Communicating Process Architectures 2006 225
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
1OS Press, 2006

Mobile Robot Control

The Subsumption Architecture and occam-pi

Jonathan SIMPSON, Christian L. JACOBSEN and Matthew C. JADUD

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NZ, England.

{js219, c1j3, mcj4} @kent.ac.uk

Abstract. Brooks’ subsumption architecture is a design paradigm for mobile robot
control that emphasises re-use of modules, decentralisation and concurrent, commu-
nicating processes. Through the use of occam-pi the subsumption architecture can be
put to use on general purpose modern robotics hardware, providing a clean and robust
development approach for the creation of robot control systems.

Keywords. Mobile robots, Robot control, Subsumption architecture, occam-pi

Introduction

Robotic control can be seen as a mixture of engineering and cognitive science and as such it
presents unusual challenges to the programmer. Robotic control methodologies have tended
to move from simplistic, predefined actuator actions based on specific input criteria to tight
feedback loops with input from the environment, giving more robust solutions. In these envi-
ronments, where many such control loops are required, the opportunities for the application
of parallel programming to create simple and robust solutions are numerous.

Continuous, concurrently running processes are critical to robotics, as a robot typically
has a number of inputs and outputs that must be handled simultaneously. If we wish to keep
such a robot from running into walls, at least one process must continuously monitor the
space between the robot and nearby objects using some sort of range-finder. Whilst this spe-
cific behaviour may be important, we cannot focus solely on one sensor at the exclusion of
all other behaviours the robot may be designed to perform.

Even simple robots can have many different tasks to do simultaneously. For example,
a robot might try to avoid bumping into walls whilst also trying to create the largest treacle
pudding in the world. The latter task is the main purpose of the robot, but the first is important
for the robot to meet its goal as designed and needs to be handled constantly alongside the
robot’s main task.

1. Traditional Approaches to Robotic Control
1.1. The Hierarchical Paradigm

A hierarchical approach to robotic control focuses mainly on the planning aspect of a robot’s
behavioural cycle. The robot senses its environment, plans its next action based on these
senses, and then takes appropriate action using available actuators. At every stage, the robot
explicitly plans its next action from the the knowledge it has gathered about the environment
so far. Essentially these robots are reflex agents [[1], selecting actions from rule matches on
the current ‘perceptions’ from sensory input.

226 J. Simpson et al. / The Subsumption Architecture and occam-pi

This approach traditionally employs a top-down analysis of the desired behaviour of the
robot during the design phase and then the implementation of a sequence of modules. These
modules work to read values from the sensors available to provide data about the environment
(perception), devise strategies to perform the desired behaviours given the environmental
state (cognition), and then compose the signals that control the actuators to achieve those
behaviours (action).

The World -

Sense |———b Plan P Act

Figure 1. The typical structure of a hierarchical robot control system

Unfortunately, this approach, using a top down design and sequential modules does not
encourage a separation of concerns, and can introduce dependencies between functional lay-
ers, especially where feedback loops are used or output monitoring is required. Brooks [2]]
identifies a different model whereby cognition can be observed simply using perceptive and
action systems that interact directly with each other in a feedback loop through the envi-
ronment, effectively a behavioural paradigm for control. He called this biologically-inspired
model of robotic control the subsumption architecture.

1.2. The Behavioural Paradigm

Behavioural control is focused around the idea of removing centralised control structures
and instead linking actions directly to changes in the input sources themselves. This is an
approach most fully demonstrated by Valentino Braitenberg’s Vehicles [3l], a set of sensors
and actuators connected almost directly together in various combinations to display emergent
behaviours that mimic more complex human actions like love, aggression and cowardice.

Emergent behaviour can often occur from the interaction of simple behaviours com-
bined with the complex environment, and being able to take advantage of these emergent
behaviours can make the task design of robotics systems simpler and the code involved more
robust. Behavioural systems often employ a set of pre-programmed condition-action rules
which are run concurrently over the inputs, and the system has little internal state. Develop-
ment using this architecture can map well to occam-pi robotics, but it can make develop-
ment of specific and complex robotic controls hard, due to the requirements of responding to
changes in the environment for changes of behaviour.

