has been a rising interest in this
area [16], which can be confirmed from several major projects,
such as, MAFTIA, OASIS and ITUA, that have been doing
groundwork into concepts, mechanisms and architectures.

Previous work has been done using fragmentation,
redundancy and scattering (FRS) for file storage systems operated
under the assumption of a static or unchanging system of nodes.
This paper’s work has sought to investigate FRS in the scope of a
peer-to-peer system. Utilising a peer-to-peer architecture takes
advantage of storage and computational resources available
within a potentially large network. The system is assumed to
change with nodes entering and exiting the system without
warning. Connections are made between peers, without the
expressed or complete knowledge of all peers within the system.

In this paper, we present an architectural solution for a
dependable and secure storage system based on intrusion
tolerance, which is application independent, and so it can be
scalable to large pervasive systems. For such systems, some
application dependent solutions, such as exception handling, are
not amenable because of the costs involved in dealing with the
combinatorial explosions of undesirable situations. The approach
presented in this paper is based on the fragmentation-replication-
scattering technique [6][8], which has been one of the approaches
used as a basis for building intrusion-tolerant computing systems.
The rest of the paper is structured as follows. In Section 2, we
present some background concepts in dependability and security,
and describe the basis of the fragmentation-replication-scattering
technique. Section 3 presents the overall architectural design of a
dependable and secure storage system for pervasive systems. In
Section 4, we describe an implementation of the proposed
approach, and present some preliminary results of its evaluation.
Related work is presented in Section 5. The last section presents
some concluding remarks, and identifies future directions for
research.

 2

2. BACKGROUND
Before proceeding to discuss the details of a dependable and
secure storage system, in this section we contextualize
dependability and security, and provide some basic concepts
associated with fragmentation-replication-scattering.

2.1 Dependability and Security
The dependability of a system is the ability to avoid service
failures that are more frequent and more severe than is acceptable
[1]. There is a service failure when the delivered service deviates
from fulfilling the intended function. A failure can be
characterized as a security failure when there is the violation of a
security policy. A security policy is normally expressed through
properties, which are related to the absence of unauthorized
access to, or handling of, system state. System failures are caused
by faults, and an intrusion is a malicious external fault that might
lead to a security failure. There are two complementary means for
the provision of dependability and security: fault prevention and
fault tolerance. The former prevents the occurrence or
introduction of faults, while the latter avoids service failures in
the presence of faults. Thus intrusion tolerance is regarded as the
process for tolerating the violation of a security policy. The
fragmentation-redundancy-scattering technique, to be presented in
more detail in the following section, is an example of intrusion
tolerance, which uses fault tolerant techniques as a means to avoid
system failures and the violation of security policies.

In the context of this work, a storage system is dependable if there
is continuity (reliability) and readiness (availability) in the
services it provides, and secure if it prevents the unauthorized
disclosure of information (confidentiality), amendment or deletion
of information (integrity), and withholding of information
(availability).

2.2 Fragmentation-Replication-Scattering
One of the existing approaches for intrusion tolerance is
fragmentation-redundancy-scattering (FRS) technique [6]. The
aim of FRS is to tolerate both accidental and intentional
faults/intrusions by fragmenting confidential information into
insignificant fragments, and randomly scattering these fragments
in a redundant fashion across nodes of a network. Fragments
contain no significant information, so any intrusion into some part
of the system only gives access to unrelated fragments, thus
maintaining the confidentiality of the information (providing
intrusion tolerance). By increasing the number of fragments a file
is broken into, we can reduce the usefulness of a fragment,
thereby improving the security of the system.

Before fragmenting, the original information is encoded and
signed. Incorporating fragment digests may also protect the
integrity of the information. Redundancy is added to tolerate
accidental or deliberate destruction, or alteration of fragments.
Moreover, in case some nodes suffer denial of service attacks,
information fragments can always be retrieved from other nodes,
depending on the existing failure assumptions. The complete
information that has been fragmented can only be reassembled by
an authenticated user in a trusted computing base [6]. The
motivation behind the FRS technique is that an intruder attacking
an individual node has no access to all fragments. Even if an
intruder gets access to all n fragments, n!/2 cryptanalysis have to
be performed to re-constitute the whole information.

3. DEPENDABLE AND SECURE STORAGE
The fragmentation-redundancy-scattering (FRS) technique has
shown to be useful in the implementation of dependable and
secure storage for decentralized systems. These implementations
are based on the client-server model, which is used primarily to
manage small scale collaborations. However, the challenge is how
to apply FRS in the context of pervasive systems in which devices
may have both client and server roles.
This paper considers objects or devices which exist within a
pervasive system as agents. The interaction or co-operation of the
multitude of agents is considered a multi-agent system.
In this section, firstly, the problem domain is scoped by providing
some intuitive concepts concerning the application of FRS to
multi-agent systems, and then the architectural description of an
FRS agent will be described in detail.

