
Automatically Evolving Rule Induction
Algorithms

Gisele L. Pappa and Alex A. Freitas

Computing Laboratory
University of Kent

Canterbury, Kent, CT2 7NF, UK
{glp6, A.A.Freitas}@kent.ac.uk

http://www.cs.kent.ac.uk

Abstract. Research in the rule induction algorithm field produced many
algorithms in the last 30 years. However, these algorithms are usually
obtained from a few basic rule induction algorithms that have been of-
ten changed to produce better ones. Having these basic algorithms and
their components in mind, this work proposes the use of Grammar-based
Genetic Programming (GGP) to automatically evolve rule induction al-
gorithms. The proposed GGP is evaluated in extensive computational
experiments involving 11 data sets. Overall, the results show that ef-
fective rule induction algorithms can be automatically generated using
GGP. The automatically evolved rule induction algorithms were shown
to be competitive with well-known manually designed ones. The pro-
posed approach of automatically evolving rule induction algorithms can
be considered a pioneering one, opening a new kind of research area.

1 Introduction

Research in the rule induction field has being carried out for more than 30 years
and certainly produced a large number of algorithms. However, these are usually
obtained from the combination of a basic rule induction algorithm (typically fol-
lowing the sequential covering approach) with new evaluation functions, pruning
methods and stopping criteria for refining or producing rules, generating many
“new” and more sophisticated sequential covering algorithms.

We cannot deny that these attempts to improve the basic sequential cov-
ering approach have succeeded. Among the most successful and popular rule
induction algorithms are, for example, CN2 [1] and RIPPER [2]. The CN2 al-
gorithm was developed following the concepts of the successful ID3[3] and AQ
algorithms. Its current version is a product of small modifications on its first
rule evaluation function, together with the added feature of producing ordered
or unordered rules. RIPPER is an improvement of IREP [4], which in turn is an
improvement of REP, which was created to improve the performance of pFOIL
in noisy domains. From IREP to RIPPER, for instance, the metric to evaluate
the rules during the pruning phase and the rule stopping criterion were changed.
A post-processing phase was also included to optimize the set of learned rules.

2 Gisele Pappa et al.

If changing these major components of rule induction algorithms can result
in new, significantly better ones, why not keep on trying systematically? Our
idea is to do this, but not by using the manual, ad-hoc approach of the previous
research in the area. Rather, we propose the ambitious idea of automating the
process of designing a rule induction algorithm.

Genetic Programming (GP) [5] is a suitable tool for automatically evolving
computer programs. The program evolved by a GP can produce the same solu-
tion humans use to solve the target problem; but it can also produce something
completely new and perhaps better than the “conventional” manually designed
solution. Examples of human-competitive GP solutions can be found at [6].

Automatically evolving a rule induction algorithm “from scratch” would cer-
tainly be an extremely hard task for a GP. However, we can provide the GP with
background knowledge about the basic structure of rule induction algorithms,
making the task more feasible.

Grammar-based GP (GGP) [7] is a special type of GP that incorporates in its
search mechanism prior knowledge about the problem being solved. Intuitively,
GGP is an appropriated tool to automatically evolve rule induction algorithms.

The motivation to design a GP algorithm for automatically evolving a rule
induction algorithm is three-fold. First, although there are various rule induc-
tion algorithms available, their accuracy in many important, complex domains
is still far from 100%, and it is not clear how much, if any, improvement is still
possible with current methods [8]. Hence, extensive research has been done to
try to improve the results obtained by current rule induction systems. GP pro-
vides an automatic way of performing a global search that evaluates, in parallel,
many combinations of elements of rule induction algorithms, which can find new,
potentially more effective algorithms.

Second, all current rule induction algorithms were manually developed by a
human being, and so they inevitably incorporate a human bias. In particular, the
majority of rule induction algorithms select one-attribute-value-at-a-time, in a
greedy fashion, ignoring attribute interactions. A machine–developed algorithm
could completely change this kind of algorithm bias, since “its bias” would be
different from the kind of algorithm bias imposed by a human designer.

