
Automated Benchmarking and Analysis Tool

Tomas Kalibera, Jakub Lehotsky, David Majda, Branislav Repcek,

Michal Tomcanyi, Antonin Tomecek, Petr Tuma, Jaroslav Urban
∗

Distributed Systems Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University
Malostranske nam. 25, 118 00 Prague, Czech Republic

phone +420221914232, fax +420221914323

been@nenya.ms.mff.cuni.cz

ABSTRACT
Benchmarking is an important performance evaluation tech-
nique that provides performance data representative of real
systems. Such data can be used to verify the results of per-
formance modeling and simulation, or to detect performance
changes. Automated benchmarking is an increasingly pop-
ular approach to tracking performance changes during soft-
ware development, which gives developers a timely feedback
on their work. In contrast with the advances in modeling
and simulation tools, the tools for automated benchmark-
ing are usually being implemented ad–hoc for each project,
wasting resources and limiting functionality.

We present the result of project BEEN, a generic tool for
automated benchmarking in a heterogeneous distributed en-
vironment. BEEN automates all steps of a benchmark ex-
periment from software building and deployment through
measurement and load monitoring to the evaluation of re-
sults. The notable features include separation of measure-
ment from the evaluation and ability to adaptively scale
the benchmark experiment based on the evaluation. BEEN
has been designed to facilitate automated detection of per-
formance changes during software development (regression
benchmarking).

Categories and Subject Descriptors
C.4 [Performance of Systems]: measurement techniques

General Terms
Performance, Measurement

Keywords
Automated benchmarking, Regression benchmarking

∗The authors are listed in alphabetic order.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools’06 October 1113, 2006, Pisa, Italy
Copyright 2006 ACM 1595935045 ...$5.00

1. INTRODUCTION
Coupled with modeling and simulation, benchmarking is an
essential technique for performance evaluation. Based on
running model applications (benchmarks) in a real system,
benchmarking provides performance data representative of
a real system. This data is useful for detection of changes
in the system, as well as a feedback for modeling and sim-
ulation of the system. Recently, regular automated bench-
marking has been gaining popularity as a technique for de-
tection of changes in performance during software develop-
ment [7, 9, 15]. This technique, also known as regression
benchmarking [3], is based on benchmarking of daily soft-
ware versions on the same system.

Benchmarking of a complex system, and automated bench-
marking in particular, is a complex task. Still, in con-
trast with advances in performance modeling and simulation
tools, benchmarking is being implemented ad–hoc for each
project [7,9,15], wasting resources and loosing generality.

The waste of resources includes not only re–implementing
the execution environment for every software to be evalu-
ated. Most current benchmarks are designed to report av-
erages or similar statistics, discarding the raw data. When
another statistic, such as median or variance, or a more ad-
vanced evaluation, such as clustering of the data, is needed,
the benchmark has to be re–implemented and run again,
additionally wasting the CPU time. Note that the CPU
time can be very expensive when large or enterprise appli-
cations are evaluated, because the benchmarks have to be
run on a real system. To address these problems, BEEN pro-
vides an infrastructure for benchmarks that report raw data.
The infrastructure defines a benchmark– and application–
independent format of the data, implements a repository of
results that can handle the data and supports extensions for
benchmark–independent statistical evaluation of the data.
BEEN thus allows the re–use of the data for different types
of statistical evaluation.

The limited generality of current ad–hoc benchmarking tools
includes both the measurement and the evaluation of results.
The measurement in general has to cope with random effects
at various levels, such as in compilation, in benchmark exe-
cution and in individual observations [12, 13]. The random
effects are present in real systems, have impact on perfor-
mance and cannot be filtered out [12]. As a result, in some
benchmarks, compilations, executions and observations have

to be repeated. The number of necessary repetitions at each
level, however, depends on the benchmark and the required
result precision. Current ad–hoc benchmarking tools usu-
ally support only a predefined number of repetitions at the
level of executions and observations, possibly loosing preci-
sion due to random effects in compilation, or wasting CPU
time by suboptimal choice of the numbers of repetitions [13].

In ad–hoc benchmarking tools, the analysis of performance
results is frequently limited in that it does not allow plan-
ning of new measurements based on the results. This feature
is important for statistical evaluation of the results, because
of the natural variation in performance of a benchmark that
is present even when there is no change in the system. When
the variation is too large, additional measurements using the
same benchmarks are needed to filter it out. The automated
detection of changes in regression benchmarking is an exam-
ple of a benchmarking application where such an analysis is
important. As a generic benchmarking tool, BEEN supports
repeating compilation, execution and observations, as well
as statistical evaluation methods that are independent of
the measurement and may adaptively plan additional repe-
titions. BEEN is designed to support automated regression
benchmarking, covering all its steps from automated down-
loading through measurement and automated detection of
changes to visualization of results.

The project definition of BEEN has been presented in [11].
Currently, BEEN is available in a beta version, described in
this paper in more detail. The related projects are described
in Section 2. The architecture of the tool is outlined in Sec-
tion 3 and the functionality is detailed in Sections 4 and 5.
The current implementation is evaluated on a distributed
remote procedure call benchmark in Section 6. The paper
is concluded in Section 7.

2. RELATED WORK
Among the related tools are tools for automated perfor-
mance monitoring during software development, generic
tools for automated distributed testing and generic tools for
automated distributed benchmarking.

The tools for automated performance monitoring during
software development include TAO Performance Score-
board [9], A Real-Time Java Benchmarking Framework [15],
Lockheed Martin ATL Benchmarking Tools [1] and Mono
Regression Benchmarking Project [7]. These tools were all
created for use in a particular software project. [9] and [1]
are focused at CORBA, [15] is for Java applications and [7]
is for Mono/C# applications. Only [7] features automated
detection of changes. Porting the tools for use in other soft-
ware projects would require a significant additional effort.