3.1 FRS in a Pervasive Peer-to-Peer System
Figure 1 provides an example how the FRS technique could be
applied to a multi-agent system, where not all agents are
connected to other agents, and where agents are expected to
provide services and require services from other agents. As
depicted in the diagram of Figure 1, we have an agent assuming
the role of client in node #1, and the rest of the agents, for
illustration purposes, are considered to be storage agents, though
they could assume the dual role of client and storage.

N#1

N#2

N#3

N#4

N#5

N#6

N#9

N#8

N#7

a

b

c

a

a

a

a

a

b

b

b b

b

c

c

c

c

c

c

b

a

N#1 nodes with client FRS agents

N#6

fragments

plain text
a x

nodes with storage FRS agents

x

y

x

x

x

y

y

y

y

Figure 1. FRS applied to a multi-node system.

In this scenario, the client agent produces from the plain text
information the fragments that are to be scattered within the
system. These fragments will be multicast among the neighboring
agents that will store and scatter them amongst their neighbors.
This scattering process, based on multicast, relies on an agent
sending a fragment to a randomly selected group of neighboring
agents. Each fragments lifetime counter determines the scattering
depth. Whether an agent stores a fragment depends on its storage
policy. In the diagram of Figure 1, the fragments associated with
two plain text files are scattered amongst several agents. It should
not be a problem if all the fragments associated with a plain text

 3

file are stored in a single agent. The agent should not be able to
distinguish which fragment is related to which plain text, and it
should not be able to identify the order of the fragments.
Cycles are avoided by each storage node recording the occurrence
of named fragments. Recording information concerning the
scattering or retrieval of fragments could be seen as a failure point
in the security of the system. When a sending peer seeks to
retrieve a fragment, a requesting peer’s fragment name is recorded
by a receiving peer so as to combat the likelihood of cycles
occurring within the system. Any requested fragment name
previously recorded is not forwarded on to other peers. During the
scattering of fragments, an agent should know which agents have
forwarded fragments for avoiding the fragments to be sent back,
thus creating a loop. This information should be stored in the
agent, and it should not be associated with the fragment. The
process of scattering fragments will terminate when there are
enough fragment replicas in the system. In the context of dynamic
environments, there are no assurances whether this can be
achieved. However, by exploiting the redundancies available in
the system, it is assumed that all the fragments can eventually be
retrieved. In a static system where the availability of resources is
known, agents before scattering the fragments might enquire
about their environment to find what resources are available.
Concerning dynamic environments, it is assumed that both
storage and communication are cheap. In mobile ad hoc networks
this is not a reasonable assumption to be made, but for peer-to-
peer networks the above assumption is perfectly acceptable.
However, in order to deal with those systems that have limited
resources several optimizations can be envisaged for reducing the
processing and storage costs.
Although it is not represented in the diagram of Figure 1, the
process for retrieving the fragments is very similar to that of
scattering the fragments. When a client wants to retrieve a
fragment, it sends a request to its neighboring nodes. An agent
that receives that request will store its source. This allows an
agent to send the fragments only to those agents that have
requested it, thus forming a virtual path between the client
requesting the fragment and the client storing it, and avoiding
unnecessary loops to be formed when forwarding a request. By
sending the fragment back to the agent that has requested it, the
fragment eventually reaches the client. In case the client receives
several copies of the same fragment, the client discards the
additional copies. Once the client receives all fragments related to
a particular plain text, it joins all the fragments. This is decrypted
to obtain the original plain text.
In order to scope the problem, we consider in this paper only the
operations for storing and retrieving fragments. A more complete
approach would have considered other operations, such as,
remove/delete fragments, update fragments, and query the
environment of an agent for checking the availability of
resources.
Authentication and authorization will not be considered in this
paper, although they provide key support for FRS technique [6].
Authentication, in particular, is important for retrieving the
information scattered in the system, and it would prevent an
intruder to have access to the fragments and their order.

3.2 Architectural Representation
The architecture of a multi-agent system can be represented in
terms of the peer-to-peer architectural style. In this style, any
component can interact with other components for providing
services to them or requesting their services [5]. Peers can play
the role of both client and server by directly interacting among
themselves. The main type of connectors in the peer-to-peer style
is the invoke-procedure connector, which can encapsulate
complex interaction protocols reflecting the communication that
may exist between two or more collaborating peers. The services
provided and required by the peers are described in terms of
interfaces.
A fragmentation-replication-scattering (FRS) agent can be
represented as component containing four interfaces, as
represented in Figure 2(a). The provision of a dependable and
secure storage by an FRSAgent is captured by the provided
interface ds_storage. The provided and required interfaces
f_storage capture the services associated with the storage and
retrieval of fragments. Although authentication will not be
discussed in the paper, we have nevertheless left the
representation of the interface as a reference. In order to facilitate
the description of the different services associated with an
FRSAgent, this component has been specialized into two
different components, as depicted in Figure 2 (b) and (c). In the
following, we proceed to describe in more detail each of these
components.

Figure 2. Peer architectural component.