2. Brooks’ Subsumption Architecture

The subsumption architecture involves building robot control systems with increasing levels
of competence. Each additional level builds upon and potentially interacts with the inputs
and outputs of existing, previous levels to add higher levels of competency, leaving the lower
levels intact, functional and operational within the overall system.

J. Simpson et al. / The Subsumption Architecture and occam-pi 227

Levels are constructed from components which make up the architecture as a whole.
These components are referred to as ‘modules’, and consist of small asynchronous proces-
sors, sending messages over connecting ‘wires’ which have a single element buffer. Inputs
to these modules can be suppressed and their outputs can be inhibited by wires from other
modules. Unlike occam-pi channels, these wires are assumed to have frequent message loss
due to the subsumption/inhibition mechanisms and as such a single element buffer provides
constant access to the last successfully received value from an input line.

2.1. Suppression

Suppression is achieved by connecting an additional wire to the input of a ‘suppressed’ mod-
ule. Inputs received along this additional wire are sent to the module as replacement input
for its usual input channel and other data inputs are ignored whilst the suppression occurs.
The period for which this secondary input channel takes precedence is specified in the time
constant of the suppression. This process essentially replaces all other inputs to the module
with input coming from the ’suppressing’” module.

No Suppression

inputs »| avoid.walls | Su(ﬁﬁ::)ss motors
go forward go forward
. seek.giant. L e e e e e e .:
inputs — treacle.pudding
Suppression
inputs —| avoid.walls —————» Sliﬁrq:fs motors
go forward stop motors
) seek.giant.
inputs —»» i
p treacle.pudding stop motors

—>
active

R

inactive

—_—

control flow

Figure 2. Suppression, whilst seeking giant treacle puddings

To explain suppression, assume our robot has a seek.giant.treacle.pudding mod-
ule, which is used to seek out pre-made, giant puddings (as shown in figure [2). If our robot
managed to find a massive treacle pudding, it would then suppress any outputs from our
avoid.walls module, as our robot no longer needs to avoid walls... because it now possesses
a giant treacle pudding, and its task is complete.

228 J. Simpson et al. / The Subsumption Architecture and occam-pi
2.2. Inhibition

When inhibiting a module, a wire from the ‘inhibiting” module which will control the inhibi-
tion is connected to the output site of the ‘inhibited’ target module. If anything travels along
this wire, output from the target module will be blocked, and the output is lost for the duration
of time specified by the inhibitor. Inhibition is useful for disabling specific behaviours where
their activity at a particular time or circumstance is undesirable.

Additionally, inhibition can be used on module outputs where suppression is taking
place. If the wire in question is suppressing a behaviour that we desire from another level this
will allow it to break free from the control of the suppressing module.

No Inhibition

inputs —| avoid.walls - motors
go forward go forward

inputs —» seek.sugar f = = ====-=--- .

Inhibiting

inputs —| avoid.walls ————{(.. v f=-=----- B motors
go forward

inputs —» seek.sugar

TRUE
> —_— cee-pP
active control flow inactive

Figure 3. A visual representation of inhibition

For example, as can be seen in figure 3] our treacle-making robot might discover a pile
of sugar near a wall. In this situation, a seek.sugar module might inhibit the outputs of
the avoid.walls module to the motors to avoid movement being triggered whilst it collects
sugar, even if the current position of the robot is near a wall.

2.3. Subsumption

Use of the subsumption architecture means that a basic control system can be established
for the lowest hardware level functionality of the robot and additional levels of competence
can be built on top, with little change required to the existing modules and layers. With
correct use of suppressors and inhibitors, the system can vary between several different modes

J. Simpson et al. / The Subsumption Architecture and occam-pi 229

of operation depending on inputs, making the best re-use of already written and debugged
modules in existing levels whilst doing so.