The Skoll Project [14] started as a tool for distributed soft-
ware testing that used computing resources provided by out-
side volunteers. One of many challenges of the project is
finding a minimal set of tested software configurations that
would still discover potential problems in any configuration.
Currently, the project also covers regression benchmark-
ing [18], focusing on finding benchmarks and configurations
that are most sensible to performance problems present in
any configuration. Such benchmarks and configurations are
first found using the computing resources provided by out-

side volunteers, and then precisely evaluated on dedicated
computers. Within this context, BEEN is a tool for the
precise performance evaluation.

The CLIF Tool [6] is a load injection framework targeted
primarily at Java middleware. It covers deployment, moni-
toring and storing of results. The tool is capable of a highly
configurable distributed load injection, emulating for exam-
ple clients accessing a web site. BEEN does not aspire to
provide the load injection support for general benchmarks,
but is able to run benchmarks that use [6] for load injec-
tion, adding runtime monitoring, results repository and au-
tomated evaluation of results. The results repository of [6]
is limited in comparison.

The NIST Automated Benchmarking Toolset [4] is a generic
tool for automated benchmarking in a grid environment.
The tool uses a common format for storing results in a rela-
tional database. It relies on the Distributed Queueing Sys-
tem [16] as its execution environment and shell scripts as
its task implementation language, therefore, the support for
Windows platforms is limited. The tool is no longer being
developed and the source code is not available.

3. ARCHITECTURE
The main design goal of BEEN is to support automated
benchmarking in a distributed heterogeneous environment.
The automated benchmarking involves compilation of soft-
ware to be benchmarked, compilation of benchmarks, de-
ployment, running the benchmarks and collecting, evaluat-
ing and visualizing the results. Many of these issues are
general for any automated execution of software in a dis-
tributed heterogeneous environment – these are covered by
the execution framework. The benchmarking specific issues
are covered by the benchmarking framework, built on top of
the execution framework. Both frameworks can be adminis-
tered and controlled from a unified web based user environ-
ment. The BEEN architecture is illustrated in Figure 1.

3.1 Execution Framework
The execution framework is designed to execute tasks in
a distributed system, supporting different host platforms
without requiring system configuration changes to the host
computers. The main components of the execution frame-
work are Host Runtime, Host Manager, Task Manager and
Software Repository. To allow a unified view on different
hosts in the system, each host has to run the Host Runtime,
which is used by other BEEN components to communicate
with that host. The Host Runtime is capable of running
tasks locally on each host, providing logging and monitor-
ing facilities.

The availability of the hosts can change over time, both
intentionally when the administrator adds or removes hosts,
or as a result of a network or hardware failure. The Host
Manager maintains a list of the currently available hosts as
well as their current hardware and software configuration.
It allows addition and removal of hosts by the administrator
and lookup of hosts based on their configuration.

The execution of tasks in the distributed environment is
coordinated by the Task Manager. The Task Manager allo-
cates hosts to tasks based on the tasks requirements, mon-

itors the running tasks and resolves task failures. The exe-
cutable code and static data of the tasks are stored in the
Software Repository.

The execution framework is designed with benchmarking in
mind. This requires that the framework is capable of run-
ning a task exclusively on a particular host, because other-
wise the task performance could be affected by concurrently
running tasks. By employing the Software Repository, the
framework avoids the dependence on a file system shared
by multiple hosts, which can also potentially distort perfor-
mance of running tasks.

3.2 Benchmarking Framework
The benchmarking framework is designed to support two
different kinds of performance analysis – a traditional eval-
uation of performance and a repetitive evaluation of perfor-
mance for regression benchmarking. The main components
of the benchmarking framework are the Benchmark Man-
ager and the Results Repository.

The Benchmark Manager submits tasks needed for execu-
tion of a particular benchmark to the Task Manager. These
include tasks for compilation of the evaluated software, com-
pilation of the benchmark, execution of the benchmark and
collecting of its results. The benchmark results are stored
in the Results Repository in a raw format that contains in-
dividual benchmark measurements. The results can be sta-
tistically processed and visualized by the repository itself or
by configurable repository extensions.

3.3 User Interface
The distributed components of BEEN can be monitored
and controlled from a single web user interface. The in-
terface provides both high–level operations, such as starting
a benchmark and viewing its results, as well as low–level op-
erations, such as executing a task that downloads particular
software into the Software Repository. For the system ad-
ministrator, the interface provides a detailed information on
all the BEEN components. The user interface runs indepen-
dently and can be shut down while other BEEN components
are running.

4. EXECUTION FRAMEWORK
The execution framework of BEEN provides a simple in-
terface for running tasks in a distributed environment, hid-
ing differences between various operating systems and plat-
forms. Platform independence is accomplished through us-
ing Java: each task has to be wrapped within a Java class
and be executable from the Java Virtual Machine (JVM).
The distribution is implemented using Java Remote Method
Invocation (RMI) as the communication protocol. The code,
static data and, optionally, platform dependent binaries
needed to run the tasks are stored in task packages.

Depending on its mode of execution, each task is either a
job or a service. A job is a batch task created for a partic-
ular action defined by job parameters, code and input data.
A job finishes as soon as the action it was created for is
performed. A service is an interactive task that waits for
requests from other tasks and performs actions upon those
requests. A service has to be stopped explicitly, either by

Results
Repository

Software
Repository

Benchmark
Manager

Task
Manager

Task generation

Host 1 Host 2 Host n…

Host

Runtime

Host

Runtime

Host

Runtime

Task execution

Host
Manager

Host management

Upload/download

Results storage

E
x
e
c
u
ti
o
n

F
ra
m
e
w
o
rk

B
e
n
c
h
m
a
rk
in
g

F
ra
m
e
w
o
rk

W
e

b
 U

s
e
r

In
te

rf
a
c
e

Figure 1: BEEN architecture.

other tasks, by the environment, or by the administrator.
Most of BEEN components are themselves implemented as
services: Software Repository, Host Manager, Benchmark
Manager, and Results Repository.