3.2.1 Client Agent
The client agent is responsible for the fragmentation and
scattering of the information, and the retrieval of information that
has been previously scattered. Before fragmentation, the
information is encrypted, and once the fragments are obtained a
message digest is obtained for purpose of naming the fragment
and checking the integrity of the fragment. The named fragments
are subsequently sent to neighbouring peers in pseudo random
order. The process of retrieving the information involves
collecting the fragments, checking their integrity, assembling all
the fragments in their initial order, and decrypting the collection.
The design of the ClientFRS is shown in Figure 3.

 4

Figure 3. Client FRS Agent.

The main components of ClientFRS are the following. The
FragScat is responsible for the encryption and scattering of the
information to be stored. First the information is encrypted by the
AES component, and then fragmented by Fragmentation. The
name of each fragment is obtained from the digest of the fragment
plus the information name and fragment number, done by SHA-1,
which uses the keyed Secure Hash Algorithm-1 (SHA-1) – the
probability of obtaining two distinct fragments with the same
name is possible but unlikely. The Hash function used for naming
and integrity is limited to the client or owner of the information.
The integrity of fragments is not processed elsewhere in the
storage system and hence the system relies on communications
protocols to provide integrity checks on data during
communication between storing peers. For the purposes of this
implementation SHA-1 was used, due to improved provision of
uniqueness and security. The hashing algorithm serves the
purpose of providing a “unique” naming quality for fragments and
is also useful for checking the integrity of the fragment when it is
retrieved. Figure 4 shows the different data representations of
plain text information - as it can be observed, no other
information is appended to the fragments except for their name
otherwise, vulnerabilities might be introduced. Before scattering
the fragments, the sequence and the names of the fragments are
stored in the RefManager. It is assumed that this data, which
provides the basis for retrieving the original information from its
fragments, is stored in a trusted computing base (TCB). The
component Scattering is responsible for multicasting all the
fragments amongst the neighbors of the client agent. The
scattering of the fragments is performed randomly and on
individual basis to prevent an intruder knowing the precise order
and location of the fragments. In a situation in which an intruder
might possess the secret key, the intruder does not know where
the different fragments reside, or their order.
A notion of coverage was introduced to describe the subset or
full-set of nodes to which data was multicast. Taking an example,
coverage of 0.5 with 10 available storage nodes would require
that a single fragment would be redundantly scattered to 5 (half)
of the available storage nodes.

Figure 4. Data representation.

For retrieving the information stored in the system, the client
through Retrieval has to access the RefManager to obtain the
fragments’ sequence and their names. The request for fragments is
done through RequestFrag. Once Retrieval has obtained all the
fragments, and after checking their integrity using MD5, all the
fragments are put together. The original information is obtained
by decrypting the collection of fragments. If additional assurances
are necessary concerning the integrity of the original information,
its digest could have been obtained before its fragmentation, and
used at this point to check the integrity. If the integrity of the
whole cannot be confirmed, all the fragments have to be
discarded, and new fragments have to be requested. It is expected
that the client might receive several copies of the same fragment,
but once the original information is assembled and the integrity
confirmed, these copies can be discarded.

Get Data_Source
Encrypt Data_Source
Divide Data_Source into Fragments of
constant length

FOR-EACH Fragment

Associate Digest with Fragment
record Digest in sequential order

END-FOR

FOR-EACH Fragment

pseudo-randomly scatter fragments to
subset of neighbouring peers according
to policy of coverage

END-FOR

Figure 5. Pseudo-code describing the Client Scatter Process.

 5

Generate random ordered number list of
recorded Digest size
FOR-EACH number in list

Send Request for recorded numbered
Digest

END-FOR

FOR-EACH MessageEvent

IF (Message == ReturnType)
 Check Fragment Digest
 Record Fragment in order

 IF (HaveAllFragments == true)
 Assemble Encrypted Data
 Decrypt Encrypted Data
 END-IF

 ELSE-IF …

 END-IF
END-FOR

Figure 6. Pseudo-code describing the Client Retrieval Process.

3.2.2 Storage Agent
The storage agent is responsible for storing fragments, scattering
fragments amongst other agents, forwarding requests for
fragments, and returning fragments to the source of the request.
The design of the StorageFRS is shown in figure 5.

Figure 7. Storage FRS Agent.

The role of the main components of StorageFRS is the
following. The StoreFrag when receiveing a request for storing a
fragment, first checks whether a fragment with a same name
already exist in the data base (DBFragments), if the fragment
does not exist it stores the fragment in DBFragments. StoreFrag
then sends the fragment to Scattering, for the fragment to be
multicast to neighboring agents. FragManager manages the
storage of fragments since they cannot be stored indefinitely in
the data base. A policy is associated with the storae of fragments.
Similarly, when there is a change in the storage policy, for
example, reducing the amount of space allocated to fragment
storage, the FragManager is responsible for identifying which
fragments to remove.
The process of retrieving the fragments amongst agents is more
complex, but very similar to routing messages in mobile ad hoc
networks. For the purpose of this paper, we have adopted a very
simple algorithm for retrieving and forwarding the fragments to