For example, a path planning module can coexist with a random heading generator that
would otherwise generate a *wandering’ behaviour for the robot. Output from the path plan-
ning module could be used to suppress outputs from a random path generator module, allow-
ing it to take control of the robot’s motion. This would mean the a robot could establish a
target location after exploring an environment and then head towards it.

This style of control can be likened to the biological idea of reflex and cognitive actions.
Reflexes occur quickly to protect the body, without any cognitive input before they occur. A
simplistic base level of behaviours can simulate this in providing a computationally cheap
and prioritised protective layer of functionality for the robot. Above this simulated level of
reflexes, more complex behaviours can be added that will fall back if there are not appropriate
actions or outputs available.

By using separate inhibitors and suppressors the behavioural modules are isolated from
the interaction of the different layers of the system. These modules can be debugged and stay
static, making them robust even as the system grows around them.

3. The Subsumption Architecture and occam-pi

A number of the concepts in Brooks’ subsumption architecture bear considerable resem-
blance to primitives or specific abilities of the occam-pi language [4]. The processor ‘mod-
ules’ that make up the system have four specific states that perform different operations, such
as sending a message on an output line or making a calculation based on input. These states
are switched between to determine the behaviour of the module. occam-pi provides more
flexibility than Brooks’ processes in allowing the definition of processes with arbitrarily com-
plex behaviour. Implementation of the simplistic operations comprising individual modules
in the original subsumption architecture is straightforward using the occam-pi language.

Where the subsumption architecture has lossy/unreliable wires, occam-pi gives us full
communication channels with reliable message delivery. Brooks worked around the unrelia-
bility of ‘wires’ in his implementation by using single item buffers to allow access to the last
received value on a wire at any given time, ensuring that modules can always execute. If we
wished to simulate this behaviour in occam-pi we could build a single item buffer module to
allow values to be read at any time on a channel, but it is for the most part more desirable to
benefit directly from the reliable communications provided by occam-pi.

Suppression and inhibition in the original subsumption architecture are performed di-
rectly at the input and output sites of wire connection, but this is not possible in occam-pi.
However by modelling these actions as processes, increased transparency is brought to the
network and indeed the network diagrams in Brooks’ own report separate these two actions
into distinct elements.

3.1. Suppression

Suppression is achieved by inserting a process (as shown in figure] on the following page)
between two communicating processes that can also receive input on a third suppress chan-
nel to control the suppression. Under normal conditions, inputs received by the suppress pro-
cess are routed from in to out. The first input received on the suppress channel whilst
the process is in a non-suppressing state triggers suppression for the length of time speci-
fied in the time constant given to the process. When suppression is taking place, inputs from
the suppress channel are routed to the out channel. Subsequent values received on the
suppress channel do not reset the time-out value on the suppression process, although once
the process switches back to normal, continued inputs will initiate the suppression once more.

230 J. Simpson et al. / The Subsumption Architecture and occam-pi

PROC suppress.int (VAL INT timeout,
CHAN INT suppress?, in?, out!)
TIMER tim:
INITIAL INT time IS O:
INITIAL BOOL suppressing IS FALSE:
INT value:
WHILE TRUE
PRI ALT
NOT suppressing & suppress ? value
SEQ
suppressing := TRUE
tim ? time
time := time PLUS timeout
out ! wvalue
NOT suppressing & in ? value
out ! wvalue
suppressing & tim ? AFTER time
suppressing := FALSE
suppressing & suppress ? value
out ! wvalue
suppressing & in ? value
SKIP

Listing 1. A process providing suppression for a channel of integers in occam-pi.

suppress.int

(time) out

suppress inhibit

Figure 4. The suppress.int process, which FigureS5. The inhibit.int process, which pro-
provides suppression on an occam-pi channel of vides inhibition on an occam-pi channel of inte-
integers. gers.