At last, it has already been shown that no classification algorithm is the
best to solve all kinds of tasks [9]. Therefore, a GP algorithm could be used to
generate rule induction algorithms targeting specific sets of data, which share
similar statistical features, or even generating a rule induction algorithm tailored
for a given data set. It would allow us to generate different classifiers for different
types of data, just by changing the training data given to the GP.

In [10] we presented the first concepts about automatically evolving a rule
induction algorithm at a high level of abstraction. In this paper, we refine those
ideas in much greater detail. The remainder of this paper is organized as follows.
Section 2 briefly discusses rule induction algorithms. Section 3 gives an overview
of GP and GGP. Section 4 introduces the proposed GGP, and Section 5 re-
ports the results of several computational experiments. Section 6 presents the
conclusions and describes future research directions.

Automatically Evolving Rule Induction Algorithms 3

2 Rule Induction Algorithms

There are three common strategies used to induce rules from data [11]: (1) The
separate and conquer strategy [12]; (2) Generate a decision tree–using the divide
and conquer strategy–and then extract one rule for each leaf node of the tree
[3]; (3) The use of evolutionary algorithms, like genetic algorithms and genetic
programming, to extract rules from data [13, 14].

Among these three strategies, the separate and conquer is certainly the most
explored. The separate and conquer strategy (also known as sequential covering)
learns a rule from a training set, remove from it the examples covered by the rule,
and recursively learns another rule that covers the remaining examples, until all
or almost all examples are covered. It is the most common strategy used for rule
induction algorithms, and the methods based on this approach differ from each
other in four main points [15, 12], although the last one can be absent:

1. The representation of the candidate rules : propositional or first-order logic.
2. The search mechanisms used to explore the space of candidate rules (Usually

a bottom-up, top-down or bi-directional strategy combined with a greedy,
beam or best-first search).

3. The way the candidate rules are evaluated, using heuristics such as informa-
tion gain, information content, Laplace accuracy, confidence, etc.

4. The pruning method, which can be used during the production of the rules
(pre-pruning) or in a post processing step (post-pruning) to help avoiding
over-fitting and handling noisy data.

These 4 points will be the starting point for the definition of the grammar
which the proposed GP will use, as described in Section 4.1.

3 Overview of Genetic Programming

Genetic Programming (GP) [5, 16] is an area of evolutionary computation which
aims to automatically evolve computer programs. Together with other evolution-
ary algorithms, its application is successful because of its problem independency,
global search and associated implicit parallelism [16].

Essentially, a GP algorithm evolves a population of individuals, where each
individual represents a candidate solution to the target problem. These individ-
uals are evaluated using a fitness function, and the fittest individuals are usually
selected to undergo reproduction, crossover and mutation operations. The new
individuals produced during these processes create a new population, which re-
places the old one. This evolution process is carried out until an optimum solution
is found, or a pre-established number of generations is reached.

In this work we use a Grammar-based GP (GGP). As the name suggests,
the major difference between a GP and a GGP is the definition and use of a
grammar. The motivation to combine grammars and GP is two-fold [17]. First,
it allows the user to incorporate prior knowledge about the problem domain in

4 Gisele Pappa et al.

the GP, to guide its search. Second, it guarantees the closure property through
the definition of grammar production rules.

Grammars are simple mechanisms capable of representing very complex struc-
tures. Context Free Grammars (CFG), the focus of this work, can be represented
as a four-tuple {N, T, P, S}, where N is a set of non-terminals, T is a set of ter-
minals, P is a set of production rules, and S (a member of N) is the start symbol.
The production rules have the form x ::= y, where x ∈ N and y ∈ {T ∪N}.