the client FRS agent. When FragRequest receives a request for a
fragment, FragRequest checks whether there is a fragment with
that name in DBFragments. If there is one, it sends back the
fragment to the agent that has requested it. FragRequest also
sends the request to ForwardRequest for the request to be
multicast among a set of random neighboring agents. (A potential
optimization to this process would be for an agent not to forward
the request if it stores the requested fragment. However, if the
client receives a corrupted fragment, then the client would send a
request that should be forwarded by all the agents that receives it.)
This request is stored so the agent knows which downstream
agents have made the request. The fragment should be sent only
to those agents that have requested the fragment. By keeping a
record of the requests made for fragments, it is a way for tracking
which agents have actually requested the fragments. With this
approach only those agents that have forwarded a request for a
fragment will receive a copy of that fragment. In case the security
of an agent is breached only partial information about the
fragments is revealed i.e. the previous requestor of a fragment
could be determined. For an intruder to obtain the source of the
request, it has to breach the security of several agents – the further
away the intrusion occurs, the harder it becomes to find the source
of the request. If this is achieved, the intruder might attempt to
destroy fragments that seem to be correlated by the same request.
Likewise, this is the reason for multicasting fragments’ requests,
otherwise if they were to be broadcast, some agent would contain
all the requests for fragments related to a particular data
collection, thus introducing a major vulnerability into the system.
Considering that no additional information can be appended to a
fragment, the only way for retrieving a set of fragments is to
establish a virtual path by recording the immediate source of a
particular request, but not the original source of the request. In
this way a collection of requestors is created to the location of a
fragment (storage node), and the fragment traverses these links to
return to the original source of the request.

IF (Message == ScatterType)
 Check Policy

 IF (Store == true)

Store Fragment
 END-IF

 IF (Forward == true)

 Forward Fragment
 END-IF
END-IF

Figure 8. Pseudo-code describing the Storage Node Scatter
Process.

 6

IF Message == Request THEN
 IF Fragment Name Found Locally THEN

 Return Fragment To Requestor
 ELSE

Record Request

Associate Requestor with
Fragment Name

Modify Message Requestor as
this Peer

Forward Message to Neighbouring
Peers

END-IF
END-IF

Figure 9. Pseudo-code describing the Storage Node Retrieval
Process.

4. IMPLEMENTATION AND
EVALUATION
4.1 Implementation
A prototyping methodology was used to incrementally build upon
the static system described by Deswarte et al. [6] to produce this
P2P system.
For the encryption of information, we have employed the
Advanced Encryption Standard (AES), which is a symmetric
block cipher that uses a secret key encryption. Its combination of
robustness, performance, efficiency, low memory requirements,
ease of implementation and flexibility, make it desirable to use.
AES supports key lengths of 128, 192 and 256-bit. There are two
variants for 128-bit blocks: 128-bit key (likely to become the
commercial norm), and 128-bit with 256-bit key. AES uses
substitution, permutations and multiple rounds, the number of
which depends of the key and block sizes (10 for 128/128 up to
14 for largest key or largest block). Its also uses repeat cycles,
9/11/13 for keys of 128/192/256-bit. The algorithm has been
designed for achieving great security and speed, and is easily
implemented on simple processors.
For the provision of the fragment digest, which is used for naming
the fragments and to check their integrity, we have adopted the
keyed Secure Hash Algorithm-1 (SHA-1), which produces a 160-
bit digest providing robustness and improved uniqueness.
It should be reiterated that while the components for encryption
and integrity were chosen in this prototype to be AES and SHA-1,
these components could be changed, with ease, depending on the
desired improvement of security and integrity required by the
users of such a system. The prototype implementation was more
interested in the interactions within the multi-agent system and
the investigation of how data was stored and retrieved by
collaborating agents within the system.
A HashMap was used for the storage of fragments on the storage
agents providing complexity of O(1) access to stored fragments,
while a Vector was used to store the reference list on the Client
agent.

The prototype of the decentralized storage system based on the
FRS technique was implemented using the Aglet System,
developed by IBM Research Japan [10]. This is a simulation
environment that facilitates the implementation of multi-agent
systems. In this environment, aglets are the software instantiation
of an agent. Each aglet could be considered a persistent object,
such that they live and interact within the Aglet System until
actively disposed of. In the simulation of the FRS-based storage
system, agents were implemented as aglets. After an agent is
created, whether a client or a storage agent, it checks its
environment to identify neighboring agents. Since the
environment is assumed to be dynamic, these checks are
performed periodically for the agents to have an accurate view of
their environment.
A limitation of the simulator was that the results viewed the
system at a specific moment or state. The system was not
autonomous in its action of repeatedly generating information,
storing and retrieving that information in the system. The
limitation was necessary to explore the sequential behaviour of
the system with regards to the tests required.
Aglets communicate with one another using message objects.
Messages are managed by a MessageManager built into the
Aglet System. Each Message object in the Aglet System contains
parameters for the message “Kind”, message “Arguments” and
message “priority”. The Kind parameter was modified, acting like
an address, to specify the targeted aglet a message was sent to.
For the implementation of the FRS-based storage system in terms
of aglets, a Client, Storage and Tester were inherited from the
Aglet class with overloaded methods. For the basic activities of
encrypting, fragmenting and scattering fragments, the Client uses,
respectively, the methods applyEncryption(String datasource),
fragmentData(String encryptedString) and
ReplicateAndScatterFragments(Fragment[] data), where the
Fragment class was created as a temporary data structure to
contain a fragment’s name and data payload. The Client retrieves
fragments from the Storage by invoking retrieveFragments().
Identical to the scattering of fragments, their retrieval relies on the
message handling provided by the Aglet class. In a similar
manner, the Storage aglet makes full use of the multicasting
behavior of the Aglet System. An additional class (Tester) was
implemented to generate the required number of instances of
Storage and Client aglets for setting up or administering the
simulation of a multi-agent system.