3.2. Inhibition

Inhibition can be achieved by placing a process between the target module and a module
reading output from it. This process also has a second channel, for receiving signals to indi-
cate when inhibition should take place, and is initialised with a time constraint parameter that
determines the amount of time that inhibition will occur for once triggered. Each time a value
is sent on the inhibition control channel, the time before the process will stop inhibiting is
reset. This process is slightly different for each type it must inhibit, and the code for a version
of this process inhibiting integers can be seen in listing [3]

4. Robotics with occam-pi

A language like occam-pi has a natural place in the world of robotics, and in the past its use
has been explored on small platforms like the LEGO Mindstorms [3]. In this paper our ex-

J. Simpson et al. / The Subsumption Architecture and occam-pi 231

PROC inhibit.int (VAL INT timeout, CHAN BOOL inhibit,
CHAN INT in?, out!)
TIMER tim:
INITIAL INT time IS O:
INITIAL BOOL inhibiting IS FALSE:

INT data:
BOOL flag:
WHILE TRUE
PRI ALT
inhibit ? flag
SEQ
inhibiting := TRUE
tim ? time
time := time PLUS timeout
inhibiting & tim ? AFTER time
inhibiting := FALSE

NOT inhibiting & in ? data
out ! data

inhibiting & in ? data
SKIP

Listing 2. A module to allow inhibition of an occam-pi channel.

perimentation takes place on a Pioneer 3 robo The Pioneer 3-DX, produced by ActivMedia
Robotics, has two wheel differential drive, sixteen ultrasonic range-finders arrayed around its
circumference, and a high resolution laser range-finder, which provides centimetre resolution
to an eight meter distance in a forward-facing, 180-degree arc. Inside the particular robot
used in our experiment is a 700MHz PC104 board running Debian GNU/Linux.

4.1. Player/Stage

There are several ways to program a robot like the Pioneer 3. First, it is possible to forego
the embedded PC104 and program directly against the robot’s hardware control board, con-
nected to the PC via a serial port. Second, the manufacturer provides an object-oriented API
(accessible from C, C++, Java, and Python), called ARIA [6], which provides a control inter-
face for all of their robotics platforms. Third, and most interesting, is the open-source Player
API—a cross-platform robotics API written in C/C++ [/]].

Player is interesting as it provides an abstracted driver interface for motors, sensors, and
other devices typically found on a robot, allowing control logic to be ported easily from one
robotics platform to another whilst minimal modification of applications on the part of the
developer. Additionally, it is built as a client/server application, meaning code written against
the client library might then be run on a remote desktop PC, while the server runs on a robot
connected via ethernet or a serial port.

This separation also makes authoring a graphical simulator significantly easier; currently,
there are two that ship with the Player library. The first is Stage, a 2D simulator capable of dis-
playing dozens of robots simultaneously; second is Gazebo, a 3D simulator which provides a
virtual world complete with accurate physics for more detailed testing of control algorithms.

4.2. Player/Stage and occam-pi

Player, like many other robotics control libraries, is written in a sequential language, with
no abstractions provided to aid the programmer in dealing with the concurrent programs that

'Our development work relies heavily on simulation, with testing being carried out on real robots.

232 J. Simpson et al. / The Subsumption Architecture and occam-pi

must necessarily be written to control robots engaged in interesting tasks. Player exposes a
single control loop, implying that programmers must write their own multi-threaded appli-
cations, and be continuously aware of timing issues in polling the driver. Solutions of this
nature are often fragile in the face of race hazards and deadlock.

To make the Player library safer for use in control system structures that have the po-
tential to be massively concurrent, we have wrapped the library using our SWIG wrapper
interface generator [§8]]. This allows us to access the C-library directly from occam-pi pro-
grams running on the Transterpreter [9]], a portable run-time for the occam-pi programming
language. Just making Player available as a foreign library is not enough, however. A small
accompanying library, written in occam-pi, provides a process-centric interface to the under-
lying C API [10]. This combination of an occam-pi process-centric interface and library can
deliver data between 50 and 60 times faster than the update speeds of the sensors available
when running in basic process networks.

