
Promoting Non-Strict Programming

— Draft —

Olaf Chitil

University of Kent
United Kingdom

Abstract. In a non-strict functional programming language functions
that yield the same result for all total arguments can still differ for partial
arguments, that is, they differ in their strictness. Here a Haskell library
is presented that enables the programmer to easily check whether a given
function is least-strict; if it is not least-strict, then the tool suggests how
to make it less strict.

1 Introduction

Non-strict functional programming languages such as Haskell and Clean al-
low the definition of non-strict functions. Language implementations are based
on lazy evaluation, which defers computation until results are needed. John
Hughes [4] showed how lazy evaluation provides a mechanism for composing
a program from small, flexible, reusable parts. An intermediate data structure
can be the glue between components. Such an intermediate data structure does
not incur significant space costs, because only small bits of the data structure
are produced on demand immediately before they are consumed and then their
space can be reclaimed by the garbage collector. Additionally this programming
style naturally implements online algorithms, which quickly produce part of an
output before completely having processed all inputs.

In practice, however, a program often requires far more space with lazy eval-
uation than with standard eager evaluation, a phenomenon known as ”space
leak”. I suspect that space leaks often occur because functions are not non-strict
enough. When strict and non-strict functions are mixed, intermediate data struc-
tures have to be constructed completely and then they use significant amounts of
space. Similarly a single strict function in a sequential composition of functions
can destroy the desired online behaviour of a program.

So the programmer has to identify functions that are too strict, that consume
large parts of their arguments to produce small parts of their results. Such a func-
tion should be redefined less strictly. Here I present a tool, a Haskell library, that
semi-automatically identifies such problematic functions amongst a large num-
ber and that suggest how the function could be less strict. The aim is to provide
a tool that supports programming for non-strictness and thus modularity.

2 Least Strictness

Consider the following innocuous Haskell definition of a function which takes a
list of tuples and transforms it into the list of first components and the list of
second components:

unzip’ :: [(a,b)] -> ([a],[b])
unzip’ = foldr (\(a,b) (as,bs) -> (a:as,b:bs)) ([],[])

Is unzip’ equal to Haskell’s predefined function unzip? No, it is not:

Prelude> unzip [(True,False),error "ups"]
([True*** Exception: ups
Prelude> unzip’ [(True,False),error "ups"]
*** Exception: ups

Haskell’s predefined function is less strict than unzip’. For example

unzip [(True,False),⊥] = (True:⊥,False:⊥) but
unzip’ [(True,False),⊥] = ⊥

For all total arguments, that is, values that do not contain ⊥, both functions
yield the same results.

I believe that programmers mostly only consider total arguments when defin-
ing their functions. The specification only makes requirements on the function
result for total arguments. However, for nearly every function there exist many
variants that yield the same results for the total arguments but differ for partial
arguments. These variants cannot produce arbitrary results, because functions
defined in a functional programming language are always monoton and continu-
ous. For a partial argument the function has to return a value that is an approx-
imation of the function result of any total completion of the partial argument.
Hence for any function f :

fv v
⊔
{fv′|v v v′, v′ is total}

A function f is least-strict iff for a partial input the function returns the
greatest lower bound of all outputs produced by total completions of the partial
input:

fv=
⊔
{fv′|v v v′, v′ is total}

Besides the function unzip’ which is clearly not least-strict, other exam-
ples spring to mind. The efficient pretty printing function of [1] is least-strict
whereas Wadler’s [8] is not. An efficient breadth-first numbering algorithm by
Chris Okasaki [7] proves to be undesirably strict in a non-strict language, but a
less strict variant can be defined.

3 The Tool

I have implemented the prototype of a tool that tests whether a given function
is least strict. The tool is a small Haskell library and thus just as easy to use as
the random testing tool QuickCheck [2]. For our example function unzip’ we
find:

*Main> test 10 (unzip’ :: [(Int,Int)] -> ([Int],[Int]))
Input: _|_
Current output: _|_
Propose output: (_|_, _|_)

So the tool clearly says that unzip’ is not least-strict. For input ⊥ it produces
output ⊥, but to be least-strict it should produce (⊥,⊥). The numeric argument
(here 10) of the test function is a measure of the number of arguments for which
the function given as second argument is tested for least-strictness. We have
to annotate unzip’ with a type, because the tool can only test monomorphic
functions; for polymorphic functions it would not know how to generate test
arguments.