The execution of a task is started by submitting a task de-
scriptor to the Task Manager. Based on the hardware and
software requirements described in the task descriptor and
on the current utilization of available hosts, the Task Man-
ager allocates a suitable host for running the task and in-
structs the Host Runtime of that host to run the task. The
Host Runtime then downloads the task package from the
Software Repository and executes it with parameters speci-
fied in the task descriptor. The hardware and software con-
figuration requirements are matched against a host database
maintained by the Host Manager. The database is updated
automatically to match the current state of available hosts.

Cooperating tasks can synchronize via checkpoints. By cre-
ating a checkpoint, a task declares it has reached a par-
ticular stage of its execution, possibly attaching additional
information to the checkpoint. Predefined checkpoints indi-
cating that a task has started or finished are created implic-
itly. The execution of a task can be suspended until another
task reaches a particular checkpoint, either by describing the
condition in the task descriptor or by waiting for the check-
point at run time. A simple use of checkpoints is creating a
sequence of tasks, where each task waits for its predecessor
in the sequence to finish. Each group of cooperating tasks
is enclosed in a context. An example of such a group is a
compilation context, formed by a sequence of three tasks
that download the software sources from a public versioning
system, compile the sources and upload the binaries to the
Software Repository, respectively. A task can only synchro-
nize with tasks from the same context. The base context
where the BEEN components are run is an exception to this
rule, as any task can synchronize on checkpoints of tasks in
the base context.

A more complex example of the use of checkpoints is execu-

tion of a client–server benchmark, consisting of a client task
and a server task. By creating a checkpoint, the server task
declares that it is ready to receive requests. It attaches its
serialized reference to the checkpoint. The execution of the
client task depends on the server task reaching this check-
point. When the client executes, it uses the serialized refer-
ence from the checkpoint to connect to the server.

The execution framework is designed to detect and handle
failures of the running tasks. These failures can be caused
by unhandled language exceptions, which are detected in
a straightforward manner, or by infinite loops and dead-
locks, which can be detected when the running tasks exhibit
too high or too low processor utilization. Processor utiliza-
tion information is a part of the host utilization information,
monitored by the Host Runtime of each host and stored in
the host database of the Host Manager.

4.1 Host Runtime
Each instance of the Host Runtime represents a single host
in the execution framework. The runtime instances pro-
vide an interface for running tasks on the associated host
and monitor the host utilization. To the running tasks, the
Host Runtime provides a control interface for synchroniza-
tion through checkpoints, an interface for registration and
lookup of services, and interfaces for logging and adjustment
of the utilization monitoring.

When requested to execute a task, the Host Runtime down-
loads the task package with the necessary code from the Soft-
ware Repository. To save network communication, the Host
Runtime caches the packages on each host. The maintenance
of the package cache is simple, because once a package is up-
loaded to the Software repository, it cannot be modified.

Each task is run in a separate JVM, with the environment
variables and command line arguments set as described in
the task descriptor. The default arguments for the JVM,
the name of the JAR archive to use and the name of the
application class to execute are included in the metadata
of the task package. Once running, the task communicates
with the Host Runtime on the same host by RMI. Although
launching a new JVM for each task brings certain overhead,
it ensures reliable isolation of the running tasks and the Host
Runtime. In our experience, errors in software under devel-
opment can crash a JVM. By running the Host Runtime in
a separate JVM, we ensure that the Host Runtime does not
crash as a result of an error in a task.

The Host Runtime allocates three different directories in the
local file system for each running task: the task directory, the
working directory and the temporary directory. The task di-
rectory contains the extracted task package, from which the
running task can read its static data. The temporary direc-
tory is intended for temporary files of the task. It is empty
at task startup and deleted after the task terminates. The
working directory of the task, also empty at task startup,
allows the task to leave its output for the other tasks it co-
operates with, provided both tasks are run on the same host.
The directory is deleted when the context of the cooperating
tasks is removed. A task can also use its working directory
to store its state so that it can recover when restarted after
a crash. The majority of BEEN components is designed to

have this capability.

The Host Runtime is responsible for monitoring tasks and
reporting the task failures to the Task Manager, as well as
cleaning up the temporary directories of the failed tasks and
shutting down of all processes started by the failed tasks. A
task failure is detected when its JVM process exits with
an error, when its execution timeout is exceeded, or when
its processor utilization falls outside predefined limits. Both
the timeout value and the utilization limits can be set in the
task descriptor. The utilization limits are useful for detect-
ing deadlocks and infinite loops in exclusive tasks. When
running, an exclusive task is the only task on a host. All
benchmarks are run as exclusive tasks to avoid distortion of
the reported performance.

The host utilization is monitored by the Utilization Moni-
tor, which is a part of the Host Runtime. Two modes of
acquiring utilization information are supported: the brief
utilization mode provides an overview of the host activity,
the detailed utilization mode provides detailed utilization in-
formation about individual operating system processes. The
brief utilization mode is used whenever the Host Runtime
is running, collecting information on processor utilization,
memory usage, disk usage and network activity. The in-
formation is periodically uploaded to the Utilization Server,
which is a part of Host Manager, and used to detect failed
tasks and failed hosts. The detailed utilization mode is used
only when requested by a running task. The information
is stored locally and used to supplement the performance
results. A benchmark task that requests monitoring in the
detailed utilization mode can be followed by another task
within the same context that will upload the data to the
Results Repository for further processing.

Since Java does not provide facilities to acquire the utiliza-
tion information, native libraries are provided for supported
platforms, currently Windows and Linux. The native li-
braries use operating system specific calls. On unsupported
platforms, the Utilization Monitor does not support moni-
toring in the detailed utilization mode, and instead of moni-
toring in the brief utilization mode, it only informs the Host
Manager periodically that the particular host is alive.

The Host Runtime is designed to recover from possible fail-
ures of the host it runs on or of the BEEN components it
communicates with. The Host Runtime maintains a log of
its state, from which it can recover when restarted after a
failure. It also intercepts all communication of the tasks
with the BEEN components and delays it when the compo-
nents cannot be reached. The running tasks are therefore
resilient against temporary failures of the Task Manager,
which would otherwise become a single point of failure for
the entire distributed execution system.