4.2 Evaluation
To evaluate the decentralized peer-to-peer storage system based
on fragmentation-replication-scattering (FRS) technique several
hypotheses were made and tested. The hypotheses were as
follows:

1. Increasing the number of fragments generated by the

client from the initial data increases the number of
messages generated in the system. This also increases
the amount of time taken to scatter and retrieve the
fragments.

2. Restricting the node storage increases the retrieval time
and the number of messages generated in the system
during the scattering and retrieval phases.

 7

3. If there are n replicas of a fragment, n-1 copies can be
corrupted without affecting the ability of the client to
retrieve the data from the system.

4. Increasing the value of the fragment lifetime counter
will increase the amount of time taken to complete the
scattering process.

Scalability was measured as the efficiency of the system with
increased numbers of components added; hence we would expect
a similar performance for multiple collection of resources
provided to the system. The primary variables which affected the
behaviour of the system included: a) the number of nodes in the
system, b) the number of fragments required to be stored in the
system, c) the variation of coverage (broadcasting or
multicasting), d) message limitation methods (message lifetime or
circular path limit), e) fragment integrity and f) node failure. A
secondary affect was noted by the Aglet System on the
performance of the P2P system.
The systems’ ability to cope with the loss of all but one copy of a
fragment, demonstrated the dependability of the system.
From the perspective of security, the attributes of confidentiality
and integrity are established by the intrinsic robustness of AES
and SHA-1, respectively. One important security attribute that
could have been tested was the availability from the perspective
of denial-of-service attacks. This type of analysis, however,
would be more related to a qualitative evaluation – through, for
example, threat analysis, rather than the quantitative evaluation
performed in this work. All the simulations using the Aglet
System were performed on a Sun Microsystems Enterprise E450-
CA Server with 900MHz Quad Processors. The experiments were
executed between five and ten times to obtain significant
statistical data. In the following, we present some of the results
obtained. For each experiment performed, the duration of the
scattering process was timed from when the client sent the first
fragment out to be stored to the latest time that a storage node
stated that is had received a storage request. Once the storage
nodes stopped reporting that they have received storage requests,
it was assumed that there were no more messages traveling within
the system. When an agent receives a fragment, whether that
fragment is stored depends on the agent’s storage policy, but the
agent has to forward that fragment to a subset or full set of
neighbouring agents, depending on the lifetime counter of the
fragment. The number of replicas produced depends on the
resources available in the system, and this is not known when a
client starts scattering a fragment – it is assumed that we are
dealing with very dynamic environments. The lifetime counter
removed the chance of flooding the system with replicas of a
specific message. Figure 10 shows the number of fragments
generated in the system, which is the total number of fragments
that were forwarded by each agent.

Figure 10. Number of fragments generated in the system.

In Figure 10 the experiments, the number of storage nodes was
kept constant (20) for each test. The lifetime counter of each
fragment was set to a small value (4). Initially, coverage was set
to 1.0 to make the system broadcast messages. The tests were run
then the coverage was lowered to 0.5 and the tests were run again.
Figure 10 illustrates the results for this experiment, comparing the
results for coverage of 1.0 (broadcast) to coverage of 0.5
(multicast). It shows the number of messages generated in the
system during the retrieval phase and also shows the time it takes
to perform the retrieval. Figure 10 also shows that increasing the
number of fragments increases the amount of time it takes for the
client to retrieve those fragments. It also increases the number of
messages generated in the system during the retrieval process.
This was consistent with the hypothesis. The results for scattering
produced a similar graph as that in Figure 10. Broadcasting
requests resulted in both a longer retrieval process and the
generation of more messages in the system than when requests
were multicast. It was found that restricting a storage node’s
capacity increased the retrieval time and the number of messages
generated in the system during the scattering and retrieval phases.
To investigate this phenomenon the number of storage nodes used
in each test was 10 and the counter of each storage message was
set to 4. The number of unique fragments generated by the client
was 10. The probability that any storage node would store a
fragment received was varied from 0.1 to 1.0. A probability of 1.0
would signify that all the received fragments would be stored.

 8

Figure 11. Increasing the probability of storing a fragment.