If we test the predefined function unzip, then we find that it is not least-strict
for the very same reason as unzip’. Still it is far less strict than unzip’. The
tool does not expose the difference, because it currently only shows one input-
output pair which demonstrates least strictness. Showing all input-output pairs
for which the function is unnecessarily strict leads to a flood of information. In
the future a sensible compromise will need to be found.

For a function that is least-strict the tool stops after testing a number of
arguments (the numeric argument relates to the maximal size of tested argu-
ments):

*Main> test 10 (True:)
Function is least strict for 255 partial inputs.

4 Implementation

How do we test whether a function is not least-strict? Well, function f is not
least strict if there exists a partial argument v such that

fv @
⊔
{fv′|v v v′, v′ is total}

Unfortunately there usually is an infinite number of total values v′ with
v v v′. Hence we cannot compute

⊔
{fv′|v v v′, v′ is total}. Therefore the tool

only considers a small number of v′ and takes the greatest lower bound of the
function outputs.1 So the test data generated by the tool consists of a number
of partial inputs v plus a number of total completions v′ for each v. For each
1 The number of v′’s is still subject to experimentation, but only a small number such

as 3 or 4 seems to be sufficient in practice.

test data set the inequation above is checked. Without loss of generality only
partial values that contain exactly one ⊥ are generated. Because the tool usually
considers a small number of v’s and only a small number of v′’s for each v, it may
give wrong answers in both directions. The tool may not notice that a function is
overly strict or it may incorrectly identify a function as overly strict and propose
an output that is too defined. In practice I have not yet come across either case,
but the user needs to be aware of these limitations.

Test data generation is similar to the testing tools QuickCheck [2] and Gast [5].
Like the later, test data is not generated randomly but by systematically enu-
merating values by size, because if a function is not least-strict we expect this
to be exposed already by small arguments. We use the scrap-your-boilerplate
generics extensions [6] of the Glasgow Haskell compiler to give a single definition
of test data generation for all types that are instances of the automatically deriv-
able classes Typeable and Data. Test data generation proved to be unexpectedly
complex and seems to require the direct use of the mindboggling function

gunfold :: Data a => (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a

instead of one of its more user-friendly instances. The actual check for over-
strictness is performed with the help of the ChasingBottoms library [3]. This
library provides a (non-pure) test isBottom, the meet operator t over partial
values, and a function for converting partial values into printable strings. Because
of the libraries used, the tool only works with the Glasgow Haskell compiler.

5 Future Work

In this paper I claimed that the modular structure and performance of non-strict
functional programs can be improved by making functions less strict, more non-
strict. I have defined least-strictness and presented the prototype of a tool that
identifies functions that are not least strict and that proposes a less strict variant.

This research has just started and the next step is to apply the tool to a
number of real programs. How many functions are not least strict? Is it easy to
make a function definition less strict, based on the proposals given by the tool?
Do less strict functions actually use less space or time and are their definitions
no more complex?

I do not claim that aiming for least strictness will remove all space leaks from
non-strict programs, sharing, for example, has been completely ignored, but I
hope it will be a step towards more efficient non-strict programs.

Acknowledgements

I thank Frank Huch for the unzip’ example and Jan Christiansen for discussions
about the topic.

References

1. O. Chitil. Pretty printing with lazy dequeues. Transactions on Programming Lan-
guages and Systems (TOPLAS), 27(1):163–184, January 2005.

2. K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

3. N. A. Danielsson and P. Jansson. Chasing bottoms, a case study in program verifi-
cation in the presence of partial and infinite values. In D. Kozen, editor, Proceedings
of the 7th International Conference on Mathematics of Program Construction, MPC
2004, LNCS 3125, pages 85–109. Springer-Verlag, July 2004.

4. J. Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98–
107, 1989.

5. P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. Gast: Generic auto-
mated software testing. In R. Pena, editor, IFL 2002, Implementation of Functional
Programming Languages, LNCS 2670, pages 84–100, 2002.

6. R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pat-
tern for generic programming. ACM SIGPLAN Notices, 38(3):26–37, Mar. 2003.
Proceedings of the ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003).

7. C. Okasaki. Breadth-first numbering: lessons from a small exercise in algorithm
design. In International Conference on Functional Programming, pages 131–136,
2000.

8. P. Wadler. A prettier printer. In The Fun of Programming, chapter 11, pages
223–244. Palgrave Macmillan, 2003.