4.2 Task Manager
The Task Manager is responsible for scheduling, monitor-
ing and controlling of tasks in the distributed environment.
The scheduling decision is based on the hardware and soft-
ware requirements of the tasks and on their dependencies
on checkpoints reached by other tasks. The monitoring cov-
ers checkpoints reached by running tasks, failures of running
tasks and failures of hosts on which the tasks are running.

The controlling includes restarting of failed tasks and stop-
ping of tasks on demand.

A task is created by submitting a task descriptor to the Task
Manager. The task descriptor can be submitted either by
another running task, such as the Benchmark Manager, or
manually through the user environment. The task descriptor
tells the Task Manager how to allocate a host to the task,
when to run the task, how to run the task and what to do
if the task fails.

The host allocation is based on software and hardware re-
quirements of the task, which are interpreted by the Host
Manager. The specification of the software and hardware
requirements is described in Section 4.3 in more detail. The
host allocation algorithm balances the load among available
hosts and ensures that exclusive tasks are run alone on the
assigned host. As a special case of a host requirement, the
specification can refer directly to an individual host.

Unless specified otherwise, a task is scheduled for execu-
tion immediately after its task descriptor is submitted to
the Task Manager. Sequentially submitted tasks can run in
parallel. Conditions that determine when to run a task can
be specified using checkpoints, which allow a task to either
wait for a particular checkpoint of a particular task to be
reached, or to wait for a particular value of such a check-
point. The task identification scheme makes it is possible to
wait for a checkpoint of a task that has not been submitted
to the Task Manager yet, thus increasing flexibility of both
task descriptor submission and task synchronization. In ad-
dition to synchronization, the checkpoints also help the user
to track the progress of the tasks.

The package with the task code is specified by a list of its
features, such as name of the software, range of versions,
supported platforms and build options. The specification
is processed by the Software Repository, which stores the
packages. Based on the packages currently available in the
Software Repository, multiple packages can match the spec-
ification in the task descriptor. A single matching package
is then chosen at random.

The Task Manager is informed on the checkpoints of the
running tasks by the Host Runtime instances running the
tasks. This includes information about task failures, which
can be either reported explicitly, or inferred implicitly when
a task execution timeout exceeds or the host a task is running
on, or the associated instance of the Host Runtime, fail. The
task execution timeout is specified in the task descriptor. In
case of task failure, the Task Manager attempts to repeat the
failed task until the maximum number of retries specified in
the task descriptor is reached. The same host is used when
the respective host and Host Runtime are alive; another host
matching the host requirements is chosen otherwise.

In addition to starting a task, the termination of a task can
also be tied to another task reaching a checkpoint. This fea-
ture is important for services, which can be stopped when all
cooperating tasks that use the service terminate. Examples
of services include database servers in a database benchmark
or directory services in a distributed client–server bench-
mark. Finally, cooperating tasks can also be stopped by

destroying their context.

The Task Manager keeps track of important information
about running tasks, which makes it a single point of failure
of the entire system. To minimize the impact of possible fail-
ure, the Task Manager maintains a log of its state and can
recover when restarted after a crash. Additionally, the Host
Runtime is designed to withstand a temporary failure of the
Task Manager. A temporary failure of the Task Manager
therefore does not cause the running tasks to fail.

4.3 Host Manager
The Host Manager is a service responsible for maintaining
the list of accessible hosts in the execution framework and for
managing the database with a hardware and software spec-
ification of each host. The Host Manager provides means
for administration of hosts, including tools for adding and
removing hosts and support for lookup of hosts based on
their specification. The Host Manager is also responsible
for monitoring the availability and utilization of the hosts.
The host database can group hosts based on various criteria,
simplifying the host management in large networks.

The host database stores a list of hosts, as well as the speci-
fication of their hardware and software. Since Java does not
allow direct interaction with the underlying operating sys-
tem needed to detect the installed hardware and software,
native detector libraries are provided for the task. Cur-
rently, Linux and Windows platforms are supported by na-
tive detectors that query processor features, hard disks, disk
partitions, installed software and operating system features.
Detectors can update the information about a host in peri-
odic intervals or on user demand. Each configuration update
adds a new entry to the configuration history of the host.
The configuration history can later be browsed through the
user interface, allowing for an easy review of hardware and
software changes and relating of these changes to the bench-
mark results.

Each host in the host database is represented by a tree of
objects described by properties. The structure of the tree
is based on the way hardware and software components re-
late to each other, with each child node adding more detail
about its parent node. As an example of this arrangement,
an object representing a hard drive is a parent of objects
representing partitions of that hard drive. The properties
are typed and identified by a path from the root of the tree.

The Host Manager provides two methods for querying the
host database. In the first method, the user specifies re-
strictions on the hosts configuration. The second method
requires the user to implement a more general query inter-
face for matching the host configuration.

Restrictions provide the user with means to specify a set
of conditions, which are essentially logical expressions over
properties in conjunctive normal form. Several types of re-
lations on properties are supported, including exact and in-
terval match as well as regular expression match.

As an alternative to restrictions, the implementation of a
query interface can be passed to the Host Manager us-
ing RMI. The implementation can access the entire host

database and express complex queries that cannot be ex-
pressed as restrictions.

Not all platforms support remote execution by default, and
thus the Host Manager has no means to start a Host Run-
time instance on a remote host automatically. On such plat-
forms, the Host Runtime can be started manually by the
administrator. The Host Manager is still designed to be
extensible to support automated starting of Host Runtime
on particular platforms with a particular remote execution
system, such as Secure Shell (SSH) on Unix or Windows.

4.4 Software Repository
The Software Repository is a service for storage and retrieval
of all software run by the execution framework. It stores the
software binaries for different platforms, as well as the static
data and the sources. By using the Software Repository,
the execution framework avoids relying on a distributed file
system, which might be difficult to set up in a heterogeneous
environment. When executing benchmarks, the presence of
a distributed file system could also distort the benchmark
results.