By increasing the probability of fragment storage the total number
of storage requests generated in the system was reduced (Figure
11). There was no substantial effect on the number of retrieval
requests, as retrieval requests were not linked to the storage
probability in any way. The trend in the time to complete the
scattering and retrieval processes is almost identical to that for the
number of requests, although the time to scatter appeared to be
quite erratic. To verify the dependability of the system all but a
single replica of a fragment were deleted within the system at
random locations within the system. The results illustrated that
the system could retrieve the correct fragment as the data was
successfully reconstructed (Figure 12). Had the final fragment not
been found within the system, the retrieval time would have
tended towards infinity.

Figure 12. Corruption of all but a single copy of a fragment.

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6

Value of Fragment Lifetime Counter

N
um

be
r o

f m
es

sa
ge

s
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tim
e (seconds)

Storage Requests
Time to Scatter

Figure 13. Varying the fragment lifetime counter.

It was found that the system could handle fault similarly as long
as a reasonable number of nodes were still available and at least
one replica of each fragment was still stored within the system,
the system could find those replicas for data retrieval. The more
failed nodes in the system, the less time retrieval took, due to the
decreased multiplicity of messages. To investigate whether the
increasing the value of the fragment lifetime counter would
increase the amount of time taken to complete the scattering
process, the number of storage nodes was kept constant, as was
the number of unique fragments generated by the client. The
lifetime fragment counter was increased from 1 to 5 (Figure 13).
As the fragment lifetime counter was increased, the number of
fragments generated in the system during the scattering process
increased. The time taken for the system to return to a stable state
(no further communication) also increased. With both
broadcasting and multicasting, the intermediate performance
improvement exhibited by both limiting broadcasting and
multicasting, produced a trade-off of relative availability of
fragments in the system. An advantage was found whereby
limiting the lifetime to low values reduced load on the network
resources (improving performance of the network); however the
disadvantage was a loss of replication in the system and a limiting
effect on the retrieval of data within the system, as the scattering
and searchable depth of nodes was reduced (fragments could only
lie a certain distance of hops from the client). In conclusion the
system was found to be of poor performance even for small
numbers of initial fragments stored in the system and non-scalable
as the efficiency of the system was not constant for increasing
sized systems simulated.

 9

5. RELATED WORK
The idea of having a file system based on a decentralized solution
is not new. File availability, confidentiality, and integrity on
large-scale distributed file systems usually rely on the
fragmentation of a file, and the scattering of these fragments
among different nodes of the system [8][13]. The fragmentation
principle, as already mentioned above, is based on splitting an
encrypted file into fragments, where each fragment is then
distributed. There are two different schemes based on
fragmentation and scattering: fragmentation-scattering and
replication [8][6], and fragmentation-scattering and threshold
[15]. In both schemes, a file read accesses a subset of the
fragments, while a file write has to be performed on all fragments.
In fragmentation-replication-scattering (FRS), fragments of
information with little value to a potential intruder are replicated
and scattered across a large number of nodes. The approach
presented in this paper based on the peer-to-peer models was
inspired by [6], although seminal work was presented in [8]. The
major disadvantage of this approach is the communication
overheads. Moreover, most of work related to this scheme has
focused on the client-server model, which is used primarily to
manage small scale collaborations. The fragmentation-threshold-
scattering (FTS) scheme is based on the same principles of
threshold cryptography [14]. Instead of replication, this scheme
relies on the processing of information. Seminal work in this area
is the Information Dispersal Algorithm (IDA) [13]. The algorithm
reliably disperses the information in a file into n fragments, across
n nodes. The file can be reconstructed from any m fragments. This
approach can be viewed as belonging to the field of error
correction codes, in which extra bits are added to a piece of
information, so that if there are k errors within that information,
the information can still be reconstructed. The FTS scheme
contains some redundancy for tolerating both accidental and
intentional faults with respect to integrity, but confidentiality is
not clearly addressed. It is claimed that the scattering of fragments
and the reconstruction of information can be made space efficient
if n/m ~ 1. However, since threshold schema is based on
polynomials, it may become computationally expensive. In the
following, we summarize some recent approaches that appear in
the literature that resemble the peer-to-peer architectural solution
presented in this paper. In terms of fragments distribution, a
dynamic allocation algorithm has been proposed in which
fragments are moved between servers for achieving maximal
assurance [10]. In order to avoid a single server to compromise
the integrity of a file, a restriction was introduced in the
movement of the fragments: no fragment can go through a server
that either holds or has hold another fragment from the same file.
In the context of the proposed approach, such a problem would
not exist because there is no correlation among the fragments’
names of a particular file. However, an intruder might attempt to
destroy all fragments of the same name.
The Information Dispersal Algorithm (IDA) [13], proposed by
Rabin, has been considered in the context of Redundant Residue
Number System (RRNS) for encoding information [3], which
provides uniform coverage of both erasures and errors. The
objective of this work is to provide a dependable and secure data
storage (DS2) to mobile wireless networks. It has been shown that
this approach and IDA have almost the same performance in
terms of code efficiency and complexity [2], even though DS2
provides richer security features than IDA by exploiting the