There are three special symbols used in the notation to write production
rules: “|”,“[]” and “()”. “|” represents a choice, like in x ::= y|z, where x
generates the symbol y or z. “[]” wraps an optional symbol which may or may
not be generated when applying the rule. “()” is used to group a set of choices
together, like in x ::= k(y|z), where x generates k followed by y or z.

A derivation step is the application of a production rule from p ∈ P to some
non-terminal n ∈ N, and it is represented by the symbol =⇒. Consider the
production rules x ::= yz and y ::= 0|1. A derivation step starting in x would
be represented as x =⇒ yz and yz =⇒ 0z.

In the GGP algorithm used in this work, each individual of the population is
generated by applying a set of derivation steps from the grammar, guaranteeing
that only valid programs (individuals) are generated [7], as detailed in Section 4.

4 Grammar-based Genetic Programming for Rule
Induction

This work proposes the use of Grammar-based Genetic Programming (GGP) to
automatically evolve rule induction algorithms. In contrast to projects that use
GP to discover a set of rules for a specific data set, like [14] and [13], this project
aims to automatically invent a generic rule induction algorithm, that is, a rule
induction algorithm that can be applied to data sets in general, regardless of the
application domain. Hence, each individual in our population represents a new
rule induction algorithm, potentially as complex as well-known algorithms.

To the best of our knowledge, there has been just two attempts in the litera-
ture to use a GGP for improving the design of a sequential covering rule induction
algorithm. Wong [18] used a GGP to automatically evolve the evaluation func-
tion of the FOIL algorithm. Our work goes considerably beyond that work, as
follows. In [18] the GGP was used to evolve only the evaluation function of a
rule induction algorithm. By contrast, in our work GGP is used to evolve virtu-
ally all components of a sequential covering rule induction algorithm. Hence, the
search space for our algorithm is the space of sequential covering rule induction
algorithms, whilst the search space for [18]’s GGP is just the space of evaluation
functions for FOIL. Suyama et al. [19] also used a GP to evolve a classification
algorithm. However, the ontology used in [19] has coarse-grained building blocks,
where a leaf node of the ontology is a full classification algorithm. By contrast,
our grammar is much more fine-grained; its building blocks are programming
constructs (“while”,“if”, etc), search strategies and evaluation procedures not
used in [19]. Finally, in both [18] and [19], the GP was trained with a single data

Automatically Evolving Rule Induction Algorithms 5

set, like in any other use of GP for discovering classification rules. By contrast,
in this work the GGP is trained with 6 data sets in the same run of the GGP,
because the goal is to evolve a truly generic rule induction algorithm, and not
just a rule induction algorithm for one particular data set.

The GGP method proposed was implemented as follows. In the first gen-
eration of the GGP a population of individuals is created using a grammar.
The grammar contains background knowledge about the basic structure of rule
induction algorithms following the separate and conquer approach.

Each individual in the population is represented by a derivation tree, built
from a set of derivation steps produced by using the grammar. The individuals
(rule induction algorithms) are evaluated using a set of data sets, named the
meta-training set. The classification accuracies obtained from the runs of the
rule induction algorithms represented by the individuals in the meta-training
set are used to generate a fitness measure, as will be explained later.

Table 1. Grammar definition

1-<Start>::=(<CreateRuleList>|<CreateRuleSet>)[<PostProcess>].

2-<CreateRuleSet>::=forEachClass <whileLoop> endFor <RuleSetTest>.

3-<CreateRuleList>::=<whileLoop> <RuleListTest>.

4-<whileLoop>::=while <condWhile> <CreateOneRule> endWhile.

5-<condWhile>::=uncoveredNotEmpty|uncoveredGreater(10TrainEx|20TrainEx|

90%TrainEx|95%TrainEx|97%TrainEx|99%TrainEx).

6-<RuleSetTest>::=lsContent|laplaceAccuracy.

7-<RuleListTest>::=appendRule|prependRule.