The basic storage unit in the Software Repository is a pack-
age. A package is a ZIP archive with metadata file and any
additional files and directories. The metadata is stored in an
XML format defined by the Software Repository and include
package name, package version, type and textual description
of the package. Presence of additional metadata depends on
the particular package type:

• Source package – contains software source code, such
as source of an application to be used for benchmark-
ing. Additional metadata include supported compilers
and platforms.

• Binary package – contains compiled software. Addi-
tional metadata include supported platforms and a de-
scription of how the software was compiled.

• Task package – contains a task for the execution frame-
work in the form of Java bytecode. Additional meta-
data include the default JVM arguments and the name
of the class to execute.

• Data package – contains any static data files, such as
an initial database snapshot for a database benchmark.

The operations supported by the Software Repository are
uploading a new package, downloading a package, deleting
a package and looking up a package based on its metadata.
Notably, instead of modifying a package, a new version of
the package has to be created. This restriction helps to
maintain coherency of package caches. The lookup of pack-
ages uses lookup code provided by the client over RMI and
executed by the Software Repository. The code can analyze
the package metadata in an arbitrary way.

The Software Repository is designed for transfer of large
packages and for a fast lookup of packages. The trans-
fer optimizations include asynchronous communication and
a special interface provided for monitoring of the trans-
fer progress. To improve the lookup performance, package

metadata are cached at package upload and all lookup op-
erations are processed using the cache.

The user interface to the Software Repository allows man-
ual browsing and lookup of packages, viewing package meta-
data, as well as package upload and deletion. The lookup
provided by the user interface is based on logical expressions
over package metadata.

4.5 User Interface
The web user interface of BEEN provides an unified access
to the components of the execution environment.

Via the Host Manager, it allows adding hosts to and re-
moving from the environment, checking their availability,
checking their detailed configuration, checking their current
utilization, viewing their configuration history, and looking-
up hosts matching given configuration requirements.

Via the Software Repository, the user interface allows brows-
ing available software packages, looking up packages match-
ing given requirements, and uploading to and deleting pack-
ages from the repository.

Via the Task Manager, the user interface allows monitoring
currently running tasks, viewing their checkpoints, viewing
their log information, and manually executing and stopping
the tasks.

5. BENCHMARKING FRAMEWORK
The benchmarking framework supports fully automated
benchmarking on top of the distributed execution frame-
work described in Section 4. A single benchmarking exper-
iment covers downloading of software sources, compilation,
deployment, execution, measurement, statistical evaluation
and visualization of results. The benchmarking framework
supports a range of features, such as a separation of the
measurement from the evaluation or planning of additional
measurements based on evaluation, with only a minimum
set of requirements on the benchmarks.

The benchmarking environment supports two distinct pur-
poses of benchmark experiments, comparison analysis and
regression analysis. The comparison analysis determines
the impact of configuration change on the performance of
the benchmarked software, using experiments where the
benchmarked software does not change and the configura-
tion varies in a small set of features. Examples of compar-
ison analysis include determining a communication library
implementation or configuration that maximizes the perfor-
mance of the benchmark. In contrast, the regression anal-
ysis determines the impact of version change on the per-
formance of the benchmarked software, using experiments
where the benchmarked software changes and the configu-
ration is the same. In the execution framework, both types
of experiments are implemented as sets of cooperating tasks
performing the necessary actions.

The benchmark experiments are subject to random effects
in compilation, execution and measurement [12]. The ran-
dom effects can have impact on performance, prompting the
need for repeating the individual steps of the experiments.
A benchmark experiment can be designed to adaptively op-

timize the numbers of compilations, executions and mea-
surements to get the best precision in a given time for the
experiment [13].

The benchmarking framework consists of the Benchmark
Manager, which is responsible for managing benchmark
analyses and running benchmark experiments, and of the
Results Repository, which is responsible for data storage,
statistical evaluation and visualization. Both the Bench-
mark Manager and the Results Repository are designed to
be extensible to support different benchmarks.

Although emphasis is put on having only a minimum set of
requirements on the benchmarks, some parts of a benchmark
experiment are necessarily specific to a given benchmark.
These parts must be provided by the benchmark in the form
of benchmark plugins, packaged in a single benchmark mod-
ule. Examples of plugins include task packages required for
software download, benchmark compilation, execution and
for conversion of results into a common format used by the
Results Repository. Since many benchmarks use standard-
ized software repositories and compilation tools, many of the
plugins do not need to be implemented individually for each
benchmark.

The benchmarking framework is designed to allow transpar-
ent and repeatable benchmarking. By employing the logging
and monitoring facilities of the execution framework, a log
of all potentially relevant events, as well as a listing of the
current software and hardware configuration of all the in-
volved hosts and the system utilization information of the
hosts is attached to the benchmark results. The logs are
stored in the Results Repository for later inspection in case
an inconsistency in the results is encountered. In addition
to manual inspection, the logs are used by the framework to
recreate identical conditions when a repetition of a bench-
mark experiment is requested.

5.1 Benchmark Manager
Given a description of a benchmark analysis to perform,
the Benchmark Manager is responsible for planning the cor-
responding benchmark experiments. A benchmark experi-
ment consists of tasks for compilation of the benchmarked
software, compilation of the benchmark itself, deployment
and execution of the benchmark, and collection and eval-
uation of the results. Each of the tasks has specific re-
quirements on the hosts it can use, which are particular
to the benchmark analysis, the benchmarked software, and
the benchmark itself. The Benchmark Manager is responsi-
ble for gathering these requirements and creating the tasks
with maximum utilization of the available hosts in mind.

The creation of the compilation tasks is driven by the re-
quirements of the platforms on which the benchmark will ex-
ecute. The compilation tasks do not require running on the
same host as the benchmark, but they must be performed
on hosts that can compile binaries for the platform on which
the benchmark will execute. Likely, there will be multiple
hosts meeting this requirement, and the decision which of
them to use should be based on the host utilization. The
final decision is therefore left upon the Task Manager, which
gathers the utilization data and selects the hosts based on
the requirements supplied with the compilation tasks. A

distributed benchmark may require a different platform for
each of its parts. The planning of compilation tasks has to
support this option, possibly also using multiple hosts for
compilation. Multiple benchmarks of the same software can
reuse the software binaries, provided that the same compile
time configuration of the benchmarked software is used.

