
One Right Does Make a Wrong

Thomas Davie and Olaf Chitil

Computing Laboratory, University of Kent, CT2 7NF, UK
{tatd2, o.chitil}@kent.ac.uk,

WWW home page: http://www.cs.kent.ac.uk/people/{rpg/tatd2,
staff/oc}

Abstract

Algorithmic debugging is a semi-automatic method for locating bugs in programs.
An algorithmic debugger asks a user a series of questions about the intended be-
haviour of the program. Here we present two new methods that reduces the number
of questions a user must answer to locate a bug.
First, we describe a heuristic based on comparing computations of the same program
with different inputs. Besides a computation that exhibits some erroneous behaviour,
we use information from computations that produce correct results. The heuristic
uses program slices to identify areas of code that are likely to be correct.
Secondly, we describe a method of compressing the search tree that guides the ques-
tions of an algorithmic debugger. This compression is particularly successful when
used in combination with our heuristic.
Both heuristic and tree-compression are applicable to algorithmic debugging in gen-
eral. We have implemented it for locating bugs in Haskell programs.

1 INTRODUCTION

Algorithmic debugging [5, 6, 7] is a semi-automatic method for locating bugs in
programs that is based on the representation of a computation as a compositional
tree, the Evaluation Dependency Tree (EDT). Figure 2 shows the EDT for a com-
putation of the Haskell program in Figure 1. Each node of the tree is labelled with
a computation, that is, a big-step reduction of a redex to its value. The computation
of a node is fully determined by the computations of all its children and the use of
a small slice of the program.

For example, the computation sort[2,1] [2] is composed of the com-
putations insert2[1] [2] and sort[1] [1] and the single-step
reduction sort[2,1] insert2(sort[1]):

sort[2,1] insert2(sort[1]) insert2[1] [2]

The composition of the computations of the child nodes and one single-step reduc-
tion disregards the actual evaluation order of expressions at run-time, but it follows
the structure of the program.

The single-step reduction uses an instance of the slice

sort (x:xs) = insert x (sort xs)

sort [] = []
sort (x:xs) = insert x (sort xs)

insert x [] = [x]
insert x (y:ys)

| x < y = x:y:ys
| otherwise = insert x ys

FIGURE 1. Buggy insertion sort program

sort [2,1] [2]

insert 2 [1] [2] sort [1] [1]

insert 2 [] [2] insert 1 [] [1] sort [] []

FIGURE 2. EDT of a computation of the buggy insertion sort program in Figure 1

of the program.
Another example is the computation insert1[] [1]. The node has

no children. The single step reduction only uses an instance of the program slice

insert x [] = [x]

In the same way every node in the EDT can be associated with the slice that
the single step reduction is an instance of.

An algorithmic debugger asks the user whether computations of tree nodes
agree with the intentions of the user. If the computation of a node agrees with the
user’s intentions, then the node is called correct, otherwise it is called erroneous.
A node is buggy, if it is erroneous and all its children are correct. Because of the
compositional definition of the EDT, the program slice associated with the buggy
node contains a bug. That buggy program slice has to be modified to make the
computation of the buggy node agree with the user’s intentions.

An example session with an algorithmic debugger:

sort [2,1] = [2] The system asks about the top level node.
> no The user says it is incorrect.
sort [1] = [1] The system asks about an erroneous
> yes node’s child.
insert 2 [1] = [2]
> no One of the children is erroneous.
insert 2 [] = [2] The system investigates that node’s children.
> yes All those children are correct, so the

node is buggy and its buggy slice is shown.

Bug identified:
insert x (y:ys)

| x < y = ...
| otherwise = insert x ys

The example shows that the slice may be only part of an equation. In this case
the right hand side of the x < y guard is not included in the slice as it was not
used in the single step reduction insert 2 [1] [1].

The principle of algorithmic debugging does not specify any particular order in
which questions are asked. Traditionally the EDT is traversed in a top down, left to
right manner. Such a traversal establishes a path of erroneous nodes from the top
node to a buggy node.

Algorithmic debugging has proven to work well in practice. However, for large
computations it can ask a large number of questions. Many questions are difficult
to answer and often questions are intuitively irrelevant. Hence here we present two
methods for reducing the number of questions.