The end result is a portable, thread-safe robotics library that allows us to develop code
on any robotics platform that the Player API has been ported to, of which there are many.

5. Robot Control with the Subsumption Architecture and occam-pi

To explore how the subsumption architecture becomes one process network layered on top
of another in practice, we developed a simple robot control program [[11] that has multiple
behaviours and two levels of competence. At its first level of competence, the robot avoids
colliding with objects it can see using its laser range-finder, wanders an environment and
pivots backward away from objects it detects.

The second competence level is added such that when the robot is backing up, it will
check the distance behind itself using the four central sonar on the back of the Pioneer, and
instead of continuing to back up, will go forward to give it room to complete the turn, whilst
still not colliding with objects in either direction.

As discussed previously, the robot’s laser range-finder is forward facing and covers a
180 degree arc, meaning that the sonar array must be used for the second level of compe-
tence. This example demonstrates the use of both shared and multiple sensor inputs to the
control program, and also shows the behaviours that can be achieved by mixing inhibitors
and suppressors even with simplistic modules.

Although implementing these behaviours explicitly could be more concise [5], we be-
lieve the subsumptive approach can be made to scale to increasingly sophisticated behaviours
where a direct implementation cannot.

5.1. Infrastructure

Critical to the operation of our robot is the occam-pi Pioneer Robotics Library [10]. In
particular, it exposes a series of brain.stem processes which can be used to interact with
the robotics library. The laser data channel carries an array of 180 integers ranged [0-800]
and the sonar data channel carries an array of 16 integers ranged [0-500], both of which are
distances in centimetres. In our example, we declare the end of these channels SHARED to
enable multiple processes from different levels of the architecture to get access to the data.

The motor control channel takes a PROTOCOL of three integers representing the speed of
the robot in the X-axis, the Y-axis, and its rotational velocity; in the case of our particular
robot there is no Y-axis (the robot cannot scuttle sideways). These control commands are ab-
stracted over by the motor process which takes in a channel of integers, mapped to constants
for convenience (e.g. motor.stop, motor.forward, etc.).

J. Simpson et al. / The Subsumption Architecture and occam-pi 233

motor.command

suppress.
motor
(1000000)

Y

motor

Y

min.distance » prevent.collision

distance motor

brain.stem laser.data

object g

Y

object pivot

suppress.act

Figure 6. A process network diagram for a robot that avoids colliding with objects whilst also wandering and
turn away from objects it encounters.

5.2. First Level of Competence

The first level of competence has two main behaviours and is shown in figure [6] One of
its behaviours is to avoid colliding with any objects it can see with the laser range-finder.
This behaviour keeps the robot from colliding with objects and acts essentially as a protec-
tive reflex, taking action regardless of whatever else the robot happens to be doing. To do
this, it uses a combination of two processes: min.distance and prevent.collision. The
min.distance process reads through the entire array of laser data as each set of data ar-
rives, and sends the minimum values out on a channel of integers to the prevent.collision
process.

PROC prevent.collision (CHAN INT distance?, CHAN INT act!)

WHILE TRUE
INITIAL INT min IS O:
SEQ
distance ? min
IF
min < 20
act ! motor.stop
TRUE

act ! motor.forward

Listing 3. prevent.collision, a base level behaviour to prevent the robot from colliding with objects in any
direction.

prevent.collision watches for objects using the laser range-finder. If the value re-
ceived from min.distance is less then 20cm then an object is ‘seen’ by the robot, and a
motor.stop message is sent to the motors. If no object is observed, then the process sends a
motor.forward commands to the motors, meaning the robot can recover from being halted
if the environment subsequently changes.

The second behaviour at this level is that the robot will pivot backwards whenever it de-
tects an object in front of it. Using the 1aser . data channel, another process detect.object
reads through the central 90 degrees of the laser array containing each scan, and looks for
any obstacles closer than 75cm. Upon processing an entire scan, the process sends a boolean
value on the object channel indicating that it has detected an object in the robot’s path.