Although similar in principle, the host allocation process
for the benchmark execution tasks is more complex. A dis-
tributed benchmark can require allocating tasks on several
hosts, each host potentially having a unique role in the
benchmark. As an example, a client–server benchmark can
require one host in the role of the server and several hosts
in the roles of clients. The server role may require a par-
ticular web server or component container implementation,
the client hosts may similarly require a specific communica-
tion middleware. These many constraints on the host plat-
forms are supplied by the benchmark plugins and have to
be accommodated together with other requirements of the
benchmarking analysis.

Finally, the host allocation for the result collection tasks is
quite simple once the hosts for the benchmark are known.
The benchmark plugins supply the information on which
hosts the benchmark produces results, these are the hosts
that will run the result collection tasks. At experiment cre-
ation time, the Benchmark Manager also informs the Re-
sults Repository about the results expected from the ex-
periment. Using this information, the Results Repository
can tell when it has received all the results and start the
evaluation. Alongside the results, the description of the ex-
periment and the logs of all the hosts involved in the bench-
mark experiment are uploaded to the Results Repository.
This makes it possible to reproduce the experiment.

Planning a comparison analysis
When planning for a comparison analysis, the benchmark
experiment evaluates several systems that differ in a small
set of features using the same benchmark. The benchmark
and the features that vary are selected by the user at the
analysis creation time. The analysis proceeds in two semi–
automatic steps. In the first step, the allocation of hosts that
match the restrictions given by user, the benchmark require-
ments, the benchmarked software requirements, and the
compilation requirements is performed as described above,
yielding a set of benchmark experiments iterating over all
the available settings for the features that were selected to
vary in the analysis. Considering an example analysis of a
web server benchmark performance under varying amount
of system memory, one experiment will be created for each
amount of system memory available among the BEEN hosts
that meet the requirements to execute the web server in the
benchmark.

In the second step of the analysis, the user is given the option
of manually pruning the set of experiments and modifying
the hosts selected for each role in the experiment. The user
can also customize the benchmark using benchmark param-
eters, such as specifying the length of the warm-up phase or,
in the web server benchmark example, the number of web
users simulated by each client. The tunable parameters are
specific to each benchmark and specified by the benchmark
plugins.

The benchmarking experiments start immediately after the
user commits the changes to the analysis. The task descrip-
tors, interlinked by checkpoints, are generated and submit-
ted to the Task Manager. In order to avoid possible distor-
tion of results by tasks unrelated to the analysis, exclusive
tasks are used to execute the benchmarks.

Planning a regression analysis
The regression analysis compares the performance of newly
produced software versions to the previous software versions
using the same benchmark. The main goal of regression
analysis is locating changes from version to version that im-
pact the observed performance. To make regression analysis
possible, the results of the benchmark must reflect only the
changes from version to version of the benchmarked soft-
ware, there must be no other changes in the benchmarked
system. Even a small modification of the benchmarked sys-
tem, such as a routine security update, can impact per-
formance and thus distort the regression analysis. When
planning for a regression analysis, the benchmark tasks are
therefore executed on the very same hosts for each software
version. The compilation can still execute on any system
that meets the requirements.

The host allocation in regression analysis is also a two–step
semi–automatic process, similar to the host allocation in the
comparison analysis. In the first step, the user selects the
particular software and benchmark for the regression analy-
sis and, optionally, restricts the host allocation for each role
in the benchmark. It is advisable to restrict the allocation
to reliable hosts that will remain available over a long pe-
riod of time and will not be subject to upgrades. At the
same time, if there is only a limited number of hosts that
have the required compilers, they should not be blocked by
the exclusive benchmarking tasks to maximize throughput
of the whole system.

Based on the user selection, a benchmark experiment tem-
plate is created. The template describes a single benchmark
experiment with host allocation for benchmark execution
and hosts requirements for the other tasks making up the
experiment. The template, however, does not specify the
version of the benchmarked software. In the second step of
the analysis, the user can again manually modify the exper-
iment template. Once the user commits the template, the
individual experiments are created automatically based on
the existence of the benchmarked software versions.

The process of planning a benchmark experiment is nec-
essarily bound to the specifics of software download and
compilation, benchmark parameter adjustment and other
details. These differ from experiment to experiment and
therefore cannot be handled in a generic manner by the
benchmarking framework without the help of benchmark
plugins. Many of the plugins, however, can be shared by
more benchmarks. Examples of shared plugins include tasks
for downloading software from common repositories such as
CVS or SVN, or tasks for compiling software through the au-
toconf tool. Ideally, software vendors would distribute other
necessary plugins to support their software in the bench-
marking environment in the form of software modules, thus
saving the work of the benchmark developers and simplifying
reuse of the software in different benchmarks. The software

modules can be stored in a centralized repository, similar
to packages for various Linux distributions. Until this ideal
scenario comes to pass, however, the software modules need
to be packaged into the benchmark modules.

5.2 Results Repository
The Results Repository is responsible for persistent storage
of benchmark results, logs related to the execution of bench-
marks, and for statistical evaluation and visualization of the
results. The results are stored in a benchmark–independent
format that preserves information on individual measure-
ments, and thus can be used for various types of evaluation,
both benchmark–independent and benchmark–specific.

The Results Repository uses two distinct data formats, a
textual format with emphasis on portability and a binary
format with emphasis on efficiency. In the textual format,
measurements from each benchmark execution are stored in
a separate text file. The text file is a Comma–Separated–
Values file representing a table with measurements in rows
and metrics in columns. Each measurement consists of the
same metrics, which are benchmark–specific. Often, there
is only one metric per measurement, namely the current
time in processor clock ticks. The textual format is highly
portable and can easily be supported by any benchmark
on any platform without dependencies on external libraries.
The format, however, is not suitable for the results eval-
uation, because it is space–inefficient and does not allow
random access to individual measurements.