8-<CreateOneRule>::=<InitializeRule><innerWhile>[<PrePruneRule>]

<RuleStoppingCriterion>.

9-<innerWhile>::=while(candNotEmpty|negNotCovered)<FindRule>endWhile.

10-<InitializeRule>::=emptyRule|randomEx|typicalEx|<MakeFirstRule>.

11-<MakeFirstRule>::=NumCond1|NumCond2|NumCond3|NumCond4.

12-<FindRule>::=(<RefineRule>|<innerIf>)<EvalRule><StoppingCriterion>

<SelectCandidateRules>.

13-<RefineRule>::=<AddCond>|<RemoveCond>.

14-<AddCond>::=Add1|Add2.

15-<RemoveCond>::=Remove1|Remove2.

16-<innerIf> ::=if <condIf> then <RefineRule> else <RefineRule>.

17-<condIf>::=<condIfExamples>|<condIfRule>.

18-<condIfExamples>::=(numCovExpSmaller|numCovExpGreater)(90p|95p|99p).

19-<condIfRule> ::=ruleSizeSmaller(2|3|5|7).

20-<EvalRule>::=accuracy|purity|laplace|infoContent|informationGain.

21-<RuleStoppingCriterion>::=noStop|purityStop|accuracyStop|nCoveredStop.

22-<StoppingCriterion>::=noStop|SignifTest90|SignifTest95|SignifTest99|

PurityCrit60|PurityCrit70|PurityCrit80|defaultAccuracy.

23-<SelectCandidateRules>::=1CR|2CR|3CR|4CR|5CR|8CR|10CR.

24-<PrePruneRule>::=Prune1Cond|PruneLastCond|PruneFinalSeqCond.

25-<PostProcess> ::=RemoveRule EvaluateModel|<RemoveCondRule>.

26-<RemoveCondRule>::=(Remove1Cond|Remove2Cond|RemoveFinalSeq)<EvalRule>.

6 Gisele Pappa et al.

Fig. 1. Example of an GGP Individual (a complete rule induction algorithm)

After evaluation, a tournament selection scheme is used to select the individ-
uals for the new population. Before being inserted in the new population, the
winners of the tournaments undergo either reproduction, mutation, or crossover
operations, depending on user-defined probabilities.

The evolution process is conducted until a maximum number of generations
is reached. At the end of the process, the best individual (highest fitness) is
returned as the solution for the problem. The chosen rule induction algorithm is
then evaluated in a new set of data sets, named the meta-test set, which contains
data sets different from the data sets in the meta-training set.

4.1 The Grammar

The grammar is the most important element in a GGP system, since it deter-
mines the search space. Table 1 presents the grammar. It uses the terminology
introduced in Section 3, and the non-terminal Start as its Start symbol. The
symbols that appear between “<>” are the grammar non-terminals.

The grammar is made of 26 production rules (PR), each one representing a
non-terminal. For simplification purposes, this first version of the grammar does
not include all the possible terminals/non-terminals we intend to use, but it is
still an elaborate grammar, allowing the generation of many different kinds of
rule induction algorithms.

According to PR 1 in Table 1 (Start), the grammar can produce either a
decision list (where the rules are applied to an unclassified example in the order
they were generated) or a rule set (where there is no particular order to apply
rules to new examples). The derivation trees which can be obtained applying
the production rules of the grammar will create an algorithm following the basic
sequential covering approach. However, the non-terminals in the grammar will
define how to initialize, refine and evaluate the rules being created. They also
specify a condition to stop the refinement of rules and the production of the rule
set/list, and define how the search space will be explored.