Both our methods are based on the fact that whereas the number of nodes of an
EDT is proportional to the length of the computation, the number of possible slices
associated with nodes is only proportional to the size of the program. Hence many
nodes are associated with the same program slice. Our first method, a heuristic,
determines a likelihood for the correctness or erroneousness of each program slice,
and thus of each node of the tree. The second method is based on the observation
that in the end we are interested in a buggy program slice, not a buggy node; so
we can often collapse nodes with the same program slice into one node. Both
methods modify the traditional traversal of an EDT such that a buggy program
slice is usually reached with fewer questions.

Both methods are applicable to algorithmic debugging in general. We have im-
plemented the methods in a debugger for Haskell programs. This implementation
is based on the existing HAT tracing system.

2 HEURISTIC

Even programs that contain bugs often produce correct results for many inputs.
Let us consider sorting the list [1,2] with our buggy program. The computation
sort [1,2] [1,2] is correct. Let us combine the program slices of all

nodes of the EDT of this correct computation. Then let us separately combine
the program slices of all nodes of the EDT of the erroneous computation sort
[2,1] [2]. Finally we subtract the first slice from the latter, obtaining the
following highlighted slice of the program:

sort [] = []
sort (x:xs) = insert x (sort xs)

insert x [] = [x]
insert x (y:ys)

| x < y = x:y:ys
| otherwise = insert x ys

This small program slice contains the bug. In general, localising a bug is not
that easy, but the example highlights the importance of using program slices of
correct computations as sources of information.

With each program slice we associate a likelihood that it is correct. Further-
more, every node in an EDT associated with this program slice then shall also have
this likelihood to be correct.

2.1 Gathering Information

Using a second trace of a correct execution is one of three methods of retrieving
data relating to program slices:

• The user may provide more than one trace to the debugger specifying for
each whether it was successful or not, as shown in the example.

• The user may answer questions in the debugger, we then gather more infor-
mation than a normal algorithmic debugger from this.

• The user may test their program with an automated testing tool and provide
the trace of the testing session to the debugger.

We can treat each of these three cases in the same way. Each scenario provides
EDTs associated with an indication of whether each EDT is correct, we can use
this information to form our heuristics.

Each slice is associated with two values: the number of times a correct single
step reduction has been an instance of the slice, and conversely the number of times
an incorrect single step reduction has been an instance of the slice. When the user
marks a computation as incorrect we calculate the slice that the top most single
step reduction is an instance of, then increment its count of incorrect reductions.

Similarly, when the user marks a computation as correct, the count of correct
reductions for the top level reduction’s slice is incremented. Furthermore we cal-
culate slices for all of the descendants of this reduction, and increment the counts

associated with those reductions. This can be done because it is likely that the en-
tire reduction sequence of small step reductions was correct if the one big step was
correct.

It is not always the case that all reductions in the subtree are correct. There are
two situations where this property does not hold:

• When the program contains two buggy nodes, which cause the correct an-
swer to be computed by fluke.

• When the program contains sharing, or is evaluated strictly. For example, the
computation of the length of a list may evaluate correctly while the contents
of the list are computed incorrectly. When the program is computed strictly,
or the list is shared and demanded elsewhere in the program, the program
trace will record this evaluation.

Although we may find occasional incorrect computations marked as correct, it
is not a significant problem. We are using this data to calculate a heuristic, not make
an authoritative decision. In the majority of cases the data helps us to find the bug
faster. By including all descendants of correct reductions in our data we create an
asymmetry. We cannot gather data from the descendants of erroneous reductions
because the reduction being erroneous tells us nothing about the erroneousness of
its children.

The process of calculating slices for every reduction in a computation can be
time consuming. As such we limit the amount of data gathered. We currently
simply take the first n reductions encountered in a top down, left to right depth first
traversal of the EDT.

2.2 Using Information

When performing algorithmic debugging, the debugger follows a path of “no” an-
swers until it finds a buggy node. The “yes” answers are used only to direct the
debugger towards erroneous nodes. As such, we use the extra information the de-
bugger gathers to guide it towards “no” answers. To do this we calculate a heuristic
value. We then alter the order in which the debugger asks questions. Instead of tak-
ing a top-down left to right approach, we now jump to the node we think is most
likely to be marked as erroneous. This gives us the ability to make jumps to nodes
not in the direct children of a node, but in its grandchildren or even below.