RRNS codes. An apparent drawback of this approach is that the
system has to be reasonably static for it to be feasible. It is
difficult to envisage the application of DS2 to extremely dynamic
ad hoc mobile networks where large number of nodes can be
joining or leaving the system at the same time. The solution
presented for these possible scenarios was for client/user to adopt
an appropriate level of redundancy during the creation of the file.
Other work on decentralised storage peer-to-peer systems
includes Gnutella [9], Freenet [4], Oceanstore [11] and Freehaven
[7]. Gnutella uses the expensive flooding technique to find data in
a system. A broadcasting approach using what is referred to as
Ping-Pong and Query/Push routing is used for file searching, a
costly approach to network resources. A hop counter is attached
to every request where the hop counter is decremented at each
location where a query is made, reducing the lifetime or search
depth of a request. When the broadcast request find the file being
search a direct peer-to-peer communication is made between the
client and the holder of that file for download. Oceanstore seeks
to provide access to persistent information stores from anywhere
in the globe. With Oceanstore a fee is charged for access to the
persistant storage. The data is then highly available from
anywhere in the network, with automatic replication to allow for
disaster recovery and strong security as a default. OceanStore is
constructed from an untrusted infrastructure, i.e.: it consists of
unreliable servers. The system uses cryptography and redundancy
to protect data. The system monitors itself to improve its
performance and guards against denial of service attacks and
failure of nodes. Their method of naming also seeks unique names
and information migrates to where it is needed in the form of a
cache. Routing information is however transferred between nodes,
replicas are managed and the updating of data stored in the system
is achieved using multicasting. Freehaven seeks to provide an
anonymous publication system, through information trading. The
principles of adding and retrieving documents from the system are
made anonymously. The system is considered dynamic where the
frequent trading makes the failure of nodes “transparent”. Freenet
is a P2P system designed for the provision freedom of speech
using anonymity. All users donate a portion of their hard drives
for the storage of files provided by other freenet users. Users are
encouraged to encrypt their information before inserting it into the
freenet network, but it is not mandatory. The aim is that
information not be censored using decentralisation for the
improving of system availability, reliability and tolerance to
failure. Data is encrypted for confidentiality and the network’s
routing is trained over a period of time, using spiders for finding
information, but also allowing information to be published by
individuals as indexed bookmarks.
All of these systems contain various components which make up
the P2P system we employed, however they are all differing in
their approaches to data scattering and retrieval and not all seek to
define assurances for dependability and the security of data in the
relevant systems.

6. CONCLUSIONS AND FUTURE WORK
This paper has proposed an approach to a decentralised
dependable and secure P2P storage system. The system utilises
the mechanisms of fragmentation, replication and scattering
(FRS), encryption block ciphers (AES) and cryptographic hash
functions (SHA-1) to achieve this aim. This technique relies on
encoding and fragmenting a piece of information, whose

 10

fragments, subsequently, have to be scattered and replicated
among the nodes of a system. The motivation for investigating the
FRS technique in multi-agent systems was to evaluate the
performance of FRS in very dynamic environments in which it is
difficult to establish a stable system configuration. For dealing
with this limitation, one of the potential solutions is to explore
redundancies available in the system. But for that, it is required to
flood the system with replicas, in order to be able to recover the
original information even in the presence of a high number of
malicious or accidental faults. There is a cost associated with such
an approach, and purpose of this work was to have a preliminary
insight of this cost.
The paper, firstly describes an FRS-based decentralized storage
system for large multi-agent systems in terms of the peer-to-peer
architectural style, and then evaluates the feasibility of the
proposed approach through a prototype implemented using Aglet
System. It was claimed that the storage system should be both
dependable and secure, so in the following we briefly analyze the
compliance of the implemented approach towards key dependable
and secure attributes. From the dependability perspective,
reliability and availability were achieved by replicating fragments
amongst several agents, which provides assurances that if at least
one replica of each fragment is obtained, then original file or
information can be retrieved. From the security perspective,
confidentiality was achieved by ciphering the file or information
to be stored, which provides assurances that only those which
have the secret key are able to access the encoded file or
information; integrity was achieved in two ways, first, by signing
the file or information to be stored, which provides assurances
that only the original file or information is retrieved, though
different fragments may remotely have the same name;
availability was achieved by replicating fragments, which
provides assurances that in case a denial of service attack on some
agents, for it to be successful all agents containing a particular
fragment should be attacked, which should be unlikely because
nowhere in the system such information exists.
Another benefit of this P2P storage approach is that fragments
stored have the side effect of being anonymous to all nodes of a
system, except the client, which owns the fragment. With
increased usage of such a model it could be expected that the
security of data could be improved through the sheer volume of
fragments which reside from different clients within the system.
Every storage node if attacked holds obscure and meager
information on the data which it is storing. However, all the above
good qualities come with a price, there is a very high
communication overhead associated with the scattering and
retrieval of fragments. Since the approach attempts to exploit all
the available redundancies in the system, depending on the size of
the system it might be the case that there is no end to the process
of scattering fragments and requests, thus overloading the
communication system with messages.
In terms of future work, a great deal remains to be done since the
work presented in this paper has provided a preliminary insight on
the effectiveness of the fragmentation-replication-scattering
(FRS) technique when designing dependable and secure storage
for large multi-agent systems. First and foremost, the other file
operations, such as, file updating and removal, should also be
implemented and evaluated. Also missing are proper schemes for
optimizing the scattering of fragments and their request depending
on the resources available in the system. A way in which the