Automatically Evolving Rule Induction Algorithms 7

Fig. 2. Fitness evaluation process of a GGP Individual

4.2 The Design of the GGP Components

Individual Representation In our GGP system, an individual is represented
by a derivation tree. This derivation tree is created using a set of production
rules defined by the grammar described in Section 4.1. Recall that an individual
represents a complete rule induction algorithm. Figure 1 shows an example of an
individual’s derivation tree. The root of the tree is the non-terminal Start. The
tree is then derived by the application of PRs for each non-terminal. For example,
PR 1 (Start) generates the non-terminal CreateRuleList. Then the application
of PR 3 produces the non-terminals whileLoop and RuleListTest. This process is
repeated until all the leaf nodes of the tree are terminals.

To extract from the tree the pseudo-code of the corresponding rule induction
algorithm, we have to read all the terminals in the tree from left to right. The tree
in Figure 1 represents an instance of the CN2 algorithm [1], with the beam-width
parameter set to 5 and the significance threshold set to 90%.

The fitness function Evolution works selecting the fittest individuals of a
population to reproduce and generate new offspring. In this work, an individual
represents a rule induction algorithm. Therefore, we have to design a fitness
function able to evaluate an algorithm RIA as being better/worse than another
algorithm RIB .

In the rule induction algorithm literature, an algorithm RIA is usually said
to outperform an algorithm RIB if RIA has better classification accuracy in
a set of classification problems. Hence, in order to evaluate the rule induction
algorithms being evolved, we selected a set of classification problems, and created
a meta-training set. In the meta-training set, each “meta-instance” represents a
complete data set, divided into conventional training and test sets.

As illustrated in Figure 2, each individual in the GP population is decoded
into a rule induction algorithm (implemented in Java) using a GP/Java interface.
Each terminal in the grammar is associated with a block of Java code. When the
evaluation process starts, the terminals in the individual are read, and together
they generate a rule induction algorithm.

The Java code is compiled, and the rule induction algorithm is run on all the
data sets belonging to the meta-training set. It is a conventional run where, for
each data set, a set or list of rules is built using the set of training examples and
evaluated using the set of test examples.

8 Gisele Pappa et al.

After the rule induction algorithm is run on all data sets in the meta-training
set, the fitness of the individual is calculated as the average of the values of
function fi for each data set i in the meta training set. The function fi is defined:

fi =

{
Acci−DefAcci

1−DefAcci
, if Acci > DefAcci

Acci−DefAcci

DefAcci
, otherwise

In this definition, Acci represents the accuracy (on the test set) obtained
by the rules discovered by the rule induction algorithm in data set i. DefAcci

represents the default accuracy (the accuracy obtained when using the class of
the majority of the examples to classify new examples) in data set i. According
to the definition of fi, if the accuracy obtained by the classifier is better than
the default accuracy, the improvement over the default accuracy is normalized,
by dividing the absolute value of the improvement by the maximum possible
improvement. In the case of a drop in the accuracy with respect to the default
accuracy, this difference is normalized by dividing the negative value of the
difference by the maximum possible drop (the value of DefAcci).

Hence, fi returns a value between -1 (when Acci = 0) and 1 (when Acci = 1).
The motivation for this elaborate fitness function, rather than a simpler fitness
function directly based only on Acci (ignoring DefAcci) is that the degree of
difficulty of the classification task depends strongly on the value of DefAcci. The
above fitness function recognizes this and returns a positive value of fi when
Acci > DefAcci. For instance, if DefAcci= 0.95, then Acci=0.90 would lead to
a negative value of fi, as it should.

Crossover and Mutation Operators In GGP, the new individuals produced
by crossover and mutation have to be consistent with the grammar. For instance,
when performing crossover the system cannot select a subtree EvaluateRule to be
exchanged with a subtree SelectCandidateRules. Therefore, crossover operations
have to exchange subtrees whose roots contain the same non-terminal, apart
from Start. Crossing over two individuals swapping the subtree rooted at Start
(actually, the entire tree) would generate exactly the same two individuals, and
so it would be useless.