This process requires calculating a heuristic, to provide a concrete value to base
comparisons on. We have selected three simple heuristics which are compared in
section 5:

• Negating the number of “yes” answers relating to the slice.
If a slice has evaluated correctly before, then it will likely evaluate correctly
again, so we should avoid the question.

sort [2,1] [2]

insert 2 [1] [2]

insert 1 [2] [1,2]
insert 2 [] [2]

sort [1] [1]

insert 2 [] [2] insert 1 [] [1] sort [] []

0 0.50

-2 00 -2 00

-2 00

-2 00

-1 00

sort [1,2] [1,2] sort [] []
sort [2] [2]

Correct Computation:

Incorrect Computation:

FIGURE 3. Sort algorithm after the user answers one question

• Counting the number of “no” answers relating to the slice.
If part of the program has failed once, it is likely to fail again, we should
keep asking about this slice.

• The proportion of questions about a slice that have been answered “no”.
This combines the other two heuristics, aiming to ask about slices that have
evaluated correctly very few times and incorrectly many times. When we
have no information about a slice, we regard it as equally likely to be erro-
neous or correct. Thus, the heuristic value becomes 1

2 .

Figure 3 shows the sort example examined earlier, along with the single step
reductions from a correct computation of the same program. We have annotated
the nodes of the EDT with the values of each heuristic we have studied: The left
most negates the number of “yes” answers relating to the slice; the middle counts
the number of “no” answers, and the rightmost counts the proportion of questions
answered “no”.

For example, the top most node is an instance of the slice sort (x:xs) =
insert x (sort xs), as are the correct reductions sort [1,2] [1,2]
and sort [2] [2]. Because of this the node has the heuristic values: -2 for
negating the number of correct computations of the slice; 0 for tracking the number
of incorrect computations; and finally 0/2 reductions have been incorrect. When
we track correct reductions, the next question asked would be insert 2 [1]
= [2]?, as it would be if we tracked the proportion of questions answered “no”.
The heuristic that tracks the number of “no” answers has not got any data to go on
yet, and so would default to taking the top most node.

FIGURE 4. Common EDT structures for recursive programs

FIGURE 5. Compressed EDTs

3 TREE COMPRESSION

Recursive functions produce repetative patterns in EDTs. We present a method
of compressing these frequently occurring patterns. Figure 4 shows two of the
most common patterns. On the left is the pattern produced by a simple function
that makes a recursive call. Each call uses the same program slice a. Finally,
the function will call a base case in program slice b. When looking at this EDT
we see that only two questions actually matter. If the user answers yes to the top
level question about a, there is no bug, if the user answers “no”, there is a bug in
either slice a, or slice b. We can quickly find out if the bug is in slice b by asking
the question for the bottom node in the tree. Thus we can collapse the tree, and
remove the interleaved extra questions about a.

The second example shown in Figure 4 demonstrates the case where each call
to the recursive function also calls a secondary function. In this case we may again
collapse the spine of questions relating to slice a. However, no pattern can be
discerned in the questions related to slice b and thus each of these questions must
still be asked. These nodes in the EDT must be added to the top level question
regarding slice a.

Applying this process in these two examples results in the two EDTs shown in
Figure 5.

Using this second example, a normal algorithmic debugger may take a signif-
icant amount of time to identify a bug in slice c as it must ask several questions
about slice b beforehand. This problem is neatly avoided however as our heuristic
will cause the debugger to lower the likelihood of slice b being buggy as it asks

a

a b

c b

FIGURE 6. General Tree Compression

questions about it and gets yes answers. Thus this compression method works
particularly well when combined with our heuristic driven search. As always the
approaches effectiveness relies on having a good heuristic. Counting “no” answers
for example will not allow us to skip to the question related to slice c in this exam-
ple.

Trace compression can be applied in general to an EDT. Figure 6 shows how
it is applied in the general case. For each node in the EDT we calculate a program
slice. We then compare the node’s slice with those of the node’s children. We re-
place each child with a matching slice with its children (which are again recursively
collapsed). This method often produces a large number nodes with similar ques-
tions as siblings. For example, if we collapse the EDT for a quick sort algorithm,
we note that the slices for the recursive cases match, and hence collapse them to
one node. This node has several children, each with the same evaluation sort[]
 []. As these questions are all literally the same we may combine them into one
node. Thus, the EDT becomes two nodes — a parent asking about the recursive
call, and a child asking about the base case.

In the context of a debugging session we can further generalise this algorithm.
Each time the user says “yes” to a question, we can remove all occurrences of the
question from the rest of the EDT. This further reduces the size of the EDT and
hopefully the number of questions asked. This is a commonly used technique for
reducing EDT size [6], but proves particularly effective in this situation.