The binary format used by the Results Repository stores the
measurements from each benchmark execution in a separate
NetCDF file. The NetCDF format [17] supports platform–
independent storage of multidimensional arrays with one ex-
tensible dimension and allows random access to array ele-
ments in constant time. Although the format is suitable for
storing measurements from a single benchmark execution,
it is not suitable for storing measurements from multiple
benchmark executions or even multiple benchmark binaries,
because it does not support non–rectangular arrays. Mea-
surements from multiple benchmark binaries of the same
benchmark and benchmarked software are needed due to
random effects in compilation [12, 13]. The benchmark re-
sults can be non–rectangular, because different benchmark
executions in the same benchmark experiment can have dif-
ferent numbers of measurements. Similarly, different bench-
mark binaries can be benchmarked by different numbers of
benchmark executions. The Results Repository therefore
uses a file system directory tree to group results based on
their relation to benchmark experiments and benchmark bi-
naries.

The Results Repository is designed to be an easy–to–
use platform for statistical evaluation and visualization of
benchmark results. To simplify the implementation of spe-
cific statistical evaluation and visualization plugins, the Re-
sults Repository supports plugins written in the R language.
The R language is a part of the R Project [10], a tool for
statistical computing and visualization with a number of
freely available extensions for new statistical methods. The
R language itself is freely available and supports most cur-
rent platforms. The R runtime environment can be easily
linked to the JVM and accessed via Java Native Interface

(JNI). The R plugins can thus use the Java part of the Re-
sults Repository for communication with the benchmarking
environment, such as for planning additional measurements
when the variation of the results is too high. The NetCDF
format is supported by R, hence the plugins can also directly
access the benchmark results.

The statistical evaluation supported by the Results Repos-
itory includes built–in calculation of basic statistics and
pluggable evaluation and visualization, which can be
benchmark–specific, analysis–specific or fully generic. The
individual plugins can store their intermediate and final re-
sults in the repository and can access results stored by other
plugins. In particular, any plugin can access the basic statis-
tics calculated by the built–in code. The list of plugins to
use for the evaluation of a specific benchmark analysis, as
well as the parameters of the plugins, are set at the bench-
mark analysis creation time.

The built–in evaluation includes calculation of sample aver-
age, variance, median and quartiles of measurements within
each benchmark execution, and higher–level statistics for all
executions from a single benchmark binary, as well as for all
executions from a benchmarking experiment. In the regres-
sion analysis, a benchmarking experiment corresponds to a
single software version, and thus the basic statistics include
mean and median of all measurements of each software ver-
sion. Additional generic evaluation, such as calculation of
confidence intervals, analysis of variance or calculation of im-
pact factors of random effects [12, 13], can be implemented
by generic plugins.

The Results Repository contains one analysis–specific plu-
gin for each supported benchmark analysis type. The plugin
for the comparison analysis uses the basic statistics to create
graphs that allow visual comparison of performance of the
benchmarked systems. The plugin for the regression analysis
automatically detects mean performance changes between
consecutive software versions using statistical methods de-
scribed in [13]. The plugin generates graphs with marked
performance changes and a list of the changes. The plugin
can be set to send notification messages on newly detected
changes.

The benchmark–specific plugins are intended for additional
evaluation of a benchmark analysis performed by a spe-
cific benchmark. A benchmark–specific evaluation is re-
quired when interrelation of different metrics measured by
the benchmark is of interest, or when the metrics are not of
numeric types.

All results stored in the Results Repository are presented
to the user through the integrated BEEN user interface.
The visualization plugins can generate any images, tables
and graphs, which are then displayed by the user interface.
Adding a new plugin to the Results Repository therefore
does not require modification of the user interface imple-
mentation.

5.3 User Interface
The web user interface provides an unified access to the
benchmarks known to the environment. The interface is
integrated with the interface of the execution environment.

Via the Benchmark Manager, the user interface supports
defining a new benchmark analysis using a given benchmark,
starting, suspending and resuming the analysis, and moni-
toring the running benchmarks. The monitoring interface
for the benchmark is inter-connected with the interface of
the execution environment, and thus individual tasks that
form the running benchmarks can be monitored as well.

Via the Results Repository, the user interface supports view-
ing the benchmark results and the configuration information
of the hosts the benchmarks were run on. The results are
presented in tables of basic statistics, by comparison graphs,
and also as raw data. The results of a regression analy-
sis shall be annotated with a list of detected performance
changes and specialized graphs of changes.

6. EVALUATION
The ambition of BEEN is to provide a generic distributed
and multi–platform execution framework with a generic
benchmarking framework built upon it. It is designed to
be easy to install, easy to use and run automatically with-
out user intervention. These qualities, however, can only be
evaluated by using BEEN for a diverse set of benchmarks,
platforms and software. The implementation of BEEN is
in beta stage, currently capable of handling a comparison
analysis of a nontrivial distributed benchmark. We there-
fore base the evaluation on handling a comparison analysis
with the Xampler benchmark from the CORBA Benchmark-
ing Project [8], which not only shows that BEEN is indeed
usable, but also that BEEN saves coding effort when per-
forming benchmark experiments.

Xampler is a distributed client–server CORBA benchmark
consisting of a server process and a client process. The client
repeatedly invokes a method on the server using the CORBA
remote procedure call and measures the method invocation
time. In the evaluation, we have created benchmark mod-
ule that supports comparison analysis using the Xampler
benchmark running on the omniORB broker [5]. The anal-
ysis of the results has been performed using benchmark–
independent plugins that produce basic statistics and a com-
parison graph. The benchmark plugins specific to the Xam-
pler benchmark and plugins specific to the omniORB broker
had slightly over 1500 lines of code in total. Both plugins
are generic and can be used in other experiments involving
the same benchmark or broker. This represents a significant
improvement over the ad–hoc scripts used to execute the
Xampler benchmark, which do not support monitoring and
analysis, cannot be used readily in other experiments, but
currently already have 2000 lines of code.