Mutation can be applied to a subtree rooted at a non-terminal or applied to
a terminal. In the former case, the subtree undergoing mutation is replaced by a
new subtree, produced by keeping the same label in the root of the subtree and
then generating the rest of the subtree by a new sequence of applications of pro-
duction rules, so producing a new derivation subtree. When mutating terminals,
the terminal undergoing mutation is replaced by another “compatible” symbol,
i.e., a (non-)terminal which represents a valid application of the production rule
whose antecedent is that terminal’s parent in the derivation tree.

5 Results and Discussion

The experimentation phase started with the definition of the meta-training and
meta-test sets mentioned in Section 4.2. The current version of the system does

Automatically Evolving Rule Induction Algorithms 9

Table 2. Data sets used in the meta-
training set

Data set Examples Attributes Classes

Monks-2 169/432 6 2
Monks-3 122/432 6 2
Balance-scale 416/209 4 3
Tic-tac-toe 640/318 9 2
Lymph 98/50 18 4
Zoo 71/28 16 7

Table 3. Data sets used in the meta-test
set

Data set Examples Attributes Classes

Monks-1 556 6 2
Mushroom 8124 23 2
Promoters 106 58 2
Wisconsin 683 9 2
Splice 3190 63 3

not support continuous attributes. Hence, we used 10 public domain data sets
having only categorical attributes. Out of the 10 data sets available, we arbi-
trarily chose 6 for the meta-training set and the other 4 for the meta-test set.

Tables 2 and 3 show respectively the data sets used in the meta-training
and meta-test sets. During the evolution of the rule induction algorithm by the
GGP, for each data set in the meta-training set, each candidate rule induction
algorithm (individual) was trained with 70% of the examples, and then tested in
the remaining 30%. In order to avoid overfiting, these sets of data were merged
and then randomly divided in 70-30% for each of the generations of the GGP.
In Table 2, the figures in the column Examples indicate the number of instances
in the training/test sets used by each rule induction algorithm during the GGP
run, respectively. In the meta-test set, data sets were processed using a 5-fold
cross validation process. Hence, in Table 3, Examples indicates the total number
of examples in the data set.

Once the meta data sets have been created, the next step was the choice of
the GGP parameters. Population size was set to 100 and the number of gener-
ations to 30. These two numbers were empirically chosen based on preliminary
experiments, but are not optimized. Considering crossover, mutation and repro-
duction probabilities, GPs usually use a high probability of crossover and low
probabilities of mutation and reproduction. However, the balance between these
three numbers is an open question, and may be very problem dependent [16].
In our experiments we set the reproduction probability as 0.05, and vary the
balance between the crossover and mutation probabilities in order to choose ap-
propriate values for these parameters. The empirically adjusted values were 0.8
crossover probability and 0.15 mutation probability. Sections 5.1 and 5.2 report
the results obtained for the meta-training and meta-test sets respectively.

5.1 Results in the Meta-Training Set

First, we report results about the accuracy of the evolved rule induction algo-
rithms in the test set of each of the data sets in the meta-training set. It should
be stressed that this is not a measure of “predictive accuracy” because each test
set in the meta-training set was seen during the evolution of the GGP. Nonethe-
less, the accuracy on the test sets of the meta-training set is useful to evaluate
the success of the training of the GGP, and so it is reported here.

10 Gisele Pappa et al.

Table 4. Accuracy rates (%) for the Meta-training set

Data set Def. CN2Un CN2Ord RIPPER C4.5R GGP-RI

Monks-2 67.1 67.1 72.9 62.5 69.4 85.5±0.56
Monks-3 52.7 90.7 93.3 90.28 96.3 98.16±0.38
Balance-scale 45.9 77.5 81.3 77.03 78 80.48±0.68
Tic-tac-toe 65.4 99.7 98.7 98.43 100 96.16±1.14
Lymph 54 80 82 76 88 76.26±1.83
Zoo 43.3 96.7 96.7 90 93.3 99.34±0.66