The pivot process sends a back up command over the suppress.act channel to the
motor process whenever a signal is received on its own object channel. It does nothing
otherwise, as outputs from the process control the suppression line of suppress.motor.

The avoid collision, wandering and pivot backwards behaviours are connected by a sup-
pressor, suppress.motor which is the same as the suppress. int process seen in figure [
on page [230] This means that when the pivot process is active, motor commands from

234 J. Simpson et al. / The Subsumption Architecture and occam-pi

PROC pivot (CHAN BOOL object?, CHAN INT suppress.act!)
WHILE TRUE
BOOL is.object:
SEQ
object ? is.object
IF
is.object
suppress.act ! motor.back.right
TRUE
SKIP

Listing 4. pivot, a process that turns the robot if an object is detected, or goes forward otherwise to provide
‘wandering’

prevent.collision are dropped (telling the robot to go forward, or stop), and the command
to turn right from pivot will be sent instead.

The time interval on the suppressor is set to 10000004 (one second) meaning that the
robot will back up for that period before the choice is made again whether to pivot or go
forward. When there is a clear path in front of the robot again, the lower level behaviour (of
going forward when there is clear space ahead) resumes control of the robot.

5.3. Second Level of Competence

Up to this point, our robot can wander in space, turn away from objects and prevent colli-
sions. However, it has a deficiency: it is possible for the robot to back into walls whilst trying
to reverse away from objects in front of it, as shown in figure [/} Following the principles of
the subsumption architecture, we can add another behaviour that checks whether the robot
has space to back up and turn. When there is no space to back up, this behaviour can inhibit
the signals coming from the pivot process, and instead allow the motor.forward com-
mands from prevent.collision in the base level through, as shown in figure [0]on the next
page. Causing the robot to travel forward temporarily gives more space for it to back up and
pivot into, adding more ‘points’ to the turning motion, but allowing the robot to successfully
complete its backward turn.

Figure 7. At the first level of competence, the Figure 8. Demonstrating the second level of
robot is able to reverse into walls while trying to competence in action, the robot successfully nav-
find clear space. igates the environment without running into the

wall behind it.

J. Simpson et al. / The Subsumption Architecture and occam-pi 235

__

motor.command

v suppress.

k 1
! 1
' 1
! 1
! 1
! 1
! 1
! i
E > min.distance - > prevent.collision motor motor !
: . distance (1000000) H
' brain.stem [— laser.data i
: i
1

i > object ivot i
! ! object P i
! 1
| suppress.act E
g S S

turn R
inhibit.
5| has.space. > pivot
sonar.data behind inhibit (100000)

Figure 9. A process network diagram for a robot control system with two competencies, allowing more suc-
cessful negotiation of an environment based on both sonar and laser data.

The has.space.behind process uses the middle four sonar sensors at the rear of the
Pioneer 3, and checks that there is room behind the robot.

The inhibit.pivot is the same code that was introduced earlier as an example of
inhibition on occam-pi channels. Different delays are used for the inhibitor and suppres-
sor, because the inhibit.pivot must restrain the outputs of the motor . suppress for long
enough that the robot can move forward a significant amount. Otherwise, the robot falls into
a needlessly long see-saw motion, wobbling back-and-forth when caught between ‘““a rock
and a hard place.” After adding this additional layer of competence, it is possible to see in
figure 8] on the facing page that the robot can successfully negotiate the environment whilst
not backing into walls.

In our example, it is possible to see that the processes originally used in lower levels
are maintained and the lower-level system is kept intact. New levels of functionality merely
augment the system and improve its overall ability to perform the desired task. These levels
can be progressively debugged as they are added, and once debugged can be relied upon by
subsequent layers, meaning the system should remain robust even as it grows in size and
complexity.