ReferenceManager should be dependably and securely stored it
needs also to be investigated. Above all, the evaluations of the
presented approach should be re-done, since the Aglet System has
shown not to be scalable for the type of analyses that are
necessary for properly evaluate the proposed approach.
Future work could explore optimisation techniques for the system.
Scattering while expensive is extremely successful in enforcing
the redundancy of fragments throughout the system (placing few
performance requirements of the client). The retrieval of
fragments could be improved such that searches for fragments are
made not with the present exhaustive flooding search routine, but
with a more controlled and intelligent probing methodology, such
as a simple depth first search or a trained searching model. A
more limited search routine would facilitate the better usage of
resources and perhaps while being slower to recollect the original
data, be less resource intensive.

REFERENCES
[1] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr. “Basic

Concepts and Taxonomy of Dependable and Secure
Computing”. IEEE Transactions on Dependable and Secure
Computing 1(1). January-March 2004. pp. 11-33.

[2] S. Chessa, R. Di Pietro, P. Maestrini. “Dependable and
Secure Data Storage in Wireless Ad Hoc Networks: An
Assessment of DS2”. Proceedings of First IFIP TC6 Working
Conference Wireless On-Demand Network Systems (WONS
2004). Lecture Notes in Computer Science 2928. Springer.
Berlin, Germany. 2004. pp. 184 - 198

[3] S. Chessa, P. Maestrini. “Dependable and Secure Data
Storage and Retrieval in Mobile, Wireless Network”.
Proceedings of the International Conference on Dependable
System and Networks (DSN 2003). San Francisco, CA, USA.
2003

[4] Clark I., Sandberg O., Wiley B., and Hong T.W., “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System”, in Hannes Federrath (ed), “Designing Privacy
Enhancing Technologies: International Workshop on Design
Issues in Anonymity and Unobservability”, LNCS 2009,
Springer, 2001.

[5] P. Clements, et al. Documenting Software Architectures:
Views and Beyond. Addison-Wesley. 2003.

[6] Y. Deswarte, L. Blain, J.-C. Fabre. “Intrusion Tolerance in
Distributed Computing Systems”. Proceedings of the IEEE
Symposium on Security and Privacy. Oakland, California,
USA. May 1991. pp. 110-121.

[7] Dingledine R., Freedman M.J., Molnar D., "The Free Haven
Project: Distributed Anonymous Storage Service", in
Proceedings of the Workshop on Design Issues in Anonymity
and Unobservability, July 2000 (LNCS 2009).

[8] J. Fraga, D. Powell. “A Fault- and Intrusion-Tolerant File
System”. Proceedings of the 3rd International Conference
on Computer Security (IFIP/SEC'85). Dublin, Ireland.
August 1985. pp. 203-218.

[9] Gnutella. "The Gnutella Protocol Sepcification v0.4".
Online: http://rfc-

 11

gnutella.sourceforge.net/Development/GnutellaProtocol0_4-
rev1_2.pdf

[10] D. B. Lange, M. Oshima. Programming and Deploying Java
Mobile Agents with Aglets. Addison-Wesley. Reading, MA,
USA. 1998.

[11] Kubiatowicz J., Bindel D., Chen Y., Czerwinski S., Eaton P.,
Geels D., Gummadi R., Rhea S., Weatherspoon H., Weimer
W., Wells C., and Zhao B., "OceanStore: An Architecture for
Global-Scale Persistent Storage", appears in Proceedings of
the Ninth international Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS 2000), November 2000.

[12] A. Mei, L. V. Mancini, S. Jajodia. “Secure Dynamic
Fragment and Replica Allocation in Large-Scale Distributed
File Systems”. IEEE Transactions on Parallel and
Distributed Systems 14(9). September 2003. pp. 885-896.

[13] M.O. Rabin. “Efficient Dispersal of Information for Security,
Load Balancing, and Fault Tolerance”. Journal of the ACM
36(2). 1989.

[14] A. Shamir. “How to Share a Secret”. Communications of the
ACM 22(11). November 1979. pp. 612-613.

[15] G. Trouessin, Y. Deswarte, J.-C. Fabre, B. Randell.
“Improvement of Data Processing Security by Means of
Fault Tolerance”. Proceedings of the 14th National
Computer Security Conference. Washington, USA. 1991. pp.
295–304.

[16] P. Veríssimo, N. F. Neves, M.Correia. Intrusion-Tolerant
Architectures: Concepts and Design. Technical Report
DI/FCUL TR03-5. Department of Computer Science.
University of Lisbon. 2003.