4 IMPLEMENTATION

The two heuristics described in this paper have been implemented on top of the
Haskell tracer HAT 1[9, 3]. HAT provides a framework on which our debugger is
built.

4.1 Hat

Tracing a computation with HAT consists of two phases: trace generation and trace
viewing. First, a special version of the program runs. In addition to its normal

1http://www.haskell.org/hat

input/output behaviour it writes a trace into a file. Second, after the program has
terminated, the programmer studies the trace with a collection of viewing tools.

The trace as concrete data structure liberates the views from the time arrow of
the computation. Most important for us is that we only have to implement another
viewing tool and can just use the generated trace. An EDT can be reconstructed
from the trace [9].

4.2 Algorithmic Debugging

HAT-DELTA was first implemented to perform standard algorithmic debugging be-
fore being extended to perform our heuristic and EDT compression. We imple-
mented a three pass algorithm to get from a HAT trace file to our final output: The
first pass reads the trace from file, and constructs a representation in memory with
cyclic structures tagged. This is then converted into an EDT data structure. This
EDT has several filters applied to remove unnecessary questions . For example,
all nodes related to the IO monad are replaced with their children, as these ques-
tions ask the user no more than whether a function should produce some IO action.
Questions relating to the prelude are removed, as are unevaluated computations.
As our debugger is written in Haskell, the EDT is generated lazily, and so we only
build those parts necessary to identify a bug, or ask the next question.

To implement algorithmic debugging HAT-DELTA maintains a list of EDTs in
which it has yet to search for the bug, we will call this list the ‘candidate list’. The
candidate list initially contains only the EDT for the entire computation. If a user
answers a question with “yes”, then the bug is not in the EDT for that reduction
and hence we discard it and move onto the next EDT in our list. If the user answers
a question “no”, then a bug does manifest itself in this EDT. In this case we discard
the contents of the candidate list and replace them with the children of this node.
When we run out of EDTs to look at, we have found our bug and we display a
message. We keep track of the last question the user answered ‘no’ to and display
a message indicating that the bug is in the definition of the function involved in this
reduction.

Haskell is not a simple language and has features that can cause problems for
an algorithmic debugger. Local function definitions cause a significant problem, as
the user does not know the value of free variables. Given the following program an
algorithmic debugger may ask the question f 5 = 9?.

g x = f 5
where f y = x + y

In this situation, the user does not have enough information to answer the ques-
tion. When local functions are asked about, our system provides a context with
which the user can work, thus the above question would become:

f 5 = 9?
Within: g 4

Constant expressions also provide a problem, as they can be defined cyclically.
This can create cycles in the EDT, and so cause the debugger to ask an infinite
sequence of questions. We add an extra phase to the EDT’s generation in which we
detect cycles, and tag them. We then discover when we have reached a cycle, and
notify the user of the position of the bug, along with an error message stating that
it should perhaps not loop infinitely. When we tag cycles we keep track of all EDT
nodes involved in the cycle, and thus can highlight errors in mutually recursive
functions that loop infinitely.

4.3 Heuristic Based Debugging

To implement our heuristic based system, we have extended HAT-DELTA to do
some extra work after the user answers a question. When the user answers ‘no,’
the slice associated with the computation is counted as a ‘likely’ buggy slices.
When the user answers ‘yes’, HAT-DELTA must traverse the EDT collecting all
sub-computations. All slices associated with the subtree are counted as ’unlikely’
to be buggy.

The EDT candidate list must be maintained as a priority list based on the value
of the heuristic associated with each EDT. When the debugger asks about the first
item on the candidate list it will ask about the computation it thinks is most likely
to be buggy.

This initial implementation allows HAT-DELTA to choose a child based on it’s
heuristic value, but does not allow the tool to make jumps through the EDT. An
extended implementation maintains a priority list of nodes within all EDTs in the
candidate list; this allows HAT-DELTA to jump to anywhere in the computation that
is likely to be buggy. Calculating the heuristic value for every node in the EDT
is however computationally expensive, and as such a cut-off depth is assigned,
whereby HAT-DELTA will only investigate heuristic values n levels into the EDTs.
The best value for this cut-off depth is still subject to experimental evaluation.

4.4 Quickcheck

Our implementation of HAT-DELTA supports using the QuickCheck [2, 3] test suite
to provide test cases for debugging. QuickCheck automatically generates random
test data to test ‘properties’ of the algorithm that the user has specified. This gives
very wide ranging inputs and hence is likely to throw up both correct and incorrect
computations. Using this data requires two alterations.