The beta implementation of BEEN, including the Xampler
module used for the evaluation, can be downloaded from the
web [2]. Detailed step–by–step instructions to perform the
evaluation, as well as screenshots of the user interface run-
ning the evaluation, are also available [2]. A more thorough
evaluation will be in order as the BEEN implementation ma-
tures and is used for more benchmarks on more platforms.

7. CONCLUSIONS
Benchmarking is an essential performance evaluation tech-
nique, whose importance rests in that it provides perfor-
mance data representative of a real system, which can be

used either directly to assess performance or indirectly to
calibrate and verify simulation and modeling results. Reg-
ular automated benchmarking is particularly popular be-
cause it gives software developers an important feedback on
potential performance problems introduced during develop-
ment. Automated benchmarking is, however, a complex pro-
cess that comprises automated download, compilation, dis-
tributed deployment, monitoring, results collection, storage
of results, evaluation and visualization. Ad–hoc benchmark-
ing tools are commonly used for these tasks, even though
most of them can be automated using a generic benchmark-
ing tool.

BEEN is a generic benchmarking tool for automated bench-
marking in a distributed heterogeneous environment, which
supports comparison of system performance as well as re-
gression benchmarking. The tool is designed to run any
benchmark that provides raw performance data, with a min-
imal support required from the benchmark. BEEN currently
focuses on the Linux, Windows and Solaris platforms, but
can also work, in a limited mode, with other platforms that
can run the Java Virtual Machine.

When comparing system performance, the whole bench-
marking process is controlled by BEEN. This includes auto-
mated resolution of deadlocks and infinite loops in running
benchmarks, storing a common form of performance results
in a benchmark–independent results repository, and allow-
ing both benchmark–independent and benchmark–specific
evaluation of data. When comparing performance of consec-
utive software versions in regression benchmarking, BEEN
automatically checks for new software versions, runs the
benchmark, performs the automated detection of changes
and schedules additional measurements as necessary to
achieve the desired result precision.

In this paper, we describe the design and core functionality
of BEEN. Although BEEN is still under development, the
current beta version allows the comparison of system per-
formance as shown on the example of the Xampler CORBA
benchmark and the omniORB broker. The beta version is
available on the web [2]. Future work will focus on finishing
the implementation so that more types of analysis and more
benchmarks on more platforms are readily supported.

8. ACKNOWLEDGMENTS
This work was partially supported by the Czech Academy
of Sciences project 1ET400300504 and by the ITEA Osiris
project.

9. REFERENCES
[1] Advanced Technology Labs. Agent and distributed

objects quality of service.
http://www.atl.external.lmco.com/projects/QoS,
2006.

[2] BEEN Developers. Benchmarking environment
(BEEN). http://nenya.ms.mff.cuni.cz/been, 2006.

[3] L. Bulej, T. Kalibera, and P. Tuma. Repeated results
analysis for middleware regression benchmarking.
Performance Evaluation, 60(1–4):345–358, May 2005.

[4] M. Courson, A. Mink, G. Marçais, and B. Traverse.
An automated benchmarking toolset. In HPCN
Europe, volume 1823 of LNCS, pages 497–506.
Springer, 2000.

[5] D. Grisby et al. Free high performance orb.
http://omniorb.sourceforge.net, 2006.

[6] B. Dillenseger and E. Cecchet. CLIF is a Load
Injection Framework. In Workshop on Middleware
Benchmarking: Approaches, Results, Experiences,
OOPSLA 2003, Oct. 2003.

[7] Distributed Systems Research Group. Mono regression
benchmarking.
http://nenya.ms.mff.cuni.cz/projects/mono, 2005.

[8] Distributed Systems Research Group. Comprehensive
CORBA benchmarking. http://nenya.ms.mff.cuni.
cz/projects/corba/xampler.html, 2006.

[9] DOC Group. TAO perf. scoreboard. http://www.dre.
vanderbilt.edu/stats/performance.shtml, 2006.

[10] Free Software Foundation. The R project for statistical
computing. http://www.r-project.org, 2006.

[11] T. Kalibera, L. Bulej, and P. Tuma. Generic
environment for full automation of benchmarking. In
SOQUA/TECOS, volume 58 of LNI, pages 125–132.
GI, 2004.

[12] T. Kalibera, L. Bulej, and P. Tuma. Benchmark
precision and random initial state. In SPECTS 2005,
pages 853–862, San Diego, CA, USA, July 2005. SCS.

[13] T. Kalibera and P. Tuma. Precise regression
benchmarking with random effects: Improving Mono
benchmark results. In Formal Methods and Stochastic
Models for Performance Evaluation, volume 4054 of
LNCS, pages 63–77. Springer, June 2006.

[14] A. M. Memon, A. A. Porter, C. Yilmaz,
A. Nagarajan, D. C. Schmidt, and B. Natarajan.
Skoll: Distributed continuous quality assurance. In
ICSE, pages 459–468. IEEE Computer Society, 2004.

[15] M. Prochazka, A. Madan, J. Vitek, and W. Liu.
RTJBench: A Real-Time Java Benchmarking
Framework. In Component And Middleware
Performance Workshop, OOPSLA 2004, Oct. 2004.

[16] Supercomputer Computations Research Institute,
Florida State University. Distributed queueing system.
http://packages.qa.debian.org/d/dqs.html, 1998.

[17] University Corporation for Atmospheric Research.
Network Common Data Form.
http://www.unidata.ucar.edu/software/netcdf,
2006.

[18] C. Yilmaz, A. S. Krishna, A. M. Memon, A. A.
Porter, D. C. Schmidt, A. S. Gokhale, and
B. Natarajan. Main effects screening: a distributed
continuous quality assurance process for monitoring
performance degradation in evolving software systems.
In ICSE, pages 293–302. ACM, 2005.