Table 5. Accuracy rates (%) for the Meta-test set

Data set Def. CN2Un CN2Ord RIPPER C4.5R GGP-RI

Monks-1 50 100±0 100±0 93.84±2.93 100±0 100±0
Mushroom 51.8 100±0 100±0 99.96±0.04 98.8±0.06 99.99±0.01
Promoters 50 74.72±4.86 81.9±4.65 78.18±3.62 83.74±3.46 78.83±2.16
Wisconsin 65 94.16±0.93 94.58±0.68 93.99±0.63 95.9±0.56 94.54±0.56
Splice 51.8 74.82±2.94 90.32±0.74 93.88±0.41 89.66±0.78 89.24±0.32

Table 4 shows the default accuracy (accuracy obtained when using the class of
the majority of the examples to classify any new example) of the data sets in the
meta-training set, followed by the results of runs of CN2-Unordered and CN2-
Ordered (using default parameters), RIPPER and C4.5 Rules. These results are
baselines against which we compare the accuracy of the rule induction algorithms
evolved by the GGP. Table 4 also reports the results obtained by the GGP-RI
(Rule Induction algorithms evolved by the GP).

In Table 4 the numbers after the symbol “±” are standard deviations. Re-
sults were compared using a statistical t-test with confidence level 0.05. Cells in
dark gray represent winnings of GGP-RI against a baseline method, while light
gray cells represent GGP-RI losses. In total, Table 4 contains 24 comparative
results between GGP-RI and baseline methods – 6 data sets × 4 classification
algorithms. Out of theses 24 cases, the accuracy of GGP-RI was statistically bet-
ter than the accuracy of the baseline methods in 15 cases, whilst the opposite
was true in only 5 cases. In the other 4 cases there was no significant difference.

5.2 Results in the Meta-Test Set

The results obtained by the GGP-RIs for the data sets in the meta-training set
were expected to be competitive with other algorithms, since the GGP evolved
rule induction algorithms based on the data sets in that meta-training set. The
challenge for the GGP is to evolve rule induction algorithms that obtain at least
a competitive performance for data sets in the meta-test set, which were not used
during the evolution of the rule induction algorithm. As in the previous section,
Table 5 shows the default accuracy and the accuracies obtained by baseline
methods in the data sets in the meta-test set, followed by the results obtained
by the GGP-RI. Recall that in the meta-test set every algorithm was run using

Automatically Evolving Rule Induction Algorithms 11

a 5-fold cross-validation procedure, and the results reported are the average
accuracy on the test set over the 5 iterations of the cross-validation procedure.

As shown in Table 5, most of the results obtained in the 5 data sets used in
the meta-test set are statistically the same as the ones produced by the baseline
methods. The only exceptions are Mushroom and Splice. In both data sets, GGP-
RI gets statistically better results than one of the baseline methods. Splice is
the only data set in which RIPPER produces a better result than GGP-RI.

One of the main goals of this project was to automatically evolve rule in-
duction algorithms that perform as well or better than human designed rule in-
duction algorithms. Another goal was to automatically produce a rule induction
algorithm different from human-designed ones. Out of the 5 GGP-RI discovered
(in the 5 runs of the GGP with different random seeds), the one most different
from the human designed ones can be summarized as follows.

It searches for rules starting from an example chosen from the training set
using the typicality concept [20], and removes 2 conditions at a time from it
(bottom-up approach). It evaluates rules using the Laplace accuracy and stops
refining them when the rules’ accuracy is smaller then 70%.

6 Conclusions and Future work

This work showed that effective rule induction algorithms can be automatically
generated using Genetic Programming. The automatically evolved rule induction
algorithms were show to be competitive with well-known manually designed
(and refined over decades of research) rule induction algorithms. The proposed
approach of automatically evolving rule induction algorithms can be considered
a pioneering one, opening a new kind of research area, and so there are still
many problems to be solved.