The QuickCheck library was modified so that rather than stopping as soon
as it finds a counter example, the testing library runs its full compliment of tests.
Carrying out all tests allows QuickCheck to provide much more data to HAT-DELTA

and thus makes the heuristic more accurate.
HAT-DELTA required only minor modifications to allow it to recognise QuickCheck

tests. The debugger then simply checks the value of the test result. If the value is
False, the test is added to a list of erroneous evaluations to debug, and the fact that

this slice has been evaluated incorrectly is added to HAT-DELTA’s pool of data. If
the value is True, all the sub-computations are found and added to the list of likely
correct slices. Once this process has been completed, HAT-DELTA may start debug-
ging an erroneous test. In order to try and limit the number of questions asked, the
smallest counter example is used.

5 EXPERIMENTAL EVALUATION

We have tested our implementation on a number of programs. Choosing tests for
our evaluation has proven to be difficult, because of the level of familiarity the user
must have with the program code. To effectively use an algorithmic debugger you
must know the intended semantics of each function in the program.

We have evaluated the debugger using two middle sized programs. Our first
program is a simple recursive decent parser for XML like structures (250 lines of
code). Our second program provides conversion between types of data and units,
by making traversals of a hyper-graph (363 lines of code). We also tested two
slightly smaller programs: A program for predicting the winner of naughts and
crosses games (103 lines of code, by Colin Runciman); and a program for con-
verting to and from roman numerals (100 lines of code, by Malcolm Wallace).
Finally we tested some trivial examples that demonstrate some common program-
ming patterns. These include: Quick sorting a list and then reversing it; insertion
sorting a list; testing if a predicate logic formula is a tautology; and calculating an
approximation for the golden section.

We chose the larger examples because they were programs we both had a high
degree of familiarity with. The middle sized programs were taken from the HAT

team’s database of programs for testing debuggers, they are used to test the effec-
tiveness of other debugging tools, and as such test some more obscure cases. We
chose the smaller programs simply to demonstrate the tools effectiveness at dealing
with common programing patterns e.g. identifying bugs in recursive functions, or
evaluators.

We introduced bugs into each of the programs, and performed tests to expose
the bugs. In the two larger programs we have tried introducing different bugs in
several places. We then debugged the programs using the tool in various modes:

• Detect mode — A mode that acts like a standard algorithmic debugger with
none of our improvements active.

• Tracking yes answers — Avoiding questions related to slices the user has
marked as correct.

• Tracking no answers — Seeking out questions related to slices the user has
marked as incorrect.

• Tracking the proportion of no answers — Combining the above two strate-
gies.

Test Detect Counting Yes Counting No Proportion
Compression: Off On Off On Off On

XML – Bug 1 17 15 15 13 13 13 13
XML – Bug 2 17 9 9 13 13 13 13
Convert – Bug 1 9 9 9 9 9 9 9
Convert – Bug 2 11 9 8 13 12 9 8
Adjoxo 9 7 7 7 7 7 7
ToRoman 7 4 4 4 4 4 4
QSort & reverse 5 4 2 4 2 4 2
ISort 5 2 2 5 4 2 2
Tautology 7 6 5 6 5 8 7
Golden 7 7 4 7 4 7 4

TABLE 1. Number of questions asked by different debuggers

Test Counting Yes Counting No Proportion
XML – Bug 1 10 9 7
XML – Bug 2 9 12 12

TABLE 2. Number of questions asked when using QuickCheck to test programs

• Each of the above heuristics using trace compression as well.

• Using each of the above strategies with QuickCheck to gather as much data
as possible.

For each program mode we have counted the total number of questions asked
by the debugger as a measure of the effectiveness of the method. Table 1 shows
the number of questions each debugger asks to identify each bug. For each of the
debuggers using a heuristic, two columns are shown. The left hand column shows
the number of questions asked when trace compression is not used, while the right
hand column shows trace compression enabled.

Table 2 shows the number of questions asked by each debugger when used in
combination with QuickCheck. It is difficult to write suitable QuickCheck prop-
erties for many of our programs. As such this test was simply run on the XML
parser.