6. Conclusions and Future Work

Based on our initial explorations, the subsumption architecture appears to be a natural design
paradigm for occam-pi robotic control. We can implement desirable, low-level behaviours
for our robots, and then extend those networks with higher-level behaviours, using Brooks’
notions of inhibition and suppression. However, further experiments are necessary to con-
vince ourselves of the value of the subsumption architecture as a paradigm for robotic control
in the occam-pi programming language.

Given the example levels of competence presented, it would be useful to investigate cre-
ating additional levels for the example presented in this paper. Making these levels modular
such that others building control systems in 0occam-pi can make use of them would also seem
wise.

Having a stable and debugged core of modules for use in developing subsumption ar-
chitectures in the library that is used with occam-pi for Player/Stage would be a useful step
forward to promote this approach to control with the language. Developing similar sets of
modules for the sensors found on smaller, more commonly available robotics platforms like
the LEGO Mindstorms would provide additional opportunities for use of this paradigm for
teaching purposes.

236 J. Simpson et al. / The Subsumption Architecture and occam-pi

Additionally, implementing Brooks’s subsumption architecture in a manner more closely
mirroring its original form, detailed in his technical report [12], would be an interesting chal-
lenge to attempt in the occam-pi language.

Acknowledgements

We are very grateful to Damian Dimmich for providing Player client library wrappers, mak-
ing it possible to program the Pioneer 3 using occam-pi and the Transterpreter [9].

References

[1] StuartJ. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, chapter 2.4, pages 46—48.
Pearson Education, 2003.

[2] Rodney A. Brooks. Cambrian intelligence: the early history of the new Al, chapter Preface, page xi. MIT
Press, Cambridge, MA, USA, 1999.

[3] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge, MA, USA,
1986.

[4] PH. Welch and FR.M. Barnes. Communicating mobile processes: introducing occam-pi. In A.E. Abdal-
lah, C.B. Jones, and J.W. Sanders, editors, 25 Years of CSP, volume 3525 of Lecture Notes in Computer
Science, pages 175-210. Springer Verlag, April 2005.

[5] Christian L. Jacobsen and Matthew C. Jadud. Towards concrete concurrency: occam-pi on the LEGO
mindstorms. In SIGCSE "05: Proceedings of the 36th SIGCSE technical symposium on Computer science
education, pages 431-435, New York, NY, USA, 2005. ACM Press.

[6] ActivMedia Robotics. Advanced Robotics Interface for Applications (ARIA) Robotic Sensing and Control
Libraries. http://www.activrobots.com/SOFTWARE/aria.html.

[7] B. Gerkey, R. Vaughan, and A. Howard. The player/stage project: Tools for multi-robot and distributed
sensor systems. In Proceedings of the International Conference on Advanced Robotics (ICAR 2003),
Coimbra, Portugal, June 30 - July 3, 2003, pages 317-323, 2003.

[8] Damian J. Dimmich and Christan L. Jacobsen. A Foreign Function Interface Generator for occam-pi. In
J. Broenink, H. Roebbers, J. Sunter, P. Welch, and D. Wood, editors, Communicating Process Architectures
2005, pages 235-248, Amsterdam, The Netherlands, September 2005. IOS Press.

[9] Christian L. Jacobsen and Matthew C. Jadud. The Transterpreter: A Transputer Interpreter. In Communi-
cating Process Architectures 2004, pages 99-107, 2004.

[10] Christian L. Jacobsen and Matthew C. Jadud. The occam Pioneer Robotics Library.
http://www.transterpreter.org/documentation/occam-pioneer-robotics-library.pdf.

[11] Jonathan Simpson, Christian L. Jacobsen, and Matthew C. Jadud. A bump and wander robot using the
Subsumption Architecture in occam-pi. http://www.transterpreter.org/wiki/Subsumption.

[12] Rodney A. Brooks. A robust layered control system for a mobile robot. Technical report, MIT, Cambridge,
MA, USA, 1985.