One research direction is to create a more powerful version of the grammar,
which could potentially lead to the discovery of more innovative rule induction
algorithms. Another possible research direction is to design a fitness function
that considers not only the accuracy of the rules discovered by the rule induction
algorithms, but also a measure of the size of the discovered rule set. However,
this introduces the problem of coping with the trade-off between accuracy and
rule set simplicity in the fitness function, an open problem.

Yet another possible research direction is to evolve rule induction algorithms
for specific kinds of data sets. Instead of using very different kinds of data sets
in the meta-training set, we can assign to the meta-training set several data sets
that are similar to each other, according to a pre-specified criterion of similarity.
Then, in principle, the GGP algorithm would evolve a rule induction algorithm
particularly tailored for that kind of data set, which should maximize the per-
formance of the rule induction algorithm in data sets of the same kind, to be
used in the meta-test set. However, this introduces the problem of defining a
good measure of similarity between the data sets: an open problem. It is also
possible to evolve a rule induction algorithm tailored for one given data set, as
in [18, 19].

12 Gisele Pappa et al.

Acknowledgments

The first author is financially supported by CAPES, a Brazilian research-funding
agency, process number 165002-5.

References

1. Clark, P., Boswell, R.: Rule induction with cn2: some recent improvements. In:
EWSL-91: Proc. of the Working Session on Learning on Machine Learning. (1991)

2. Cohen, W.W.: Fast effective rule induction. In: Proc. of the 12th International
Conference on Machine Learning. (1995)

3. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann (1993)
4. Furnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Proc. the 11th

Int. Conf. on Machine Learning, New Brunswick, NJ (1994) 70–77
5. Koza, J.R.: Genetic Programming: On the Programming of Computers by the

means of natural selection. The MIT Press, Massachusetts (1992)
6. Koza, J.: http://www.genetic-programming.org/. (June, 2006)
7. Whigham, P.A.: Grammatically-based genetic programming. In: Proc. of the

Workshop on GP: From Theory to Real-World Applications. (1995)
8. Domingos, P.: Rule induction and instance-based learning: A unified approach. In:

Proc. of the 14th International Joint Conference on Artificial Intelligence. (1995)
1226–1232

9. Lim, T., Loh, W., Shih, Y.: A comparison of prediction accuracy, complexity,
and training time of thirty-three old and new classification algorithms. Machine
Learning 40(3) (2000) 203–228

10. Pappa, G.L., Freitas, A.A.: Towards a genetic programming algorithm for au-
tomatically evolving rule induction algorithms. In Furnkranz, J., ed.: Proc.
ECML/PKDD-2004 Workshop on Advances in Inductive Learning. (2004) 93–108

11. Mitchell, T.: Machine Learning. Mc Graw Hill (1997)
12. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques with Java Implementations. Morgan Kaufmann (1999)
13. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algo-

rithms. Springer-Verlag (2002)
14. Wong, M.L., Leung, K.S.: Data Mining Using Grammar-Based Genetic Program-

ming and Applications. Kluwer (2000)
15. Furnkranz, J.: Separate-and-conquer rule learning. Artificial Intelligence Review

13(1) (1999) 3–54
16. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: GP – An Introduction; On

the Automatic Evolution of Computer Programs and its Applications. Morgan
Kaufmann (1998)

17. O’Neill, M., Ryan, C.: Grammatical Evolution Evolutionary Automatic Program-
ming in an Arbitrary Language. Morgan Kaufmann (2003)

18. Wong, M.L.: An adaptive knowledge-acquisition system using generic genetic pro-
gramming. Expert Systems with Applications 15(1) (1998) 47–58

19. Suyama, A., Negishi, N., Yamaguchi, T.: CAMLET: A platform for automatic
composition of inductive learning systems using ontologies. In: Pacific Rim Inter-
national Conference on Artificial Intelligence. (1998) 205–215

20. Zhang, J.: Selecting typical instances in instance-based learning. In: Proc. of the
9th Int. Workshop on Machine Learning. (1992)