From the results we can see clearly that using a heuristic can reduce the num-
ber of questions asked by the debugger, sometimes significantly. The choice of
heuristic is significant. Counting the number of “no” answers is worse than both
other heuristics in all but one case, and in one case is even worse than standard
algorithmic debugging. More data would be needed to decide which of counting
“yes” answers, and keeping track of the proportion of “no” answers is more effec-
tive. Current data seems to point to counting “yes” answers being more efficient,

but the results are not conclusive. Using testing suites to provide large amounts of
test data improves the quality of all the heuristics.

6 RELATED WORK

Program slicing [8] is a generic term for extracting a section of a program that had
an effect on a ‘slicing criterion’. The first set of program slicing algorithms took a
backward slice, i.e. the criterion set were of the form “what parts of the program
had an effect on the value of this variable at this point?”. The analysis was then
working backwards from the variable to the beginning of the program to generate
a slice. Forward slicing sets a criterion of the form “what parts of the program
are effected by this variable”. The analysis then proceeds forwards and collects all
parts of the program the variable has an effect on. The first slicing algorithms were
static, that is, they considered all possible computations of a program. A slicing
algorithm is called dynamic, if it considers only a particular computation. So a
dynamic slicing algorithm yields less general but more precise slices.

Program slicing based on algorithmic debugging is a non-traditional form of
dynamic slicing. Every node of the EDT is associated with a small slice, and the
combined slices of all nodes that are candidates for being buggy form the program
slice which must contain a bug. HAT’s source-based trace explorer performs this
kind of program slicing [1].

Other strategies for traversing an EDT have been proposed. For example the
divide and conquer approach attempts to ask questions that divide the tree evenly
between what will be left to search if the user answers yes, or no. These strate-
gies often work well for small examples, but struggle when large computations are
involved. The divide and conquer technique for example requires the program to
bring the entire EDT into memory, and count the number of nodes in it just to ask
its first question.

In Section 3 we noted that when a user answers “yes” to a question, we may
remove all other occurrences of the question from the EDT. In [4] we outlined a
method of removing significant numbers of questions from an EDT by also remov-
ing nodes that matched any of the descendants of the correct node. Our premise for
doing this was that situations where this is not correct occur vary rarely, however
after experimental evaluation it was found that this could often lead to the debugger
producing an incorrect result.

7 CONCLUSION

Using heuristics to guide an algorithmic debugger we can lower the number of
questions it asks. We have tested three intuitively reasonable heuristics, each of
which provided an improvement in most cases. In some cases the improvements
were very significant. None of the heuristics showed a significant advantage over
the others in general, although counting “no” answers does not appear to be very

effective. In specific cases however individual heuristics performed well. An in-
vestigation into what situations they perform well in should be carried out in the
future.

Secondly we have presented a method of reducing the size of an EDT for de-
bugging purposes. This works well when the bug is located in a simple recursive
algorithm. The technique however provides little benefit when the bug is in pro-
gram control code, or in a set of mutually recursive functions. The technique works
particularly well in combination with our heuristic based approach as it needs a
method of choosing a buggy child reasonably reliably.

REFERENCES

[1] Olaf Chitil. Source-based trace exploration. In Proceedings of the 16th International
Workshop on Implementation of Functional Languages, IFL 2004, LNCS 3474, pages
126–141. Technical Report 0408, University of Kiel, 2005.

[2] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

[3] Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes, and Malcolm Wallace.
Testing and Tracing Lazy Functional Programs using QuickCheck and Hat. In 4th
Summer School in Advanced Functional Programming, number 2638 in LNCS, pages
59–99, Oxford, August 2003.

[4] Thomas Davie and Olaf Chitil. Correct computations direct debugging. In Draft Pro-
ceedings of the 17th International Workshop on Implementation of Functional Lan-
guages, IFL 2005, Dublin, Ireland, September 2005.

[5] Lee Naish. A declarative debugging scheme. Journal of Functional and Logic Pro-
gramming, 1997(3), 1997.

[6] Henrik Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis,
Department of Computer and Information Science, Linköpings universitet, S-581 83,
Linköping, Sweden, May 1998.

[7] Ehud Yehuda Shapiro. Algorithmic program debugging. MIT Press, 1982.
[8] Frank Tip. A survey of program slicing techniques. Journal of Programming Lan-

guages, 3(3):121–189, 1995.
[9] Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-view

tracing for Haskell: a new Hat. In Ralf Hinze, editor, Preliminary Proceedings of the
2001 ACM SIGPLAN Haskell Workshop, pages 151–170, Firenze, Italy, September
2001. Universiteit Utrecht UU-CS-2001-23. Final proceedings to appear in ENTCS
59(2).

